
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

24

Optimization of Priority based CPU Scheduling

Algorithms to Minimize Starvation of Processes using

an Efficiency Factor

Muhammad A.
Mustapha

Department of Mathematics,
Ahmadu Bello University,

Zaria, Nigeria

Saleh E. Abdullahi
Department of Computer

Science,
Nigerian Turkish Nile

University,
Abuja, Nigeria

Sahalu B. Junaidu
Iya Abubakar Computer

Center,
Ahmadu Bello University,

Zaria,
Nigeria

ABSTRACT
The priority based CPU scheduling algorithm (i.e. Shortest

Job First (SJF) or Priority Scheduling (PS)) is a kind of

scheduling algorithm that assigns the CPU to processes based

on the priority of each process. The shortcoming of both of

these algorithms is starvation (i.e. starvation of processes

with longer burst times in the case of SJF and starvation of

processes with lower priorities in the case of PS). This paper

proposes a new algorithm that introduces the concept of

EFFICIENCY FACTOR to all processes. This proposed

algorithm was implemented and benchmarked against SJF,

PS and the Optimum Service Time Concept for Round Robin

Algorithm (OSTRR) by [9] using Uniform distribution to

generate the burst times, Exponential distribution to generate

the priorities and Poisson distribution to generate the arrival

times of processes. It is observed that in the SJF category, the

traditional SJF produced better Average Waiting Time

(AWT), Average Turnaround Time (ATAT), Average

Response Time (ART) and Waiting Time Variance Deviation

(WTVD) compared with the proposed SJF. But they both

produced the same Number of Context Switches (NCS). The

proposed SJF produced better results compared with OSTRR

with respect to AWT, ATAT, ART, NCS and WTVD. While

in the PS category, the proposed priority produced better

AWT, ATAT, ART and WTVD compared to the traditional

Priority scheduling algorithm. But they both produced the

same NCS. The proposed Priority algorithm produced better

results compared with OSTRR with respect to NCS and

WTVD also produced almost the same result in terms of

AWT and ATAT in all categories of the statistical

distributions used. Based on these results, the proposed

priority algorithm should be preferred over the traditional

priority algorithm.

Keywords
CPU scheduling algorithms, Efficiency factor, Shortest Job

First Scheduling, Starvation, Priority Scheduling, Waiting

Time Variance Deviation

1. INTRODUCTION
The Central Processing Unit (CPU) is an important

component of the computer system; hence it must be utilized

efficiently. This can be achieved through what is called CPU

scheduling [7]. CPU Scheduling refers to a set of policies and

mechanisms to control the order of work to be performed by

a computer system. The CPU scheduling is one of the most

important tasks of the operating system [5]. The need for a

scheduling algorithm to achieve the efficiency of the CPU

arises from the requirement for most modern systems to

perform multitasking (execute more than one process at a

time) and multiplexing (transmit multiple flows

simultaneously). CPU Scheduling is the act of selecting the

next process for the CPU to service, once the current process

leaves the CPU idle. Some basic CPU scheduling algorithms

are listed below:

1. First-Come First-Serve (FCFS)

By far the simplest CPU-scheduling algorithm is the first-

come, first-served (FCFS) scheduling algorithm. The

implementation of the FCFS policy is easily managed with a

FIFO queue. When a process enters the ready queue, its PCB

is linked onto the tail of the queue. The average waiting time

under the FCFS policy, however, is often quite long [2].

2. Shortest-Job-First (SJF)

This is a priority based algorithm which associates with each

process the length of the process's next CPU burst [4]. When

the CPU is available, it is assigned to the process that has the

smallest next CPU burst. If the next CPU bursts of two

processes are the same, FCFS scheduling is used. The SJF

scheduling algorithm gives the minimum average waiting

time for a given set of processes. The real difficulty with the

SJF algorithm is knowing the length of the next CPU request.

The SJF algorithm an optimal algorithm because it produces

minimum average waiting time, average turnaround time and

number of context switches.

3. Priority Scheduling (PS)

A priority number is associated with each process. The CPU

is allocated to the process with the highest priority. If there

are multiple processes with same priority, then FCFS is used

to allocate the CPU. A variation of this scheme allows

preemption of the current process whenever a higher priority

process arrives. Another variation of the policy adds an aging

scheme, where the priority of a process increases as it

remains in the ready queue.

4. Round-Robin Scheduling (RR)

This algorithm is especially designed for time-sharing

systems; each process gets a small unit of CPU time. This

algorithm allows the first process in the queue to run until it

expires its time, and then runs the next process in the queue.

In a situation where a process needs more time, the process

runs for the full length of the time quantum and then it is

preempted and then added to the tail of the queue.

1.1 Performance Criteria
The various CPU scheduling algorithms have different

properties, and the choice of a particular algorithm may favor

one class of processes over another. For selection of an

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

25

algorithm for a particular situation, properties of various

algorithms must be considered. The scheduling criteria

include the following [10]:

1. Context Switch: A context switch is process of

storing and restoring context (state) of a preempted

process, so that execution can be resumed from

same point at a later time.

2. Throughput: Throughput is defined as number of

processes completed per unit time. Context

switching and throughput are inversely proportional

to each other.

3. CPU Utilization: This is a measure of how much

busy the CPU is. Usually, the goal is to maximize

the CPU utilization.

4. Turnaround Time: Turnaround time refers to the

total time which is spent to complete the process.

5. Waiting Time: Waiting time is the total time a

process has been waiting in ready queue.

6. Response Time: response time is the time from the

submission of a request until the first response is

produced

So, a good scheduling algorithm for real time and time

sharing systems must possess the following characteristics:

1. Minimum context switches.

2. Maximum CPU utilization.

3. Maximum throughput.

4. Minimum turnaround time.

5. Minimum waiting time.

6. Minimum response time.

1.2 Waiting Time Variance
Variance is a statistical word, which is the measurement of

the spread between numbers in a data set. It measures how far

each number in the set is from the mean.

𝜎2 =
 (𝑖 − 𝜇)2

𝑁
 (1)

𝑤𝑒𝑟𝑒 𝜎2 𝑖𝑠 𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑁 𝑖𝑠 𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠,

 𝑖 𝑡𝑒 𝑖𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝜇 𝑖𝑠 𝑡𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

A variance value of zero indicates that all values within a set

of numbers are identical; all variances that are non-zero are

assigned positive numbers. A large variance indicates that

numbers in the set are far from the mean and each other,

while a small variance indicates the opposite [3]. The waiting

time variance is the measure of how far the waiting time of

processes are from the mean of the processes waiting times.

This implies that waiting time variance of processes should

be minimized [6].

Priority based CPU Scheduling Algorithms such as Shortest

Job First Algorithm which assigns CPU to processes

according to their burst times and Priority CPU Scheduling

Algorithm which assigns CPU to processes according to their

priorities suffer from the problem of starvation. They are not

fair as they are biased to processes of high priorities [9].

Consequently the goal of this work is to minimize starvation

in the priority based CPU scheduling algorithms that is

shortest job first and priority scheduling algorithms thereby

reducing the average waiting time, average turnaround time,

average response time, number of context switches and

waiting time variance deviation.

2. RELATED WORK
Brinch [1] proposed an algorithm named Highest Response

Ratio Next (HRRN) CPU scheduling algorithm to address the

shortcomings of the Shortest Job First (SJF) and Shortest Job

Next (SJN) CPU Scheduling algorithms which are starvation

and lack of fairness to longer burst time processes. It does

this by using equation (2) to calculate the Response Ratio of

processes

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒
 (2)

It allocates the CPU to the process with the Highest Response

Ratio and it also takes care of the problem of determining the

next burst time of processes in SJF. Its disadvantage is that it

is computationally intensive and its limitation is that it does

not address user priority.

Rakesh et al [8] proposed a new variant of Round Robin

Scheduling algorithm by executing the processes according to

a new calculated fit factor f and using the concept of dynamic

time quantum. Generally with every process three factors are

associated. These factors are user priority, burst time and

arrival time. Above factors play an important role to decide in

which sequence the processes will be executed. Sorting

according to the importance of these factors, user priority

comes first, then the burst time and at last the arrival time of

the processes. If all the 3 factors are mixed up to calculate a

new factor i.e. Fit Factor “f” which will decide the order of

execution then average waiting time, average turnaround time

and number of context switches will be decreased. So to

increase the responsiveness of the system, RR algorithm

should be used. Generally in RR algorithm, processes are

taken from the ready queue in FCFS manner for execution.

But in the proposed algorithm, “f” is calculated for each

process. The process having the lowest “f” value will be

scheduled first. The two important criteria that decide the

early execution of processes are – higher user priority and

shorter burst time. As user priority has higher importance

than other factors, so it is given a weight age of 60% and

burst time is given 40%, assuming that all the processes have

same arrival time i.e. arrival time = 0. Let the User Priority =

UP, User Priority Weight = UW, Shorter Burst time Priority

= SP, Burst time Priority Weight = BW. Then Fit Factor “f”

can be calculated as

𝑓 = 𝑈𝑃 ∗ 𝑈𝑊 + 𝑆𝑃 ∗ 𝐵𝑊 (3)

Dynamic time quantum is used in order to overcome the

limitations of static RR. To get the optimal time quantum,

median of the remaining burst time is taken as the time

quantum.

Saxena and Agarwal [9] designed an algorithm known as

Design and Performance Evaluation of Optimum Service

Time Concept for Round Robin Algorithm (OSTRR).

Generally, with every process, three factors are associated.

These factors are user priority, burst time and arrival time.

These factors play an important role to decide in which

sequence the processes will be executed. Since the algorithm

is a priority based system, the concept of Optimum Priority

was employed, which combines user defined priority, effect

of shorter burst time and effect of arrival time in a way so as

to achieve better turnaround time and average waiting time.

A weight of 0.5 is assigned to user or system defined priority,

a weight of 0.3 to burst time and 0.2 to arrival time. This

ensures that user defined priority; burst time; and arrival time

get consideration while deciding order of execution of

processes. A higher priority process gets a higher number; a

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

26

shorter process also gets a higher number; and a process that

arrived earlier also gets a higher number in the numbering

scheme. An Optimum Priority „OP‟ is given as:

𝑂𝑃 = 0.5 ∗ 𝑃 + 0.3 ∗ 𝐵𝑇 + 0.2 ∗ 𝐴𝑇 (4)

Where P is user or system defined priority; BT is priority

number assigned according to shorter burst time; and AT is

priority number assigned according to early arrival of the

process. A time quantum was selected while taking into

account the same considerations that is taken while selecting

time quantum for RR algorithm. The Optimum service time

„OST‟ for each process is given by equation (5):

𝑂𝑆𝑇𝑖 = 𝑂𝑃𝑖 ∗ 𝑞 (5)

Where 𝑂𝑆𝑇𝑖 is the service time of process with Optimum

Priority 𝑂𝑃𝑖 , 𝑞 is the decided time quantum. All the processes

are placed in a priority queue. After calculating the service

time of each process, CPU is assigned to the process with

highest optimum service time. In case of conflict, the process

with shorter burst time is given preference. If conflict still

persists the process that arrived earlier is given preference.

The process decided executes for a period that is equal to

optimum service time of the process 𝑂𝑆𝑇𝑖 or its burst time

whichever is smallest. In case a process or the set of

processes with same value of 𝑂𝑃, which so ever is applicable,

finish execution after a single round, the value of 𝑂𝑆𝑇 is

redistributed removing the value of 𝑂𝑆𝑇 of finished process

and redistributing the value of 𝑂𝑆𝑇 accordingly.

3. THE PROPOSED ALGORITHMS
The proposed CPU scheduling algorithms use Efficiency

factor values to assign priority to processes which will be

used for CPU allocation. The Efficiency factor value for the

proposed SJF uses equation (6):

𝐸 = 𝐵𝑇𝑊 + 𝑊𝑊 (6)

Where BTW is Burst time Weight and WW is Waiting time

Weight.

The first process to arrive the arrival queue is scheduled first

since it is the only process in the system then and it is

allocated the CPU to execute for the period of its burst time.

By the time it has finished executing, some processes will

have arrived the arrival queue their efficiency values is

calculated by finding the Burst Tme Weight (BTW) for all

the processes that arrived within this period so that the

process with the least burst time is given a BTW of 1. All

other processes are given BTW in ascending order of their

burst times. Also each process is given Waiting Time Weight

(WW), according to their arrival times so that the first

process to arrive is given a WW of 1. All other processes

under consideration are given WW of 2, 3… until all

processes under consideration are given WW. Then the E-

value of each process will be computed using equation (6)

and the process with the lowest E-value is scheduled first

followed by the process with next lower E-value until all

processes that arrived the system have finished executing.

This process of determination of E-values and scheduling of

processes is performed until there is no process remaining in

the arrival and ready queues.

The Efficiency factor value for the proposed Priority

scheduling algorithm uses equation (7):

𝐸 = 𝑃𝑊 + BTW + 𝑊𝑊 (7)

where, PW is Priority Weight, BTW is Burst time Weight

and WW is Waiting time Weight.

Similarly, for the priority (PS) category, the same method as

in the case of SJF is employed but with the inclusion the

Priority Weight (PW), which is calculated based on the

priority values of the processes in which the process with the

highest priority is given a priority weight of 1 and all other

processes are given PW of 2, 3…until all processes under

consideration are given PW. Then the E-value of each

process will be computed using equation (7) and the process

with the lowest E-value is scheduled first followed by the

process with next lower E-value until all processes that

arrived the system have finished executing. This process of

determination of E-values and scheduling of processes is

performed until there is no process remaining in the arrival

and ready queues.

3.1 The pseudo code of the Proposed

Priority Based CPU Scheduling

Algorithms
This pseudo code illustrates how the priority based CPU

scheduling algorithms work i.e. the priority and shortest job

first CPU scheduling algorithms.

Step 1: Start

INPUT: Number of Processes (N), Burst Time (BT) of

processes, Arrival Time (AT) of processes, Priority (PRIO)

of processes, Queue READY, Queue ARRIVAL

OUTPUT: Number of Context Switches (NCS), Average

Waiting Time (AWT), Average Turnaround Time (ATAT),

Waiting Time Variance Deviation (WTVD) and Average

Response Time (ART)

Step 2: 𝑁𝐶𝑆 = 0;

 𝐴𝑊𝑇 = 0;
𝐴𝑇𝐴𝑇 = 0;
𝐴𝑅𝑇 = 0;
𝑊𝑇𝑉𝐷 = 0;
𝐵𝑇 = uniform a, b ;
𝐴𝑇 = Poisson (rate);
𝑃𝑅𝐼𝑂 = Exponential rate ;
𝐿𝑎𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 = 0;

 𝑛 = 𝑁;
Step 3: For 𝑖 = 1 𝑡𝑜 𝑛

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 0; // efficiency factor

END For

Step 4: 𝑊𝐻𝐼𝐿𝐸 (𝐴𝑅𝑅𝐼𝑉𝐴𝐿! = 𝑁𝑈𝐿𝐿)

Step 5: 𝑊𝐻𝐼𝐿𝐸 (𝑅𝐸𝐴𝐷𝑌! = 𝑁𝑈𝐿𝐿)

Step 6: For 𝑖 = 1 𝑡𝑜 𝑛

𝑅𝐸𝑄𝑈𝐸𝑆𝑇 ← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖 // Fill the ready queue

//according to Arrival Time

 Assign priority weight, burst time weight and

arrival weight using the generated values based on

the proposed algorithm

END For

Step 7: For 𝑖 = 1 𝑡𝑜 𝑛

𝑖𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚 == 𝑆𝐽𝐹

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝐵𝑇𝑊 + 𝑊𝑊

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚 == 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

27

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝑃𝑊 + 𝐵𝑇𝑊 + 𝑊𝑊

END if

END For

 𝑀𝑖𝑛 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟[1]

Step 8: For (𝑖 = 1 𝑡𝑜 𝑛 − 1)

If 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 < 𝑀𝑖𝑛 //sort processes according //

to lowest efficiency factor

𝑀𝑖𝑛 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖+1

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖+1 = 𝑀𝑖𝑛

END if

END For

Step 9: For (𝑖 = 1 𝑡𝑜 𝑛)

 𝐿𝑎𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 = 𝐿𝑎𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 + 𝐵𝑇𝑖

𝑇𝐴𝑇𝑖 = 𝐿𝑎𝑠𝑡 𝑃𝑜𝑖𝑛𝑡 − 𝐴𝑇𝑖
𝑊𝑇𝑖 = 𝑇𝐴𝑇𝑖 − 𝐵𝑇𝑖
𝑅𝑇 = 𝑇𝐴𝑇𝑖 − 𝐵𝑇𝑖

𝐵𝑇𝑖 = 0

𝑁𝐶𝑆𝑖 = 𝑁𝐶𝑆𝑖 + 1

END For

END WHILE

END WHILE

Step 10: uniform (a, b) { // generate random values using //

uniform distribution

𝑎 + 𝑟𝑎𝑛𝑑 0,1 ∗ (𝑏 − 𝑎)

}

Step 11: Poisson (rate) { // generate random values using //

Poisson distribution

𝑘 = 0

𝑝 = 1

 𝑙 = 𝑒−𝑟𝑎𝑡𝑒

𝑑𝑜 {

𝑘 = 𝑘 + 1

𝑝 = 𝑝 ∗ 𝑟𝑎𝑛𝑑 0,1

}𝑤𝑖𝑙𝑒 𝑝 ≥ 𝑙

𝑘 = 𝑘 − 1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑘

}

Step 12: Exponential (rate) { // generate random values //

using exponential distribution

𝑟𝑒𝑡𝑢𝑟𝑛
− log(1 − 𝑟𝑎𝑛𝑑(0,1))

𝑟𝑎𝑡𝑒

}

}

Step 13: Calculate OUTPUT parameters

𝐴𝑊𝑇 =
 𝑊𝑇𝑖

𝑛
𝑖=1

𝑛

𝐴𝑇𝐴𝑇 =
 𝑇𝐴𝑇𝑖

𝑛
𝑖=1

𝑛

𝐴𝑅𝑇 =
 𝑅𝑇𝑖

𝑛
𝑖=1

𝑛

𝑊𝑇𝑉 =
 (𝑊𝑇𝑖 − 𝐴𝑊𝑇)2𝑛

𝑖=1

𝑛

For (𝑖 = 1 𝑡𝑜 𝑘) //k stands for the algorithm under

consideration and opt is the algorithm with the least waiting

time variance.

𝑊𝑇𝑉𝐷𝑘 =
𝑊𝑇𝑉𝑘 − 𝑊𝑇𝑉𝑜𝑝𝑡

𝑊𝑇𝑉𝑜𝑝𝑡
∗ 100%

END For

END

3.2 Illustrative Examples
To demonstrate the previous considerations, this example is

considered, in which each process with its burst and arrival

time as shown in Table 4.1, where the time quantum used in

OSTRR is 10ms. The values were chosen randomly.

Table 1: Process Table

PR_ID AT BT PRIO

P1 0 3 10

P2 1 2 6

P3 3 2 4

P4 5 4 3

P5 6 1 7

P6 7 5 11

P7 9 6 8

P8 12 4 9

P9 13 3 1

P10 15 2 5

P11 15 5 2

P12 15 6 13

P13 18 7 12

3.2.1 Shortest Job First (SJF)

3.2.2 Priority Scheduling (PS)

Figure 2: Gantt chart representation of Priority CPU Scheduling Algorithm

Figure 1: Gantt chart representation of SJF

0 3 5 7 8 12 16 18 21 26 31 37 43 50

P1 P2 P3 P12 P7 P11 P6 P5 P9 P10 P8 P4 P13

0 3 5 9 11 12 18 21 26 28 32 37 44 50

P1 P3 P4 P13 P6 P8 P10 P2 P11 P9 P7 P5 P12

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

28

3.2.3 Proposed Shortest Job First

3.2.4 Proposed Priority Scheduling

3.2.5 OSTRR

Table 2: Comparative Table

Algorith

ms

AW

T

ATA

T

AR

T

NC

S

WTV

D

(%)

WTV

D

(%)

SJF 8.31 13.31 8.3 0 16.76

Priority 9.77 13.62 9.8 0 18.93

Pro. SJF 8.62 12.46 8.6 0 0

Pro.

Priority

9.15 13 9.1

5

0 0

OSTRR 9.46 13.21 9.5 0 35.15 29.62

Table 2 shows the comparative results of the algorithms

under study. In the SJF category, the proposed algorithm

produced the best result followed by the traditional SJF

algorithm and the OSTRR. In the priority category the

proposed algorithm produced the best result followed by

the traditional priority algorithm followed by OSTRR.

4 SIMULATION
In this paper, the following five performance criteria are

studied: AWT, ATAT, ART, NCS and WTVD. The

evaluation is done using a simulation by generating 500

processes randomly with Uniform statistical distribution to

generate burst times of the processes. The simulation is

done in two different categories; in the first category (i.e.

the Shortest Job First (SJF)) consisting of: SJF, the new

SJF and Optimum Service Time Round Robin CPU

Scheduling algorithms and in the second category (i.e. the

Priority Scheduling (PS)) consisting of: PS, the new PS

and Optimum Service Time Round Robin CPU Scheduling

algorithms to observe these criteria. The simulation

environment where all the experiments were performed

was a single processor environment and all the processes

are independent and CPU bound, no process was I/O

bound and the system was also assumed to have no context

switch cost.

A process generator routine to generate the process sets

was built. Each process in the process set is a tuple:

<(process_id, arrival_time, CPU_time, priority)>. The

process arrival was modeled as a Poisson random process.

Hence, the inter-arrival times are Poisson distributed. A

process arrival generator was developed to take care of the

random arrival of different processes to the system. The

generator produces the inter-arrival times utilizing some

specific mean (arrival intensity) of the distribution

function. Burst time (i.e. the CPU_time) was generated

using uniform distribution. Process priority (i.e. priority)

was generated using exponential distribution. A process

burst time generator was developed to take care of the

random burst time of different processes in the system and

also a process priority generator was developed to take

care of the random priority of different processes in the

system.

4.1 Results obtained using uniform

distribution to generate burst time
The following shows the relationships between the CPU

scheduling algorithms under study using 500 processes

generated by uniform distribution with burst times ranging

between 1 and 100ms and time quantum of 10ms used by

OSTRR.

4.1.1 First category

Figure 6: Graph of Average Waiting Time using

Uniform distribution

Figure 6 shows the overall graphical result of the Average

Waiting Time for all cases of values taken. It was observed

from the graph that the traditional algorithm is better than

the proposed algorithm while the proposed algorithm is

better than OSTRR in terms of minimizing AWT.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5

4
5

8
5

1
5
0

2
6
0

4
2
5

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

Number of Processes

SJF

New_SJF

OSTRR

Figure 4: Gantt chart representation of Proposed Priority Scheduling

Figure 5: Gantt chart representation of OSTRR

Figure 3: Gantt chart representation of Proposed Shortest Job First

0 3 5 7 8 12 17 19 22 26 32 37 43 50

P1 P2 P3 P12 P11 P7 P8 P5 P9 P10 P6 P4 P13

0 3 5 7 11 12 17 20 22 27 33 37 43 50

P1 P3 P2 P12 P8 P7 P11 P4 P10 P9 P6 P5 P13

0 3 5 9 11 12 18 21 26 28 32 37 44 50

P1 P2 P3 P12 P11 P10 P9 P4 P8 P7 P5 P6 P13

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

29

Figure 7: Graph of Average Turnaround Time using

Uniform distribution

Figure 7 shows the overall graphical result of the Average

Turnaround Time for all cases of values taken. It was

observed from the graph that the traditional algorithm is

better than the proposed algorithm while the proposed

algorithm is better than OSTRR in terms of minimizing

ATAT.

Figure 8shows the overall graphical result of the Average

Response Time for all cases of values taken. It was

observed from the graph that the traditional algorithm SJF

is better than the proposed algorithm while the proposed

algorithm is better than OSTRR in some cases in terms of

minimizing ART.

Figure 8: Graph of Average Response Time using

Uniform distribution

Figure 9: Graph of Number of Context Switches using

Uniform distribution

Figure 9 shows the overall graphical result of the Number

of Context Switches for the same processes. It was

observed from the graph that the traditional algorithm and

the proposed algorithm produce the same number of

context switches which is better than that of OSTRR.

Figure 10: Graph of Waiting Time Variance Deviation

using Uniform distribution

Figure 10 shows the overall graphical result of the Waiting

Time Variance Deviation for the same processes. It was

observed from the graph that the traditional algorithm is

better than the proposed algorithm while the proposed

algorithm is better than OSTRR in terms of minimizing

WTVD.

From the results of the two scheduling algorithms (SJF and

OSTRR) compared with the proposed algorithm (the new

SJF), it has shown that the traditional SJF produced best

Average Waiting Time (AWT), Average Turnaround Time

(ATAT), Average Response Time (ART) and Waiting

Time Variance Deviation (WTVD) compared with the

proposed new SJF. But they both produced the same

0

2000

4000

6000

8000

10000

5

6
0

1
3

0

2
8

0

A
ve

ra
ge

 T
u

rn
ar

o
u

n
d

 T
im

e

Number of Processes

SJF

New_SJF

OSTRR

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5

5
0

9
5

1
8

0

3
4

0

A
ve

ra
gr

 R
e

sp
o

n
se

 T
im

e

Number of Processes

SJF

New_SJF

OSTRR

0

100

200

300

400

500

600

5

5
0

9
5

1
8

0

3
4

0

N
u

m
b

e
r

o
f

C
o

n
te

xt
 S

w
it

ch
e

s

Number of Processes

SJF

New_SJF

OSTRR

0

20

40

60

80

100

120

140

160

180
5

5
0

9
5

1
8

0

3
4

0

W
ai

ti
n

g
Ti

m
e

 V
ar

ia
n

ce
 D

e
vi

at
io

n

Number of Processes

SJF

New_SJF

OSTRR

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

30

Number of Context Switches (NCS). The new proposed

SJF produced better results compared with OSTRR with

respect to Average Waiting Time (AWT), Average

Turnaround Time (ATAT), Average Response Time

(ART), Number of Context Switches (NCS) and Waiting

Time Variance Deviation (WTVD).

4.1.2 Second category

Figure 11: Graph of Average Waiting Time using

Uniform distribution

Figure 11shows the overall graphical result of the Average

Waiting Time for all cases of values taken. It was observed

from the graph that OSTRR gives the least average waiting

time while the proposed algorithm gives a better average

waiting time than the traditional algorithm.

Figure 12: Graph of Average Turnaround Time using

Uniform distribution

Figure 12 shows the overall graphical result of the Average

Turnaround Time for all cases of values taken. It was

observed from the graph that OSTRR gives the least

average turnaround time while the proposed algorithm

gives a better average turnaround time than the traditional

algorithm.

Figure 13 shows the overall graphical result of the Average

Response Time for all cases of values taken. It was

observed from the graph that OSTRR gives the best

average response time followed by the proposed algorithm

and lastly the traditional algorithm.

Figure 13: Graph of Average Response Time using

Uniform distribution

Figure 14: Graph of Number of Context Switches using

Uniform distribution

Figure 14 shows the overall graphical result of the Number

of Context Switches for the same processes. It was

observed from the graph that the traditional algorithm and

the proposed algorithm produce the same number of

context switches which is better than that of OSTRR.

Figure 15 shows the overall graphical result of the Waiting

Time Variance Deviation for the same processes. It was

observed from the graph that the proposed algorithm is the

best algorithm in terms of minimizing waiting time

variance deviation followed by OSTRR and then the

traditional algorithm. This shows that processes with low

priorities will not starve in the proposed algorithm.

0

2000

4000

6000

8000

10000

5

6
0

1
3

0

2
8

0

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

Number of Processes

Priority

New_Proir
ity

OSTRR

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 60 130280

A
ve

ra
ge

 T
u

rn
ar

o
u

n
d

 T
im

e

Number of Processes

Priority

New_Proiri
ty

OSTRR

0

2000

4000

6000

8000

10000

5

5
0

9
5

1
8

0

3
4

0

A
ve

ra
gr

 R
e

sp
o

n
se

 T
im

e

Number of Processes

Priority

New_Proirit
y

OSTRR

0

100

200

300

400

500

600
5

5
0

9
5

1
8

0

3
4

0

N
u

m
b

e
r

o
f

C
o

n
te

xt
 S

w
it

h
e

s

Number of Processes

Priority

New_Proirit
y

OSTRR

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

31

Figure 15: Graph of Waiting Time Variance Deviation

using Uniform distribution

From the results of the two scheduling algorithms (Priority

and OSTRR) compared with the proposed algorithm (the

new Priority), it has shown that the new proposed priority

produced best Average Waiting Time (AWT), Average

Turnaround Time (ATAT), Average Response Time

(ART) and Waiting Time Variance Deviation (WTVD)

compared to the traditional Priority scheduling algorithm.

But they both produced the same Number of Context

Switches (NCS). The new proposed Priority algorithm

produced better results compared with OSTRR with

respect to Number of Context Switches (NCS) and

Waiting Time Variance Deviation (WTVD).

Table 3: Performance of Algorithms Based on Metrics

Used in Comparing Them for First Category

Performance

Metric

Traditional SJF

(%)

OSTRR (%)

AWT -47.86 -4.96

ATAT -47.75 -1.96

ART -47.86 -4.56

NCS 0 2.80

WTVD -100 131.99

Table 4: Performance of Algorithms Based on Metrics

Used in Comparing Them for Second Category

Performance

Metric

Traditional Priority

(%)

OSTRR (%)

AWT 7.36 -3.34

ATAT 7.34 -3.33

ART 7.36 -5.90

NCS 0 2.80

WTVD
16.69

12.30

5 CONCLUSION
This paper presents an algorithm that minimized starvation

in priority based CPU scheduling algorithms. This has

been done by modifying the optimum priority in Saxena

and Agarwal (2012) by introducing the concept of

EFFICIENCY FACTOR and applying it to the priority

based CPU scheduling algorithms in order to reduce

average waiting time, average turnaround time, average

response time and waiting time variance deviation. The

priority based CPU scheduling algorithms were grouped

into two groups i.e. the shortest job first and the priority

groups. In each group, the proposed algorithm with the

traditional algorithm in that with OSTRR were

implemented in Java and their results were compared

based on Average Waiting Time (AWT), Average

Turnaround Time (ATAT), Average Response Time

(ART), Number of Context Switches (NCS) and Waiting

Time Variance Deviation (WTVD) for different categories

of processes that were generated randomly using either

Exponential, Uniform or Normal distributions to generate

the burst time; Uniform or Exponential distributions to

generate priority and Poisson distribution to generate

arrival time of processes.

The simulation results show that with 500 processes

generated using Uniform distribution ranging between 1

and 100, priority using Exponential distribution time at a

rate of 0.02, arrival time using Poisson distribution

arriving at the rate of 3 milliseconds per process and time

quantum of 10ms used by OSTRR.

In the SJF category, SJF and OSTRR compared with the

proposed algorithm (the new SJF), it has shown that the

traditional SJF produced better AWT, ATAT, ART and

WTVD compared with the proposed new SJF. But they

both produced the same NCS. The new proposed SJF

produced better results compared with OSTRR with

respect to AWT, ATAT, ART, NCS and WTVD. And in

the PS category, Priority and OSTRR compared with the

proposed algorithm (the new Priority), it has shown that

the new proposed priority produced better AWT, ATAT,

ART and WTVD compared to the traditional Priority

scheduling algorithm. But they both produced the same

NCS. The new proposed Priority algorithm produced

better results compared with OSTRR with respect to NCS

and WTVD.

The recommendation in this work is to implement the

proposed priority algorithm instead of the traditional

priority algorithm, so as to minimize starvation of

processes. In the future, a more efficient algorithm should

be developed to minimize starvation in Shortest Job First

(SJF) algorithm.

6 REFERENCES
[1] Brinch, H. P. (1977). The Architecture of Concurrent

Programs. Englewood Cli®s, NJ: Prentice Hall.

[2] http://siber.cankaya.edu.tr/OperatingSystems/ceng32

8/node122.html. (n.d.). Retrieved May 25, 2014, from

http://siber.cankaya.edu.tr.

[3] http://www.merriamwebster.com/dictionary/variance.

(n.d.). Retrieved June 28, 2014, from

http://www.merriam-webster.com.

[4] https://www.it.uu.se/edu/course/.../scheduling_algorit

hms/handout.pdf. (n.d.). Retrieved May 25, 2014,

fromhttps://www.it.uu.se/edu/course/.../scheduling_al

gorithms/handout.pdf.

[5] Mehdi, N., Mehdi, S., Adel, N., And Ali, A. (2012).

The New Method Of Adaptive Cpu Scheduling Using

Fonseca And Fleming‟s Genetic Algorithm. Journal

0

20

40

60

80

100

120

140

5

5
0

9
5

1
8

0

3
4

0

W
ai

ti
n

g
Ti

m
e

 V
ar

ia
n

ce
 D

e
vi

at
io

n

Number of Processes

Priority

New_Proir
ity

OSTRR

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.11, December2015

32

Of Theoretical And Applied Information Technology ,

1-16.

[6] Nong, Y., Xueping, L., Toni, F., and Xiaoyun, X.

(2007). Job scheduling methods for reducing waiting

time variance. Computers and Operations Research ,

3069 - 3083.

[7] Oyetunji E.O and Oluleye A. E. (2009). Performance

Assessment of Some CPU Scheduling Algorithms.

Research Journal of Information Technology , 1 (1),

22-26.

[8] Rakesh, M, Manas, D, Lakshmi, M. P and

Sudhashree. (2011). Design and Performance

Evaluation of A New Proposed Fittest Job First

Dynamic Round Robin (FJFDRR) Scheduling

Algorithm. International Journal of Computer

Information Systems , 2 (2), 23-27.

[9] Saxena, H. F., and Agarwal, P. S. (2012). Design and

Performance Evaluation of Optimum Service Time

Concept for Round Robin Algorithm. International

Journal of Machine Learning and Computing , 2 (2),

113-117.

[10] Silberschatz, P. B. Galvin and G. Gagne. (2006).

Operating System Concepts. (7th, Ed.) John Wiley

and Sons Inc. 111 River Street, Hoboken NJ, 07030,

153-168

IJCATM : www.ijcaonline.org

