
 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

15

Python and MatPlotLib based Open Source Software

System for Simulating Images with point Light Sources

in Attenuating and Scattering Media

K. Nagesh

Adjunct Faculty,
CUTM, Parlakhemundi,

Gajapati district, Odisha, India

D. Nageswara Rao
Vice Chancellor,

CUTM, Parlakhemundi,
Gajapati district, Odisha, India

Song K. Choi
Professor,

University of Hawaii,
Honolulu, HI, USA

ABSTRACT

Simulating images of various objects in a real world scene has

wide applications while testing algorithms for machine vision

applications as well as in computer graphics and gaming

software industry. Most current algorithms use collimated

light sources and assume the medium to be non-scattering and

non-attenuating. In real world, most light sources are too near

to the objects in the scene and hence cannot be assumed to be

collimated. Real world mediums, such as oceans in case of

Underwater Robotic Vehicle (URV) applications or smoke

and vapor filled air in case of industrial welding applications,

scatter and attenuate light. A software system that makes no

such assumptions and uses point light sources in scattering

and attenuating media has been developed. Another novelty of

current work is use of open source Python programming

language along with associated 2D graphics and plotting

library, MatPlotLib.

General Terms
Underwater Robotic Vehicles, Industrial Robots, Image

simulation, Python, MatPlotLib.

Keywords
Point Light Sources, Attenuating Media, Scattering Media.

1. INTRODUCTION
While simulating images for various applications, it is

common to assume that the light sources being used are

collimated. However, very often, the light sources being used

in practice, such as in weld seam inspection and underwater

imaging applications, are actually point light sources. When

these light sources are approximated as collimated light

sources, it causes significant error in the recovered shape and

3D information of the object. The error increases further when

the imaging process is undertaken in an attenuating and

scattering media. Proposed software system makes no such

assumptions and uses point light sources in scattering and

attenuating media. Another novelty of current work is use of

open source software.

2. MODEL
Consider a coordinate system as shown in Figure 1 in which

the origin is located at the camera image plane and the z-axis

points along the optical axis toward the object.

Figure 1. Coordinate system

Using radiometric terminology suggested by the U.S. National

Bureau of Standards [2], we define the irradiance (E) as the

incident radiant flux per unit area of the receiving surface. The

radiant flux density (P) is the radiant power per unit area

normal to the ray.

The irradiance (E) of a surface illuminated by a light source is

related to the radiant flux density (P) at the surface by

Equation 1.

 E = P (𝐧 . 𝐬) (1)

Here n is the unit outward surface normal and s is a unit

vector pointing from the surface toward the light source.

Following the procedure suggested by [3], it is convenient to

substitute for the dot product in Equation 1 in terms of the

gradient angles of the reflecting surface element.

The two unit vectors n and s can be specified by Equations 2

and 3 respectively.

n = [-1, p, q]T (2)

s = [-1, ps, qs]
T (3)

Here p and q are the surface gradient components: dz/dx and

dz/dy, and ps and qs are the surface gradient components of a

plane normal to the vector s.

Equation 1 can be combined with Equations 2 and 3 and

rewritten as Equation 4.

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

16

 E = P
(1 + pps + qqs)

 (1+p2+q2) (1+ps
2+qs

2)
 (4)

If the surface is Lambertian, the image brightness (F)

produced when observing the object from any direction is

proportional to the irradiance (E). The constant of

proportionality depends only on the reflectivity of the surface

(ρ) and the optics of the imaging system. The dependence on

the optics is generally ignored since it is specific to the

imaging system and is easily obtained through calibration.

Hence, the image brightness (F) is related to the irradiance (E)

by Equation 5.

 F = ρ E (5)

Equations 5 can be combined with Equation 4 and rewritten as

Equation 6.

 F = ρ P
(1 + pps + qqs)

 (1+p2+q2) (1+ps
2+qs

2)
 (6)

If the direction (s) and radiant flux density (P) of the

illumination are known at each point on the surface, three

independent evaluations of Equation 6 for each surface

element are sufficient to solve for the two unknown surface

gradient components (p, q) and the unknown surface

reflectance (ρ) at the surface element.

Once the surface gradient components (p, q) are computed for

each surface element, shape and 3D depth (z) map of the

object can be computed using Equation 7.

 z = z0 + (p dx + q dy) (7)

Here z0 is the depth of a known point on the object i.e. 'datum

depth'.

[1] accomplishes this by assuming that the light source is

collimated and uniform so that s and P are spatially invariant.

Three images using same imaging system but three different

light sources, as shown in Figure 2, provide the required three

independent evaluations of Equation 6. This technique is

known as 'photometric stereo'.

Figure 2. Light source arrangement

In practice this can be expected to work well as long as the

difference in the depth between the nearest and furthest

surface elements on the object being observed is small

compared to the distance of the object from the light source.

In the case of a mobile robot carrying its own lamps, or

cooperating robots trying to minimize backscatter into the

camera [4], as in weld seam inspection and underwater

applications, the light source is likely to be close to the objects

being viewed. In such cases, the light sources are better

approximated as point light sources. To assume they are

collimated light sources causes significant error in the

recovered shape and 3D information of the object. The error

increases further when the imaging process is undertaken in

an attenuating and scattering media.

2.1 Point Light Sources
When using point light sources, the local radiant flux density

(P) can be expressed in terms of the distance from the point

light source (Rs) as given in Equation 8.

 P =
I0

Rs
2 (8)

Here I0 is the radiant intensity of an isotropic point light

source.

Since distance and direction to point light source (Rs) varies

from one surface element to another, ps and qs themselves

vary from one surface element to another. Hence, having

three images is no longer sufficient to solve Equation 6 and

compute p, q and ρ at each surface element.

2.2 Attenuating Media
In addition, if the operation takes place in a turbid or smoky

medium, attenuation will be present so that the radiant flux

density (P) will vary as a function of position for each of the

surface elements on the object as described in Equation 9.

 P = I0
e
−

R s
ᵦ

Rs
2 (9)

Here β is the characteristic attenuation length.

2.3 Scattering Media
When the medium is also scattering, if we assume it is

homogeneous and not highly dense, as in smoky welding

environment or murky water, we can use single scattering

model (Figure 3) [5].

Figure 3. Single scattering model

Using single scattering model, the image brightness (F) due to

a particle in the medium is given by Equation 10.

 Fmedium = P e
−

𝑥

ᵦ γ S(g, α) e
−

y

ᵦ (10)

Here γ is scattering coefficient i.e. fraction of the incident flux

scattered by a unit volume of the medium in all directions,

S(g,α) is phase function i.e. angular scattering distribution of

the incident flux, x is the distance of the scattering particle

from the point light source and y is the distance of the

scattering particle from the origin of the coordinate system.

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

17

S(g,α) is assumed to be a smooth, low-order polynomial of

cos α, where α is the angle between incident and scattered

directions. Its first-order approximation is given by Equation

11.

 S g, α =
1

4π
 (1 + g cos α) (11)

Here g is the forward scattering parameter that controls the

shape of the phase function and € (-1,1).

The total image brightness of a pixel corresponding to a

surface element due to scattering by all particles is obtained

by integrating Equation 10 along viewing direction to surface

element from 0 to R.

This together with irradiance due to the surface element

produces the final image brightness (F) as given by Equation

12.

 F = Fmedium δ(x<R) + Fsurface element δ(x=R) (12)

Here δ is Dirac delta function.

3. SOFTWARE PROGRAM
The software system was developed using Python 3 along

with its associated 2D graphics and plotting package,

MatPlotLib.

The coordinate system was defined with center of camera

image plane as the origin of coordinate system. Center of the

camera lens is at 'f' meters from origin along z axis. Center of

object in the scene is at a distance of (z0-f) meters from lens

center further along z axis i.e. zo meters from origin along z

axis. Positive z-axis points along the optical axis towards the

object in the scene. Object in the scene intersects z-axis at 'z0'

meters ('datum depth') from origin.

Focal length of the camera lens was assumed to be 0.02

meters. Distance of the object from lens was assumed to be

3.0 meters. Simulated image resolution was 201 pixels x 201

pixels, corresponding to its size of 2 meters x 2 meters. For

simulating images, object data was inputted, followed by

information about radiant intensity and various locations of

the light source. Corresponding images were simulated using

this data with equation 12. The core program is given below:

#-----------------

Import libraries

#-----------------

Support functions

from support import support_class

import matplotlib.pyplot as plt

Numerical analysis

from numpy import mean

from numpy import median

from numpy import std

from numpy import corrcoef

from numpy import ones

from numpy import zeros

from numpy import float64

from numpy import arange

import math

#-----------------

Main class

#-----------------

class main_class:

 def __init__(self):

 # Constants

 # DATA DIRECTORIES

 #MAC#

 BASE_FILE_DIR = '/Users/turiya/Desktop'

 SEP='/'

 #WINDOWS#

 #BASE_FILE_DIR = 'C:\\Users\\KV_DoLR\\Desktop'

 #SEP='\\'

 DATA_FOLDER='ips'

 INPUT_FILE_DIR=BASE_FILE_DIR+SEP+

DATA_FOLDER

 # INPUT and OUTPUT FILENAMES

 self.INPUT_FILE_1 = INPUT_FILE_DIR + SEP + '1.txt'

 #---

 # Coordinate system definition:

 # Center of camera image plane: Origin of coordinate

system

 # Center of camera lens: 'f' meters from origin along z axis

 # Center of object in the scene: Further (z0-f) meters from

lens center along z axis

 # zo meters from origin along z axis

 # Positive z-axis:

 # Points along the optical axis towards the object in the

scene

 # Object in the scene:

 # Intersects z-axis at 'z0' meters ('datum depth') from origin

 #---

 # Focal length of the camera Lens

 self.f = 0.02 # in meters

 self.obj_dist_from_lens = 3.0 # in meters

 #---

 # Camera image plane

 #---

 # 201 pixels x 201 pixels (i.e. -100 (via 0) to 100)

 self.IMG_RES_X = 11

 self.IMG_RES_Y = 11

 # 0.0201 m x 0.0201 m (i.e. 2.01 cm x 2.01 cm)

 self.IMG_SIZE_X = 0.0201 # in meters

 self.IMG_SIZE_Y = 0.0201 # in meters

 self.IMG_RES_X_HALF = (self.IMG_RES_X - 1)/2

 self.IMG_RES_Y_HALF = (self.IMG_RES_Y - 1)/2

 self.MIN_I = 0

 self.MAX_I = (self.IMG_RES_X - 1)

 self.MIN_J = 0

 self.MAX_J = (self.IMG_RES_Y - 1)

 self.IMGPIXEL_SIZE_X=self.IMG_SIZE_X /

self.IMG_RES_X # 0.0001 meters

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

18

self.IMGPIXEL_SIZE_Y=self.IMG_SIZE_Y /

self.IMG_RES_Y # 0.0001 meters

 # Object in the scene

 # one image pixel = one object surface element

self.z0 = self.obj_dist_from_lens + self.f # in meters

self.MAGNIFICATION = (self.z0 - self.f) / self.f

self.OBJELEM_SIZE_X=self.IMGPIXEL_SIZE_X *

self.MAGNIFICATION

self.OBJELEM_SIZE_Y=self.IMGPIXEL_SIZE_Y *

self.MAGNIFICATION

self.OBJ_SIZE_X=self.IMG_SIZE_X *

self.MAGNIFICATION

self.OBJ_SIZE_Y=self.IMG_SIZE_Y *

self.MAGNIFICATION

 # Light source

 self.Power = 60 # in Watts

 self.I0 = (self.Power / (4 * 3.14)) # in Watts per Steradian

 # Attenuating and scattering media

 # Beta: Characteristic attenuation length

 # Gamma: Scattering coefficient

 # g: Forward scattering parameter: (-1,1)

 self.beta = 1000000.0 # negligible attenuation

 self.gamma = 0000001.0 # negligible scattering

 self.g = 0.0

 self.SCATTERING_STEP = 0.1

 # Get access to classes containing support functions

 self.class2 = support_class()

 # Lists of lists

 self.matrix_list = []

 # Lists

 self.list = []

 # Counts

 self.count = 0

 #---

 # Simulate images

 #---

 def simulate_images(self):

 # DEBUG_print to output messages based on DEBUG level

 self.class2.DEBUG_print(2, 'Staring to simulate images...')

 # Read object data:

 # For each surface element of the object, get its:

 # z, rho

 # Read them into two 2-D arrays

 # each of size IMG_RES_X, IMG_RES_Y

 object_z, object_rho = self.get_object_data_plane()

 #self.class2.DEBUG_print(2, 'object_z:')

 #self.class2.DEBUG_print_array(2, object_z)

 #self.class2.DEBUG_print(2, 'object_rho:')

 #self.class2.DEBUG_print_array(2, object_rho)

 # Get I0 (radiant intensity) and x, y, z (position) of the three

isotropic point light sources

 lights_I0, lights_x, lights_y, lights_z =

self.get_light_sources_data()

 # simulate three images, one for each of the three light

sources

 image_1 = self.compute_image(object_z, object_rho,

lights_I0[0], lights_x[0], lights_y[0], lights_z[0])

 image_2 = self.compute_image(object_z, object_rho,

lights_I0[1], lights_x[1], lights_y[1], lights_z[1])

 image_3 = self.compute_image(object_z, object_rho,

lights_I0[2], lights_x[2], lights_y[2], lights_z[2])

 plt.imshow(image_1)

 plt.gray()

 plt.show()

 plt.imshow(image_2)

 plt.gray()

 plt.show()

 plt.imshow(image_3)

 plt.gray()

 plt.show()

 self.write_image_to_file(image_1)

 self.class2.DEBUG_print(2, 'image_1:')

 self.class2.DEBUG_print_array(2, image_1)

 self.write_image_to_file(image_2)

 self.class2.DEBUG_print(2, 'image_2:')

 self.class2.DEBUG_print_array(2, image_2)

 self.write_image_to_file(image_3)

 self.class2.DEBUG_print(2, 'image_3:')

 self.class2.DEBUG_print_array(2, image_3)

 return 1

 #---

 # Recover shape

 #---

 def recover_shape(self):

 # Not working from within code

 # Use this from within python console

 # qgis.console.clearConsole()

 # Get access to classes containing support functions

 self.class2 = support_class2()

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

19

 # DEBUG_print to output messages based on DEBUG level

 self.class2.DEBUG_print(2, 'Starting to recover shape from

images...')

 return

 def get_object_data_plane(self):

 # Copy z, rho into two 2-D arrays

 # each of size IMG_RES_X, IMG_RES_Y

 object_z = []

 object_z = zeros((self.IMG_RES_X, self.IMG_RES_Y),

float64)

 object_rho = []

 object_rho = zeros((self.IMG_RES_X, self.IMG_RES_Y),

float64)

 # assume part of a sphere spanning the whole image/object

space:

 # r_min = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) =

3.01 meters

 # (0, 0, z0) is its closest point

 r = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) # meters

 # for each image pixel / object surface element :

 for i in range(self.MIN_I, (self.MAX_I+1)):

 for j in range(self.MIN_J, (self.MAX_J+1)):

 obj_elem_x = (i - self.IMG_RES_X_HALF) *

self.OBJELEM_SIZE_X

 obj_elem_y = (self.IMG_RES_Y_HALF - j) *

self.OBJELEM_SIZE_Y

 object_z[i,j] = self.z0

 object_rho[i,j] = 1.0

 return object_z, object_rho

 def get_object_data(self):

 # Copy z, rho into two 2-D arrays

 # each of size IMG_RES_X, IMG_RES_Y

 object_z = []

 object_z = zeros((self.IMG_RES_X, self.IMG_RES_Y),

float64)

 object_rho = []

 object_rho = zeros((self.IMG_RES_X, self.IMG_RES_Y),

float64)

 # assume part of a sphere spanning the whole image/object

space:

 # r_min = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) =

3.01 meters

 # (0, 0, z0) is its closest point

 r = max (self.OBJ_SIZE_X, self.OBJ_SIZE_Y) # meters

 # for each image pixel / object surface element :

 for i in range(self.MIN_I, (self.MAX_I+1)):

 for j in range(self.MIN_J, (self.MAX_J+1)):

 obj_elem_x = (i - self.IMG_RES_X_HALF) *

self.OBJELEM_SIZE_X

 obj_elem_y = (self.IMG_RES_Y_HALF - j) *

self.OBJELEM_SIZE_Y

 object_z[i,j] = self.z0 + r - math.sqrt(r**2 - obj_elem_x**2

- obj_elem_y**2)

 # To overwrite as a plane at distance (z0+1) meters

 object_z[i,j] = self.z0 + 1.0

 object_rho[i,j] = 1.0

 return object_z, object_rho

 def get_light_sources_data(self):

 lights_I0 = [self.I0, self.I0, self.I0]

 # assume light sources to be at top-left, bottom-mid and top-

right of lens

 lights_x=[-(0.5*self.OBJ_SIZE_X), 0.0,

(0.5*self.OBJ_SIZE_X)]

 lights_y=[(0.5*self.OBJ_SIZE_X), -

(0.5*self.OBJ_SIZE_X), (0.5*self.OBJ_SIZE_X)]

 lights_z = [self.f, self.f, self.f]

 return lights_I0, lights_x, lights_y, lights_z

 def compute_image(self, object_z, object_rho, light_I0,

light_x, light_y, light_z):

 image = []

 image = zeros((self.IMG_RES_X, self.IMG_RES_Y),

float64)

 # for each image pixel / object surface element :

 for i in range(self.MIN_I, (self.MAX_I+1)):

 for j in range(self.MIN_J, (self.MAX_J+1)):

 objelem_x = (i - self.IMG_RES_X_HALF) *

self.OBJELEM_SIZE_X

 objelem_y = (self.IMG_RES_Y_HALF - j) *

self.OBJELEM_SIZE_Y

 objelem_z = object_z[i, j]

 # compute distance of object element from light source: Rs

 Rs = math.sqrt(((light_x-objelem_x)**2) + ((light_y-

objelem_y)**2) + ((light_z-objelem_z)**2))

 #self.class2.DEBUG_print(2, str(light_x)+';

'+str(light_y)+'; '+str(light_z))

 #self.class2.DEBUG_print(2, str(objelem_x)+';

'+str(objelem_y)+'; '+str(objelem_z))

 #self.class2.DEBUG_print(2, 'Rs:'+str(Rs))

 # compute local radiant flux density: P

 P = light_I0 * math.exp(-Rs / self.beta) / (Rs*Rs)

 # compute unit outward surface normal: n

 if (i < self.MAX_I):

 p = (object_z[(i+1), j] - object_z[i, j]) /

self.OBJELEM_SIZE_X

 else:

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

20

 p = (object_z[i, j] - object_z[(i-1), j]) /

self.OBJELEM_SIZE_X

 if (j < self.MAX_J):

 q = (object_z[i, (j+1)] - object_z[i, j]) /

self.OBJELEM_SIZE_Y

 else:

 q = (object_z[i, j] - object_z[i, (j-1)]) /

self.OBJELEM_SIZE_Y

 n_x = (-1) / math.sqrt(1 + (p**2) + (q**2))

 n_y = p / math.sqrt(1 + (p**2) + (q**2))

 n_z = q / math.sqrt(1 + (p**2) + (q**2))

 # compute unit vector pointing from the surface toward the

light source: s

 s_x = (light_x - objelem_x) / Rs

 s_y = (light_y - objelem_y) / Rs

 s_z = (light_z - objelem_z) / Rs

 # compute n_dot_s

 n_dot_s = ((n_x * s_x) + (n_y * s_y) + (n_z * s_z)) *

math.exp(-Rs / self.beta)

 #self.class2.DEBUG_print(2, 'P:'+str(P)+';

n_dot_s:'+str(n_dot_s))

 # compute distance of object element from center of

camera lens: Rl

 # to account for attenuation from object element to camera

 Rc = math.sqrt(((0-objelem_x)**2) + ((0-objelem_y)**2)

+ ((self.f-objelem_z)**2))

 # compute image brightness: F

 # ToDo: Remove (-1)

 image[i, j] = (-1) * P * n_dot_s * object_rho[i, j] *

math.exp(-Rc / self.beta)

 # add brightness due to scattering media, F_medium

 start_x = 0

 start_y = 0

 start_z = self.f

 end_x = objelem_x

 end_y = objelem_y

 end_z = objelem_z

 for t in arange(0, 1, self.SCATTERING_STEP):

 particle_x = ((end_x-start_x)*t) + start_x

 particle_y = ((end_y-start_y)*t) + start_y

 particle_z = ((end_z-start_z)*t) + start_z

 Rs = math.sqrt(((light_x-particle_x)**2) + ((light_y-

particle_y)**2) + ((light_z-particle_z)**2))

 Rc = math.sqrt(((0-particle_x)**2) + ((0-particle_y)**2) +

((self.f-particle_z)**2))

 #compute cosine of angle between particle-light source and

particle-camera lines: cos_alpha

 a1 = (start_x - particle_x)

 b1 = (start_y - particle_y)

 c1 = (start_z - particle_z)

 a2 = (light_x - particle_x)

 b2 = (light_y - particle_y)

 c2 = (light_z - particle_z)

 cos_alpha = ((a1 * a2) + (b1 * b2) + (c1 * c2)) / (

math.sqrt((a1*a1)+(b1*b1)+(c1*c1)) *

math.sqrt((a2*a2)+(b2*b2)+(c2*c2)))

 P = light_I0 * math.exp(-Rs / self.beta) / (Rs*Rs)

 S = (1 + (self.g * cos_alpha)) / (4 * math.pi)

 F_medium = P * self.gamma * S * math.exp(-Rc /

self.beta)

 image[i, j] = image[i, j] + F_medium

 return image

 def write_image_to_file(self, image):

 # plt.savefig('test.png')

 return

a = main_class()

a.simulate_images()

4. RESULTS AND DISCUSSION
The software was tested by simulate images of a

hemispherical object of radius 1 meter using a 60 Watt point

light source. Three images were simulated by moving the light

source to three different locations.

The image of the object simulated by placing the light source

at top-left corner of the object is shown in Figure 4.

Figure 4. Image with light source at top-left corner

The image of the object simulated by placing the light source

at bottom-middle corner of the object is shown in Figure 5.

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

21

Figure 5. Image with light source at bottom-mid location

The image of the object simulated by placing the light source

at top-right corner of the object is shown in Figure 6.

Figure 6. Image with light source at top-right corner

5. CONCLUSIONS
A open source Python and MatPlotLib software system was

developed for simulating images using point light sources in

scattering and attenuating media. It was tested by

demonstrating its use for a simple object using three point

light sources.

6. ACKNOWLEDGMENTS
We thank Prof. Joel S. Fox and the reviewers for their

insightful comments.

7. REFERENCES
[1] Woodham, R.J., 1980 . Photometric method for

determining surface orientation from multiple images.

OptEng, 19(1). .

[2] Nicodemus, F.E.. Richmond, J.C., Hsia, Ginsberg, I.W.

and Limperk, T., 1977. NBS Monograph 160, National

Bureau of Standards, Washington, D.C.

[3] Horn, B.K.P., 1975. Obtaining Shape from Shading

Information. In: Winston, P.H. (ed.). Psychology of

Computer Vision. McGraw-Hill Book Co., New York.

[4] Turner, RM., Turner, E.H., Fox, J.S., Blidberg, D.R.,

1991. Multiple Autonomous Vehicle Imaging System.

7th Int. Symp. on Unmanned Untethered Submersible

Technology. Sept., Durham, New Hampshire.

[5] Narasimhan, S. G., Nayar, S. K., Sun, B., Koppal, S. J.,

2005. Structured light in scattering media. October.

IJCATM : www.ijcaonline.org

