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ABSTRACT 

Simulating images of various objects in a real world scene has 

wide applications while testing algorithms for machine vision 

applications as well as in computer graphics and gaming 

software industry. Most current algorithms use collimated 

light sources and assume the medium to be non-scattering and 

non-attenuating. In real world, most light sources are too near 

to the objects in the scene and hence cannot be assumed to be 

collimated. Real world mediums, such as oceans in case of 

Underwater Robotic Vehicle (URV) applications or smoke 

and vapor filled air in case of industrial welding applications, 

scatter and attenuate light. A software system that makes no 

such assumptions and uses point light sources in scattering 

and attenuating media has been developed. Another novelty of 

current work is use of open source Python programming 

language along with associated 2D graphics and plotting 

library, MatPlotLib.   

General Terms 
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simulation, Python, MatPlotLib. 
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1. INTRODUCTION 
While simulating images for various applications, it is 

common to assume that the light sources being used are 

collimated. However, very often, the light sources being used 

in practice, such as in weld seam inspection and underwater 

imaging applications, are actually point light sources. When 

these light sources are approximated as collimated light 

sources, it causes significant error in the recovered shape and 

3D information of the object. The error increases further when 

the imaging process is undertaken in an attenuating and 

scattering media. Proposed software system makes no such 

assumptions and uses point light sources in scattering and 

attenuating media. Another novelty of current work is use of 

open source software.  

2. MODEL 
Consider a coordinate system as shown in Figure 1 in which 

the origin is located at the camera image plane and the z-axis 

points along the optical axis toward the object. 

 

Figure 1. Coordinate system 

Using radiometric terminology suggested by the U.S. National 

Bureau of Standards [2], we define the irradiance (E) as the 

incident radiant flux per unit area of the receiving surface. The 

radiant flux density (P) is the radiant power per unit area 

normal to the ray. 

The irradiance (E) of a surface illuminated by a light source is 

related to the radiant flux density (P) at the surface by 

Equation 1. 

 E = P (𝐧 . 𝐬)                  (1) 

Here n is the unit outward surface normal and s is a unit 

vector pointing from the surface toward the light source. 

Following the procedure suggested by [3], it is convenient to 

substitute for the dot product in Equation 1 in terms of the 

gradient angles of the reflecting surface element. 

The two unit vectors n and s can be specified by Equations 2 

and 3 respectively. 

n = [-1, p, q]T                  (2) 

s = [-1, ps, qs]
T                  (3) 

Here p and q are the surface gradient components: dz/dx and 

dz/dy, and ps and qs are the surface gradient components of a 

plane normal to the vector s. 

Equation 1 can be combined with Equations 2 and 3 and 

rewritten as Equation 4. 
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 E = P
(1 + pps  + qqs )

 (1+p2+q2)  (1+ps
2+qs

2)
                         (4) 

If the surface is Lambertian, the image brightness (F) 

produced when observing the object from any direction is 

proportional to the irradiance (E). The constant of 

proportionality depends only on the reflectivity of the surface 

(ρ) and the optics of the imaging system. The dependence on 

the optics is generally ignored since it is specific to the 

imaging system and is easily obtained through calibration. 

Hence, the image brightness (F) is related to the irradiance (E) 

by Equation 5. 

 F = ρ E                   (5) 

Equations 5 can be combined with Equation 4 and rewritten as 

Equation 6. 

 F = ρ  P
(1 + pps  + qqs )

 (1+p2+q2)  (1+ps
2+qs

2)
                (6) 

If the direction (s) and radiant flux density (P) of the 

illumination are known at each point on the surface, three 

independent evaluations of Equation 6 for each surface 

element are sufficient to solve for the two unknown surface 

gradient components (p, q) and the unknown surface 

reflectance (ρ) at the surface element. 

Once the surface gradient components (p, q) are computed for 

each surface element, shape and 3D depth (z) map of the 

object can be computed using Equation 7. 

 z =  z0 +   (p dx + q dy)                 (7) 

Here z0 is the depth of a known point on the object i.e. 'datum 

depth'. 

[1] accomplishes this by assuming that the light source is 

collimated and uniform so that s and P are spatially invariant. 

Three images using same imaging system but three different 

light sources, as shown in Figure 2, provide the required three 

independent evaluations of Equation 6. This technique is 

known as 'photometric stereo'. 

 

Figure 2. Light source arrangement 

In practice this can be expected to work well as long as the 

difference in the depth between the nearest and furthest 

surface elements on the object being observed is small 

compared to the distance of the object from the light source. 

In the case of a mobile robot carrying its own lamps, or 

cooperating robots trying to minimize backscatter into the 

camera [4], as in weld seam inspection and underwater 

applications, the light source is likely to be close to the objects 

being viewed. In such cases, the light sources are better 

approximated as point light sources. To assume they are 

collimated light sources causes significant error in the 

recovered shape and 3D information of the object. The error 

increases further when the imaging process is undertaken in 

an attenuating and scattering media. 

2.1 Point Light Sources 
When using point light sources, the local radiant flux density 

(P) can be expressed in terms of the distance from the point 

light source (Rs) as given in Equation 8. 

 P =
I0

Rs
2                (8) 

Here I0 is the radiant intensity of an isotropic point light 

source. 

Since distance and direction to point light source (Rs) varies 

from one surface element to another, ps and qs themselves 

vary from one surface element to another.  Hence, having 

three images is no longer sufficient to solve Equation 6 and 

compute p, q and ρ at each surface element. 

2.2 Attenuating Media 
In addition, if the operation takes place in a turbid or smoky 

medium, attenuation will be present so that the radiant flux 

density (P) will vary as a function of position for each of the 

surface elements on the object as described in Equation 9. 

 P =  I0
e
− 

R s   
ᵦ

Rs
2                   (9) 

Here β is the characteristic attenuation length.  

2.3 Scattering Media 
When the medium is also scattering, if we assume it is 

homogeneous and not highly dense, as in smoky welding 

environment or murky water, we can use single scattering 

model (Figure 3) [5]. 

 

Figure 3. Single scattering model 

Using single scattering model, the image brightness (F) due to 

a particle in the medium is given by Equation 10. 

 Fmedium =  P e
− 

𝑥

ᵦ  γ S(g, α)  e
− 

y

ᵦ               (10) 

Here γ is scattering coefficient i.e. fraction of the incident flux 

scattered by a unit volume of the medium in all directions, 

S(g,α) is phase function i.e. angular scattering distribution of 

the incident flux, x is the distance of the scattering particle 

from the point light source and y is the distance of the 

scattering particle from the origin of the coordinate system. 
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S(g,α) is assumed to be a smooth, low-order polynomial of 

cos α, where α is the angle between incident and scattered 

directions. Its first-order approximation is given by Equation 

11. 

 S g, α =  
1

4π
 (1 + g cos α)               (11) 

Here g is the forward scattering parameter that controls the 

shape of the phase function and € (-1,1). 

The total image brightness of a pixel corresponding to a 

surface element due to scattering by all particles is obtained 

by integrating Equation 10 along viewing direction to surface 

element from 0 to R. 

This together with irradiance due to the surface element 

produces the final image brightness (F) as given by Equation 

12. 

 F = Fmedium δ(x<R) + Fsurface element δ(x=R)           (12) 

Here δ is Dirac delta function. 

3. SOFTWARE PROGRAM 
The software system was developed using Python 3 along 

with its associated 2D graphics and plotting package, 

MatPlotLib. 

The coordinate system was defined with center of camera 

image plane as the origin of coordinate system. Center of the 

camera lens is at 'f' meters from origin along z axis. Center of 

object in the scene is at a distance of (z0-f) meters from lens 

center further along z axis i.e. zo meters from origin along z 

axis. Positive z-axis points along the optical axis towards the 

object in the scene. Object in the scene intersects z-axis at 'z0' 

meters ('datum depth') from origin. 

Focal length of the camera lens was assumed to be 0.02 

meters. Distance of the object from lens was assumed to be 

3.0 meters. Simulated image resolution was 201 pixels x 201 

pixels, corresponding to its size of 2 meters x 2 meters. For 

simulating images, object data was inputted, followed by 

information about radiant intensity and various locations of 

the light source. Corresponding images were simulated using 

this data with equation 12. The core program is given below: 

#----------------- 

# Import libraries 

#----------------- 

# Support functions 

from support import support_class 

import matplotlib.pyplot as plt 

# Numerical analysis 

from numpy import mean 

from numpy import median 

from numpy import std 

from numpy import corrcoef 

from numpy import ones 

from numpy import zeros 

from numpy import float64 

from numpy import arange 

import math 

#----------------- 

# Main class 

#----------------- 

class main_class: 

 def __init__(self): 

  # Constants 

  # DATA DIRECTORIES 

  #MAC# 

  BASE_FILE_DIR = '/Users/turiya/Desktop' 

  SEP='/' 

  #WINDOWS# 

  #BASE_FILE_DIR = 'C:\\Users\\KV_DoLR\\Desktop' 

  #SEP='\\' 

  DATA_FOLDER='ips' 

  INPUT_FILE_DIR=BASE_FILE_DIR+SEP+ 

DATA_FOLDER 

  # INPUT and OUTPUT FILENAMES 

   self.INPUT_FILE_1 = INPUT_FILE_DIR + SEP + '1.txt'    

   #--------------------------------------------------- 

   # Coordinate system definition: 

   #  Center of camera image plane: Origin of coordinate 

system 

   #  Center of camera lens:   'f' meters from origin along z axis 

   #  Center of object in the scene: Further (z0-f) meters from 

lens center along z axis 

   #      zo meters from origin along z axis 

   # Positive z-axis: 

   #  Points along the optical axis towards the object in the 

scene 

   # Object in the scene: 

   #  Intersects z-axis at 'z0' meters ('datum depth') from origin 

   #--------------------------------------------------- 

   # Focal length of the camera Lens 

   self.f = 0.02     # in meters 

   self.obj_dist_from_lens = 3.0                   # in meters 

   #--------------------------------------------------- 

   # Camera image plane 

   #--------------------------------------------------- 

   # 201 pixels x 201 pixels (i.e. -100 (via 0) to 100) 

   self.IMG_RES_X = 11 

   self.IMG_RES_Y = 11 

   # 0.0201 m x 0.0201 m (i.e. 2.01 cm x 2.01 cm) 

   self.IMG_SIZE_X = 0.0201                 # in meters 

   self.IMG_SIZE_Y = 0.0201                 # in meters 

   self.IMG_RES_X_HALF = (self.IMG_RES_X - 1)/2 

   self.IMG_RES_Y_HALF = (self.IMG_RES_Y - 1)/2 

   self.MIN_I = 0 

   self.MAX_I = (self.IMG_RES_X - 1) 

   self.MIN_J = 0 

   self.MAX_J = (self.IMG_RES_Y - 1) 

   self.IMGPIXEL_SIZE_X=self.IMG_SIZE_X / 

self.IMG_RES_X  # 0.0001 meters 
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self.IMGPIXEL_SIZE_Y=self.IMG_SIZE_Y / 

self.IMG_RES_Y  # 0.0001 meters 

   # Object in the scene 

   # one image pixel = one object surface element 

self.z0 = self.obj_dist_from_lens + self.f         # in meters 

self.MAGNIFICATION = (self.z0 - self.f) / self.f 

self.OBJELEM_SIZE_X=self.IMGPIXEL_SIZE_X * 

self.MAGNIFICATION 

self.OBJELEM_SIZE_Y=self.IMGPIXEL_SIZE_Y * 

self.MAGNIFICATION 

self.OBJ_SIZE_X=self.IMG_SIZE_X * 

self.MAGNIFICATION 

self.OBJ_SIZE_Y=self.IMG_SIZE_Y * 

self.MAGNIFICATION 

   # Light source 

   self.Power = 60                         # in Watts 

   self.I0 = ( self.Power / (4 * 3.14) ) # in Watts per Steradian 

   # Attenuating and scattering media 

   #  Beta: Characteristic attenuation length 

   #  Gamma: Scattering coefficient 

   #  g: Forward scattering parameter: (-1,1) 

   self.beta = 1000000.0  # negligible attenuation 

   self.gamma = 0000001.0  # negligible scattering 

   self.g = 0.0 

   self.SCATTERING_STEP = 0.1 

   # Get access to classes containing support functions 

   self.class2 = support_class() 

   # Lists of lists 

   self.matrix_list = [] 

   # Lists 

   self.list = [] 

   # Counts    

   self.count = 0 

  #--------------------------------------------------- 

  # Simulate images 

  #--------------------------------------------------- 

  def simulate_images(self): 

   # DEBUG_print to output messages based on DEBUG level 

   self.class2.DEBUG_print(2, 'Staring to simulate images...') 

   # Read object data: 

   #  For each surface element of the object, get its: 

   #   z, rho 

   #   Read them into two 2-D arrays 

   #   each of size IMG_RES_X, IMG_RES_Y 

   object_z, object_rho = self.get_object_data_plane()  

   #self.class2.DEBUG_print(2, 'object_z:') 

   #self.class2.DEBUG_print_array(2, object_z) 

   #self.class2.DEBUG_print(2, 'object_rho:') 

   #self.class2.DEBUG_print_array(2, object_rho) 

   # Get I0 (radiant intensity) and x, y, z (position) of the three 

isotropic point light sources 

   lights_I0, lights_x, lights_y, lights_z = 

self.get_light_sources_data() 

   # simulate three images, one for each of the three light 

sources 

   image_1 = self.compute_image(object_z, object_rho, 

lights_I0[0], lights_x[0], lights_y[0], lights_z[0]) 

   image_2 = self.compute_image(object_z, object_rho, 

lights_I0[1], lights_x[1], lights_y[1], lights_z[1]) 

   image_3 = self.compute_image(object_z, object_rho, 

lights_I0[2], lights_x[2], lights_y[2], lights_z[2]) 

   plt.imshow(image_1) 

   plt.gray() 

   plt.show() 

   plt.imshow(image_2) 

   plt.gray() 

   plt.show() 

   plt.imshow(image_3) 

   plt.gray() 

   plt.show() 

   self.write_image_to_file(image_1) 

   self.class2.DEBUG_print(2, 'image_1:') 

   self.class2.DEBUG_print_array(2, image_1) 

   self.write_image_to_file(image_2) 

   self.class2.DEBUG_print(2, 'image_2:') 

   self.class2.DEBUG_print_array(2, image_2) 

   self.write_image_to_file(image_3) 

   self.class2.DEBUG_print(2, 'image_3:') 

   self.class2.DEBUG_print_array(2, image_3) 

   return 1 

  #--------------------------------------------------- 

  # Recover shape 

  #--------------------------------------------------- 

  def recover_shape(self): 

   # Not working from within code 

   # Use this from within python console 

   # qgis.console.clearConsole() 

   # Get access to classes containing support functions 

   self.class2 = support_class2() 
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   # DEBUG_print to output messages based on DEBUG level 

   self.class2.DEBUG_print(2, 'Starting to recover shape from 

images...') 

   return 

  def get_object_data_plane(self): 

   # Copy z, rho into two 2-D arrays 

   #  each of size IMG_RES_X, IMG_RES_Y 

   object_z = [] 

   object_z = zeros( (self.IMG_RES_X, self.IMG_RES_Y), 

float64) 

   object_rho = [] 

   object_rho = zeros( (self.IMG_RES_X, self.IMG_RES_Y), 

float64) 

   # assume part of a sphere spanning the whole image/object 

space: 

   #  r_min = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) = 

3.01 meters 

   #  (0, 0, z0) is its closest point 

   r = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y)  # meters 

   # for each image pixel / object surface element : 

   for i in range(self.MIN_I, (self.MAX_I+1)): 

    for j in range(self.MIN_J, (self.MAX_J+1)): 

     obj_elem_x = (i - self.IMG_RES_X_HALF) * 

self.OBJELEM_SIZE_X 

     obj_elem_y = (self.IMG_RES_Y_HALF - j) * 

self.OBJELEM_SIZE_Y 

     object_z[i,j] = self.z0 

     object_rho[i,j] = 1.0 

   return object_z, object_rho 

  def get_object_data(self): 

   # Copy z, rho into two 2-D arrays 

   #  each of size IMG_RES_X, IMG_RES_Y 

   object_z = [] 

   object_z = zeros( (self.IMG_RES_X, self.IMG_RES_Y), 

float64) 

   object_rho = [] 

   object_rho = zeros( (self.IMG_RES_X, self.IMG_RES_Y), 

float64) 

   # assume part of a sphere spanning the whole image/object 

space: 

   #  r_min = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) = 

3.01 meters 

   #  (0, 0, z0) is its closest point 

   r = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y)  # meters 

   # for each image pixel / object surface element : 

   for i in range(self.MIN_I, (self.MAX_I+1)): 

    for j in range(self.MIN_J, (self.MAX_J+1)): 

     obj_elem_x = (i - self.IMG_RES_X_HALF) * 

self.OBJELEM_SIZE_X 

     obj_elem_y = (self.IMG_RES_Y_HALF - j) * 

self.OBJELEM_SIZE_Y 

     object_z[i,j] = self.z0 + r - math.sqrt(r**2 - obj_elem_x**2 

- obj_elem_y**2) 

     # To overwrite as a plane at distance (z0+1) meters 

     object_z[i,j] = self.z0 + 1.0 

     object_rho[i,j] = 1.0 

   return object_z, object_rho 

  def get_light_sources_data(self): 

   lights_I0 = [ self.I0, self.I0, self.I0 ] 

   # assume light sources to be at top-left, bottom-mid and top-

right of lens 

   lights_x=[ -(0.5*self.OBJ_SIZE_X), 0.0, 

(0.5*self.OBJ_SIZE_X) ] 

   lights_y=[ (0.5*self.OBJ_SIZE_X), -

(0.5*self.OBJ_SIZE_X), (0.5*self.OBJ_SIZE_X) ] 

   lights_z = [self.f, self.f, self.f] 

   return lights_I0, lights_x, lights_y, lights_z 

  def compute_image(self, object_z, object_rho, light_I0, 

light_x, light_y, light_z): 

   image = [] 

   image = zeros( (self.IMG_RES_X, self.IMG_RES_Y), 

float64) 

   # for each image pixel / object surface element : 

   for i in range(self.MIN_I, (self.MAX_I+1)): 

    for j in range(self.MIN_J, (self.MAX_J+1)): 

     objelem_x = (i - self.IMG_RES_X_HALF) * 

self.OBJELEM_SIZE_X 

     objelem_y = (self.IMG_RES_Y_HALF - j) * 

self.OBJELEM_SIZE_Y 

     objelem_z = object_z[i, j] 

     # compute distance of object element from light source: Rs 

     Rs = math.sqrt( ((light_x-objelem_x)**2) + ((light_y-

objelem_y)**2) + ((light_z-objelem_z)**2)) 

     #self.class2.DEBUG_print(2, str(light_x)+'; 

'+str(light_y)+'; '+str(light_z)) 

     #self.class2.DEBUG_print(2, str(objelem_x)+'; 

'+str(objelem_y)+'; '+str(objelem_z)) 

     #self.class2.DEBUG_print(2, 'Rs:'+str(Rs)) 

     # compute local radiant flux density: P 

     P = light_I0 * math.exp(-Rs / self.beta) / (Rs*Rs) 

     # compute unit outward surface normal: n 

     if (i < self.MAX_I): 

    p = (object_z[(i+1), j] - object_z[i, j]) / 

self.OBJELEM_SIZE_X 

     else: 
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    p = (object_z[i, j] - object_z[(i-1), j]) / 

self.OBJELEM_SIZE_X 

     if (j < self.MAX_J): 

    q = (object_z[i, (j+1)] - object_z[i, j]) / 

self.OBJELEM_SIZE_Y 

     else: 

    q = (object_z[i, j] - object_z[i, (j-1)]) / 

self.OBJELEM_SIZE_Y 

     n_x = (-1) / math.sqrt( 1 + (p**2) + (q**2) ) 

     n_y = p / math.sqrt( 1 + (p**2) + (q**2) ) 

     n_z = q / math.sqrt( 1 + (p**2) + (q**2) )  

     # compute unit vector pointing from the surface toward the 

light source: s 

     s_x = (light_x - objelem_x) / Rs 

     s_y = (light_y - objelem_y) / Rs 

     s_z = (light_z - objelem_z) / Rs      

     # compute n_dot_s 

     n_dot_s = ( (n_x * s_x) + (n_y * s_y) + (n_z * s_z) ) * 

math.exp(-Rs / self.beta) 

     #self.class2.DEBUG_print(2, 'P:'+str(P)+'; 

n_dot_s:'+str(n_dot_s)) 

     # compute distance of object element from center of 

camera lens: Rl 

     # to account for attenuation from object element to camera 

     Rc = math.sqrt( ((0-objelem_x)**2) + ((0-objelem_y)**2) 

+ ((self.f-objelem_z)**2)) 

     # compute image brightness: F 

     # ToDo: Remove (-1) 

     image[i, j] = (-1) * P * n_dot_s * object_rho[i, j] * 

math.exp(-Rc / self.beta)      

     # add brightness due to scattering media, F_medium 

     start_x = 0 

     start_y = 0 

     start_z = self.f 

     end_x = objelem_x 

     end_y = objelem_y 

     end_z = objelem_z      

     for t in arange(0, 1, self.SCATTERING_STEP):      

    particle_x = ((end_x-start_x)*t) + start_x 

    particle_y = ((end_y-start_y)*t) + start_y 

    particle_z = ((end_z-start_z)*t) + start_z     

    Rs = math.sqrt( ((light_x-particle_x)**2) + ((light_y-

particle_y)**2) + ((light_z-particle_z)**2)) 

    Rc = math.sqrt( ((0-particle_x)**2) + ((0-particle_y)**2) + 

((self.f-particle_z)**2))     

    #compute cosine of angle between particle-light source and 

particle-camera lines: cos_alpha 

    a1 = (start_x - particle_x) 

    b1 = (start_y - particle_y) 

    c1 = (start_z - particle_z) 

    a2 = (light_x - particle_x) 

    b2 = (light_y - particle_y) 

    c2 = (light_z - particle_z) 

    cos_alpha = ((a1 * a2) + (b1 * b2) + (c1 * c2)) / ( 

math.sqrt((a1*a1)+(b1*b1)+(c1*c1)) * 

math.sqrt((a2*a2)+(b2*b2)+(c2*c2)) )     

    P = light_I0 * math.exp(-Rs / self.beta) / (Rs*Rs) 

    S = (1 + (self.g * cos_alpha) ) / (4 * math.pi) 

    F_medium = P * self.gamma * S * math.exp(-Rc / 

self.beta)     

    image[i, j] = image[i, j] + F_medium 

   return image 

  def write_image_to_file(self, image): 

   # plt.savefig('test.png') 

   return 

a = main_class() 

a.simulate_images() 

4. RESULTS AND DISCUSSION 
The software was tested by simulate images of a 

hemispherical object of radius 1 meter using a 60 Watt point 

light source. Three images were simulated by moving the light 

source to three different locations. 

The image of the object simulated by placing the light source 

at top-left corner of the object is shown in Figure 4. 

 

Figure 4. Image with light source at top-left corner 

The image of the object simulated by placing the light source 

at bottom-middle corner of the object is shown in Figure 5. 
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Figure 5. Image with light source at bottom-mid location 

The image of the object simulated by placing the light source 

at top-right corner of the object is shown in Figure 6. 

Figure 6. Image with light source at top-right corner 

5. CONCLUSIONS 
A open source Python and MatPlotLib software system was 

developed for simulating images using point light sources in 

scattering and attenuating media. It was tested by 

demonstrating its use for a simple object using three point 

light sources. 
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