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ABSTRACT
Most of the research on job shop scheduling problem are con-
cerned with minimization of a single objective. However, the real
world applications of job shop scheduling problems are involved
in optimizing multiple objectives. Therefore, in recent years ant
colony optimization algorithms have been proposed to solve job
shop scheduling problems with multiple objectives. In this paper,
some recent multi-objective ant colony optimization algorithms are
reviewed and are applied to the job shop scheduling problem by
considering two, three and four objectives. Also in this study, four
criteria: makespan, mean flow time, mean tardiness and mean ma-
chine idle time are considered for simultaneous optimization. Two
types of models are used by changing the number of ants in a
colony and each multi-objective ant colony optimization algorithm
is applied to sixteen benchmark problem instances of up to 20 jobs
× 5 machines, for evaluating the performances of these algorithms.
A detailed analysis is performed using the performance indicators,
and the experimental results have shown that the performance of
some multi-objective ant colony optimization algorithms depend
on the number of objectives and the number of ants.
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1. INTRODUCTION
The job shop scheduling problem (JSSP) is NP-hard [10] and also
one of the most complex combinatorial optimization problems. It is
defined as the process of assigning a set of tasks to resources over
a period of time [13]. Many methods have been developed to solve
the single objective optimization problem, in order to optimize the
time required to complete all jobs, i.e. considering a single objec-
tive to minimize the makespan criterion. However, most real world
applications of scheduling require the simultaneous optimization
of multiple objectives. During the past few years most researches
have proposed to solve job shop scheduling problems which consist
of multiple objectives. Ant colony optimization (ACO) is a meta-
heuristic which can be used to solve the combinatorial optimiza-

tion problems such as the traveling salesman problem, the job shop
scheduling problem and the quadratic assignment problem, etc [8].
In the recent years, several papers reviewed the MOACO algo-
rithms and conducted different kinds of experimentation. Garcia-
Martinez et al. [9] reviewed and experimentally compared the
MOACO algorithms when applied to the bi-objective travel-
ing salesman problem. Angus and Woodward [3] reviewed the
MOACO algorithms but did not carry out an experimental study.
Also, Lopez-Ibanez and Stutzle [12] reviewed and provided an ex-
perimental study to understand the effects of various algorithmic
components for the MOACO algorithms when applied on the bi-
objective traveling salesman problem. Further, our previous study
[4] reviewed and performed experimentation in order to analyze
the performance of MOACO algorithms when applied to the trav-
eling salesman problem. In fact, all these papers have focused on
solving the traveling salesman problem. Hence, in this study a dif-
ferent problem domain is considered for solving to understand the
behaviour of MOACO algorithms. Therefore, the job shop schedul-
ing problem is selected as the problem domain in this study.
The aim of this paper is to review some recent multi-objective ant
colony optimization (MOACO) algorithms and evaluate their per-
formance by changing the number of objectives and ants. Further,
MOACO algorithms are applied on several benchmark problem in-
stances of the job shop scheduling problem by considering two,
three and four objectives and a detail analysis has been performed
using performance indicators. This paper is organized as follows:
Section 2 reviews some preliminaries about the multi-objective op-
timization problem, the job shop scheduling problem, ant colony
optimization algorithm and MOACO algorithms. The experimen-
tation with parameter values, problem instances and performance
indicators are presented in Section 3. Section 4 presents the analy-
sis of the experimental results. Finally, Section 5 provides the con-
clusion.

2. PRELIMINARIES
2.1 Multi-objective optimization problem
A general multi-objective optimization problem (MOOP) [7] can
be formulated as follows, which consists of more than one objective
to be minimized or maximized simultaneously. MOOP includes a

1



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

set of m objectives, n decision variables with k restrictions.

y = f(x) = [f1(x), f2(x), ..., fm(x)],

e(x) = [e1(x), e2(x), ..., ek(x)] ≥ 0,

x = (x1, x2, ..., xn) ∈ X is the decision vector,

y = (y1, y2, ..., ym) ∈ Y is the objective vector.

 (1)

where X denotes the decision space of n decision variables, while
the objective space with m set of objective functions is denoted by
Y . Only one optimal solution is found by the single objective op-
timization problem. In general, multi-objective optimization prob-
lems find more than one optimal solutions.

2.2 Job shop scheduling problem
The job shop scheduling problem (JSSP) [15] is one of the
combinatorial optimization problems and it is considered as a most
difficult problem in the literature. The general JSSP can be formu-
lated as n x m, which consists of a set of n jobs to be processed
on a set of m machines. The set of n jobs can be presented as
J = J1, J2, ..., Jn and the set of m machines can be presented as
M = M1,M2, ...,Mm. An operation Oij is defined as the pro-
cessing of a job Ji on a machine Mj . Hence, the set of operations
O can be represented as O = {Oij |i ∈ [1, n], j ∈ [1.m]}, where
n is the number of jobs and m is the number of machines. Each
operation Oij ∈ O processes on machine j in an uninterrupted
time period, is called processing time pij(pij > 0) and it has
defined in advance for each job. Two constraints – the operation
precedence constraint and machine processing constraint – should
be satisfied when an job Ji is processed on m machines.

In this study, the objective of the JSSP is to find a schedule which
minimizes makespan, mean tardiness, mean flow time and mean
machine idle time, simultaneously as given in Eq. (2).

minx∈Xf(x) = {f1(x), f2(x), f3(x), f4(x)} (2)

where X is a set of feasible schedules, x is a schedule and
f1(x), f2(x), f3(x), f4(x) are the objective functions of the
four criteria: makespan, mean tardiness, mean flow time and
mean machine idle time. The following notations are used in the
multi-objective job shop scheduling problem.

Completion time (Ci): Completion time of job i
makespan (Cmax): Total time taken to complete all the jobs
Flow time (Fi): Total amount of time which the job i spends in the
system
Due date (di) : Due date of job i
Tardiness (Ti): The positive difference between the completion
time Ci and due date di of job i
Machine idle time (Ij): Idle time of the machine j

Hence, the four objectives which are used in scheduling in
this study are formulated as follows.

makespan: Cmax = max(Ci)

Mean tardiness: T = 1
n

∑n
i=1(Ti)

Mean flow time: F = 1
n

∑n
i=1(Fi)

Mean machine idle time: I = 1
n

∑m
j=1(Ij)

2.3 Ant colony optimization
The more general social insect societies called ant colonies, present
a highly structured distributed system. Ants in the colony use indi-
rect communication methodology named stigmergy for coordinat-
ing their activities, because of ants species are totally blind. For-
aging ant in the colony deposits a chemical called pheromone trail
on the ground when travels back to the nest, which depends on
the quality and the quantity of food source it carries. Hence, the
other foraging ants in the colony will follow the same path in high
probability. Pheromones deposited on the ground are evaporated
over time. This behavior of real ants allows them to find the short-
est path between their nest and food source, eventually. The self-
organization behavior of real ant colonies is based on the agents
called artificial ants.
In early 1990s Dorigo et al. introduced ant colony optimization
(ACO) algorithms [8], which can be applied to solve combinatorial
optimization problems. Ants in the artificial colony traverse from
one node to another on a graph to find a solution for a problem and
they use data structures in memory, which consists of the informa-
tion of their previous actions. The probability of choosing a node as
the next node is depended on the artificial pheromone trail laid on
the path and the heuristic information, which measure the quality
of the path. After completing a tour by an ant, the pheromone trail
is evaporated and applies a new pheromone trail on the path. If the
completed path by ant is a good solution, then the pheromone trail
on that path will be high and vice-versa.

2.4 Multi-objective ant colony optimization algorithms
(MOACO)

Since most of the real world applications are concerned about
the multi-objective optimization problems, several algorithms have
been proposed to solve multi-objective combinatorial optimization
problems. The taxonomy of the previous review papers including
the details of this study, is presented in Table 1. Garcia-Martinez et
al. [9] reviewed some of the multi-objective ant colony optimiza-
tion algorithms until 2007 and proposed a taxonomy. Performances
of these algorithms have been analyzed on some instances of bi-
objective traveling salesman problem. It has been concluded that
multiple ant colony system (MACS) [5] algorithm performs better
and achieves distributed pareto-optimal front.
Further, Angus and Woodward [3] reviewed some MOACO al-
gorithms and presented a detail classification based on the dif-
ferent features of MOACO algorithms. However, it has not been
performed any experimental analysis for the MOACO algorithms.
Lopez-Ibanez and Stutzle [12] presented a new formulation for
classifying the MOACO algorithms, which is based on the other
algorithmic components which are not presented, previously. Also,
it has been performed an experimental analysis to understand, how
these algorithmic components effect the shape and the quality of
pareto front of MOACO algorithms. Therefore, four MOACO al-
gorithms including MACS [5] and mACO2 [1], are applied to bi-
objective traveling salesman problem.
Seven recent MOACO algorithms have been considered in our
previous study [4] and it has been analyzed the performances of
MOACO algorithms when applied to the multi-objective travel-
ing salesman problem. It has shown that AMPACOA algorithm
[6] obtains extremely poor results and poor computational times,
hence it is not considered in this study. Therefore, other six recent
MOACO algorithms are considered in this study, which produces a
set of non-dominated solutions. They are – efficient ant colony opti-
mization algorithm for multi-objective flow shop scheduling prob-

2



International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.14, December 2015

Table 1. A taxonomy for review papers on multi-objective ACO algorithms

Title of the Paper Problem Domain

Combinatorial
Optimization
Problem
Considered

Number
of
Objectives
Considered

A taxonomy and an empirical
analysis of multiple objective
ant colony optimization
algorithms for the bi-criteria TSP [9]

Reviewed and presented a classification for MOACO algorithms according
to the usage of number of heuristic matrices and number of pheromone
trails. Performed a emperimental analyze for these MOACO algorithms
when applied to bi-objective traveling salesman problem.

Traveling
salesman
problem

Two

Multiple objective ant
colony optimization [3]

Reviewed and presented a detail classification of existing MOACO
algorithms based on algorithmic components. However, it is not presented
an experimental analysis.

None None

An experimental analysis of design
choices of multi-objective ant
colony optimization algorithms [12]

Reviewed and presented a taxonomy for MOACO algorithms in terms of
the other algorithmic components. Experimental work has been performed
to understand how algorithmic components affect on the quality and the
shape of MOACO algorithms

Traveling
salesman
problem

Two

Performance analysis of the multi-
objective ant colony optimization
algorithms for the traveling
salesman problem [4]

Review and the detail analysis has been performed to compare the
performances of MOACO algorithms when applied on multi-objective
traveling salesman problem by changing the number of ants, objectives
and iterations.

Traveling
salesman
problem

Four

A performance study for the
multi-objective ant colony
optimization algorithms on the job
shop scheduling problem

Study the performances of MOACO algorithms by changing the number
of objectives and ants when applied to the job shop scheduling problem

Job shop
scheduling
problem

Four

Table 3. Objective functions considered in each JSSP instance
Objective function Criterion
Two objectives makespan, mean tardiness
Three objectives makespan, mean tardiness, mean flow time
Four objectives makespan, mean tardiness, mean flow time,

mean machine idle time

Table 4. Parameter values considered
MOACO algorithm τ0 α β ρ ρ′ q0
ACOMOFS, MACO4,
MCAA

0.000125 0.1 0.5 0.2 0.05 0.98

CPACO, MACS, PSACO 5.5498E-18 1 2 0.2 0.05 0.98

lem (ACOMOFS) [14], crowding population-based ant colony opti-
mization (CPACO) [2], ant colony optimization for multi-objective
optimization problems (m-ACO4) [1], a multi-objective ant colony
system (MACS) for vehicle routing problem with time windows
[5], multi objective optimization of time cost quality quantity us-
ing multi-colony ant algorithm (MCAA) [17], pareto strength ant
colony optimization (PSACO) [18].
Taxonomy of all the multi-objective algorithms considered in this
study can be represented in Table 2.

3. EXPERIMENTATION
The goal of this experimentation is to analysis the performances of
MOACO algorithms, which are given in the previous Section 2, by
changing the number of ants and number of objectives. In most of
the previous studies [19, 20], the number of ants was set equal to
the number of operations, when applying ant colony optimization
algorithms for the job shop scheduling problem. i.e. number of ants
N = n×m, where n is the number of jobs and m is the number of

machines. Therefore, number of ants are changed in this study to
see, how they effect on the performances of MOACO algorithms.
Our previous study [4] has been concluded that ACOMOFS
and MACS algorithms performed best and CPACO, mACO4,
MCAA and PSACO algorithms achieved good results for some in-
stances in the traveling salesman problem. Therefore, these six re-
cent MOACO algorithms: ACOMOFS, CPACO, mACO4, MACS,
MCAA and PSACO have been considered for this study. All these
MOACO algorithms have been introduced for different applica-
tions. In order to apply them on job shop scheduling problem, some
changes should be performed as given in the following section.

3.1 Parameter values and problem instances
The job shop scheduling problem is selected to analyze the per-
formances of the six recent MOACO algorithms, which given in
Section 2. Each MOACO algorithm considered in this study is ap-
plied to solve sixteen JSSP instances (la01-la16) from the literature
[11] by considering two objectives, three objectives and four ob-
jectives. Table 3 shows each objective function with their criterion
which optimized simultaneously, while satisfying the constraints of
JSSP. MOACO algorithms in this study use two types of parameter
settings for fair comparison, which is based on their performances.
First, the most effective parameters are identified for each MOACO
algorithm and they can be presented as in Table 4. Also, all algo-
rithms are considered 100 iterations and run in 10 times for fair
comparison.
Further, the study considers two types of models by changing the
number of ants, in which it uses 20 ants in model 1 and 50 ants
in model 2. These two models consider same parameter settings as
given in Table 4. All algorithms are implemented in the same com-
puter using CodeBlocks 13.12 under Ubuntu 14.04 environment
running on Intel Core i3 CPU at 2.40GHz, with 4GB memory.
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Table 2. A taxonomy for multi-objective ACO algorithms

Algorithm
Number

of
colonies

Use of
multiple

pheromone
matrices

Use of
multiple
heuristic
matrices

Which solutions
were used for

global pheromone
updating

Local
pheromone
updating

Which
component

was used for
local pheromone

updating

ACOMOFS One No No
Iteration best

solutions
Yes

Globally best
solution

CPACO One No Yes
Non-dominated

solutions
No -

mACO4 One Yes No
Iteration best

solutions
No -

MACS One No Yes
Non-dominated

solutions
Yes

Initial
pheromone

MCAA Multiple Yes No
Non-dominated

solutions
No -

PSACO One No No
Non-dominated

solutions
No -

Table 5. Results of each JSSP problem instance for two objectives, obtained with model 1 (20 ants are used)
Problem Size ACOMOFS CPACO MACO4 MACS MCAA PSACO

LA01 10x5 0.00 0.30 0.37 0.26 1.27 1.10
LA02 10x5 1.67 5.12 3.32 3.78 4.49 4.96
LA03 10x5 8.52 9.77 0.00 9.31 7.62 1.85
LA04 10x5 0.97 1.18 0.00 1.27 4.15 0.03
LA05 10x5 0.00 0.40 1.48 0.72 1.77 1.56

ARPD 2.23 3.35 1.03 3.07 3.86 1.90
Average CPU time (seconds) 128 96 98 103 146 121

LA06 15x5 0.00 0.83 4.14 2.00 3.20 2.69
LA07 15x5 1.85 6.83 3.54 5.76 7.06 3.41
LA08 15x5 2.08 4.84 5.17 1.02 4.38 0.29
LA09 15x5 15.83 18.06 21.19 15.83 3.02 13.86
LA10 15x5 0.00 4.51 7.17 3.04 8.56 4.76

ARPD 3.95 7.01 8.24 5.53 5.24 5.00
Average CPU time (seconds) 417 334 329 335 452 365

LA11 20x5 0.16 2.48 6.91 1.12 0.00 3.06
LA12 20x5 0.00 4.09 4.96 2.00 0.51 2.78
LA13 20x5 0.00 3.81 7.30 1.36 2.42 4.23
LA14 20x5 2.35 7.23 9.43 1.11 0.72 6.68
LA15 20x5 1.81 4.86 9.72 0.00 5.04 8.08
LA16 20x5 3.15 1.50 0.00 1.72 2.25 2.41

ARPD 1.25 3.99 6.39 1.22 1.82 4.54
Average CPU time (seconds) 1004 876 808 796 1160 827

Mean of ARPDs 2.40 4.74 5.29 3.14 3.53 3.86
# of optimum solutions 8 0 3 1 3 1

3.2 Performance measures
Relative percentage deviation (RPD) and average relative percent-
age deviation (ARPD) [16] are used as the performance measures
to evaluate the performances of MOACO algorithms, considered
in this study. Relative percentage deviation (RPD) is calculated as

follows for multi-objective optimization problems.

RPD =

[
H∑

h=1

wh

(
Objsol −Obj∗

Obj∗

)]
× 100% (3)

where Objsol is the minimum objective function value of the algo-
rithm and Obj∗ is the best objective function value of all the algo-
rithms considered in the study. H is the number of objectives and
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Table 6. Results of each JSSP problem instance for three objectives, obtained with model 1 (20 ants are used)
Problem Size ACOMOFS CPACO MACO4 MACS MCAA PSACO

LA01 10x5 3.88 3.76 0.72 0.17 4.79 5.09
LA02 10x5 1.32 5.26 13.03 6.88 10.24 7.21
LA03 10x5 1.55 4.98 3.11 2.54 6.72 1.28
LA04 10x5 3.16 15.14 0.00 9.27 21.36 0.69
LA05 10x5 0.00 0.00 1.63 0.00 0.00 0.50

ARPD 1.98 5.83 3.70 3.77 8.62 2.95
Average CPU time (seconds) 122 94 99 99 212 124

LA06 15x5 1.07 0.24 10.86 6.61 6.85 12.62
LA07 15x5 3.07 6.04 12.80 4.90 9.34 0.15
LA08 15x5 2.55 2.84 13.34 6.70 3.56 5.59
LA09 15x5 5.44 0.77 13.28 1.44 7.46 6.88
LA10 15x5 2.59 0.64 4.94 3.20 9.65 7.99

ARPD 2.94 2.11 11.04 4.57 7.37 6.65
Average CPU time (seconds) 395 326 331 318 704 366

LA11 20x5 0.28 6.67 12.53 2.77 2.34 9.98
LA12 20x5 0.40 4.00 12.37 0.37 5.59 7.15
LA13 20x5 0.00 4.50 11.35 3.67 0.48 5.61
LA14 20x5 1.43 4.64 18.59 2.81 2.21 13.97
LA15 20x5 0.90 10.52 18.65 4.93 7.99 13.11
LA16 20x5 5.29 2.08 0.00 1.85 5.35 2.77

ARPD 1.38 5.40 12.25 2.73 3.99 8.77
Average CPU time (seconds) 941 801 811 758 1688 833

Mean of ARPDs 2.06 4.51 9.20 3.63 6.50 6.29
# of optimum solutions 7 4 2 3 1 2

wh is the weighting coefficient which equally considers for each
objective. Minimum value of RPD obtains better performance.
Average relative percentage deviation (ARPD) is calculated for
each problem set as follows:

ARPD =
1

I

I∑
i=1

RPDi (4)

where I is the number of problem instances and RPDi is the rel-
ative percentage deviation (RPD) of the problem instance i. If the
values of RPD and ARPD are very close to zero, then it gives better
performance.

4. ANALYSIS OF RESULTS
Tables 5 – 7 represent the results obtained for two objectives, three
objectives and four objectives JSSP problem instances with model
1, respectively. Results obtained with model 2 represent in Table
8 for two objectives JSSP problem instances. Each model consid-
ers different number of ants which is 20 ants in model 1 and 50
ants in model 2. Each table presents the relative percentage devi-
ation (RPD) values of each JSSP instance for each MOACO al-
gorithm, average relative percentage deviation (ARPD) values of
small (la01-la05), medium (la06-la10) and large (la11-la16) JSSP
instances with their average CPU times in seconds. Also, mean of
ARPDs and number of optimum solutions of each MOACO algo-
rithm are presented in each table. If the average relative percentage
deviation (ARPD) values are close to zero, then it returns better per-

formances. Each table uses different colors to represent the differ-
ent stages of RPDs and ARPDs in each row such that, it presents the
minimum values in green color, second minimum values in brown
color and the third minimum values in blue color.
Table 5 presents the results obtained for two objectives of model
1. According to this table, mACO4 algorithm returns minimum
ARPD value for small instances (la01-la05). Therefore, it is the best
algorithm as it obtains ARPD value very close to zero. Secondly,
PSACO is the best algorithm, as it obtains second minimum ARPD
value. Thirdly, ACOMOFS is better than the other MOACO algo-
rithms, as it returns third minimum ARPD value. MACS, CPACO
and MCAA algorithms are not performed well, as they return max-
imum ARPD values. Moreover, ACOMOFS, PSACO, MCAA and
MACS algorithms are better than CPACO and mACO4 algorithms
for medium instances (la06-la10), as they obtain better ARPD val-
ues. Further, MACS, ACOMOFS and MCAA algorithms return
better performances than CPACO, PSACO and mACO4 algorithms
for large instances (la11-la16), as they obtains ARPD values close
to zero. It can be seen that mACO4 algorithm obtains best perfor-
mance for small instances and worst performances for medium and
large instances. Also, PSACO algorithm performs better in small
and medium instances, while returning poor performances for large
instances. Further, MCAA algorithm obtains good performances
only in medium and large instances.
Results obtained for three objectives of model 1, is presented in Ta-
ble 6. As given in this table, ACOMOFS performs best for small
and large instances, as its ARPD values are close to zero. PSACO
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Table 7. Results of each JSSP problem instance for four objectives, obtained with model 1 (20 ants are used)
Problem Size ACOMOFS CPACO MACO4 MACS MCAA PSACO

LA01 10x5 1.03 2.74 4.09 5.77 6.45 0.24
LA02 10x5 2.74 3.89 3.59 1.20 6.55 2.49
LA03 10x5 8.63 10.59 0.90 9.70 1.04 7.05
LA04 10x5 1.35 17.89 5.85 15.76 18.61 6.36
LA05 10x5 2.29 4.93 2.09 2.29 2.29 0.30

ARPD 3.21 8.01 3.30 6.94 6.99 3.29
Average CPU time (seconds) 127 96 100 8 294 126

LA06 15x5 2.24 7.33 5.91 0.00 1.15 7.95
LA07 15x5 7.30 13.61 14.00 8.03 9.59 2.88
LA08 15x5 2.77 5.63 8.12 1.42 3.29 0.27
LA09 15x5 0.00 11.71 13.83 6.33 5.16 9.76
LA10 15x5 0.00 8.14 3.93 3.99 4.22 6.01

ARPD 2.46 9.28 9.16 3.95 4.68 5.37
Average CPU time (seconds) 410 332 333 20 972 374

LA11 20x5 0.92 6.18 12.90 1.76 0.00 6.25
LA12 20x5 0.00 4.33 11.82 1.12 3.32 4.93
LA13 20x5 0.82 8.21 10.29 0.00 0.82 2.47
LA14 20x5 9.53 17.34 15.98 11.97 2.73 10.76
LA15 20x5 9.49 19.75 18.44 1.86 14.78 7.84
LA16 20x5 4.81 1.74 12.89 2.42 10.08 6.47

ARPD 4.26 9.59 13.72 3.19 5.29 6.45
Average CPU time (seconds) 984 813 811 40 2348 854

Mean of ARPDs 3.37 9.00 9.04 4.60 5.63 5.13
# of optimum solutions 4 1 1 3 2 4

algorithm is the second best algorithm for small instances, as it
returns second best minimum ARPD value. mACO4 and MACS
algorithms are significantly better than CPACO and MCAA algo-
rithms in small instances. Nevertheless, CPACO algorithm is the
best for medium instances, as it obtains minimum ARPD value.
ACOMOFS algorithm is better than MACS, PSACO, MCAA and
mACO4 algorithms. ACOMOFS, MACS and MCAA algorithms
are better than CPACO, PSACO and mACO4 algorithms in large
instances. However, it can be seen that, mACO4 and PSACO al-
gorithms obtain good performance only in small instances. Also,
MCAA algorithm obtains good performance only in large in-
stances, while CPACO algorithm obtains best performance only in
medium instances.
Table 7 presents the results obtained with four objectives of model
1. According to this table, ACOMOFS algorithm obtains best per-
formances for small and medium instances, as it obtains mini-
mum ARPD values and it returns the second best performance for
large instances. PSACO algorithm obtains better performance for
small instances, while returning significantly good performances
in other instances. However, mACO4 algorithm obtains very poor
performance in medium and large instances. Further, MACS algo-
rithm obtains best results in large instances, as it returns minimum
value of ARPD and second best performance in medium instances.
MCAA algorithm obtains significantly good performance in all the
instances. Also, CPACO algorithm returns very poor performances
in all the instances, as it obtains very poor values in ARPD.

Results obtained for two objectives with model 2 are presented in
Table 8. As given in this table, PSACO algorithm performs best
only in small and medium instances, as it returns minimum ARPD
values. Also, it returns better values than CPACO and mACO4 al-
gorithms for larger instances. mACO4 algorithm obtains second
best performance for small instances, as it returns second best value
in ARPD, while it obtains very poor performances for medium
and larger instances. Also, ACOMOFS algorithm performs best
in larger instances as it obtains minimum ARPD value and sig-
nificantly performs better in other instances. CPACO algorithm
returns significantly good performances in all the instances. Fur-
ther, MCAA algorithm obtains very poor performance in small and
medium instances, as it obtains maximum value in ARPD. How-
ever, it obtains better performance in larger instances.
When two, three and four objectives of model 1 are considered
(see Tables 5 – 7), it can be shown that ACOMOFS algorithm per-
forms best for most of the instances of all the objectives except in
two objective small instances, as it returns significantly good value
in ARPD. Also, CPACO algorithm returns significantly good re-
sults in larger instances of two and three objectives and it obtains
best performance in medium instances of three objectives. But, it
obtains poor performance in all the instances of four objectives.
Further, mACO4 algorithm returns better performances only for
small instances, while obtaining very poor performance for other
instances of all the objectives. Moreover, MACS algorithm returns
best performances for larger instances, while returning significantly
good performances for other instances of all the objectives. MCAA
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Table 8. Results of each JSSP problem instance for two objectives, obtained with model 2 (50 ants are used)
Problem Size ACOMOFS CPACO MACO4 MACS MCAA PSACO

LA01 10x5 0.00 0.78 0.00 0.54 2.28 0.48
LA02 10x5 6.41 8.88 6.09 6.50 7.16 0.00
LA03 10x5 5.79 3.38 0.00 4.31 8.77 3.21
LA04 10x5 0.68 0.41 0.53 1.24 5.55 0.00
LA05 10x5 0.00 0.70 1.66 0.00 2.40 1.19

ARPD 2.58 2.83 1.66 2.52 5.23 0.98
Average CPU time (seconds) 319 248 264 265 359 351

LA06 15x5 2.83 6.41 6.44 0.00 6.88 6.06
LA07 15x5 2.72 1.45 4.61 0.17 7.09 1.15
LA08 15x5 5.18 7.68 6.73 6.13 8.08 0.30
LA09 15x5 0.00 4.22 10.36 5.16 6.58 0.55
LA10 15x5 2.29 3.19 8.03 2.68 9.25 1.37

ARPD 2.61 4.59 7.23 2.83 7.58 1.89
Average CPU time (seconds) 1046 850 841 857 1198 1001

LA11 20x5 0.00 1.89 6.50 0.61 1.23 1.67
LA12 20x5 0.00 5.90 9.21 1.30 5.50 3.37
LA13 20x5 0.44 1.03 5.65 1.07 2.03 0.82
LA14 20x5 3.67 5.68 7.78 2.49 2.41 7.36
LA15 20x5 0.69 7.96 10.11 5.47 2.12 5.58
LA16 20x5 1.73 1.50 1.41 0.40 2.39 1.48

ARPD 1.09 3.99 6.78 1.89 2.61 3.38
Average CPU time (seconds) 2511 2070 2035 2017 2895 2156

Mean of ARPDs 2.03 3.81 5.32 2.38 4.98 2.16
# of optimum solutions 7 0 2 4 1 4

algorithm returns very poor performance in small instances while
obtains significantly good performance for most of the other in-
stances of all the objectives. Moreover, PSACO algorithm obtains
better performances only in small instances of all the objectives
and medium instances of two objectives. Therefore, it can be shown
that the performances of some algorithms in model 1 depend on the
number of objectives, while all the algorithms depend on the size
of the problem instance.
When compare the results obtained with model 1 and model 2, it
can be shown that, PSACO algorithm performs best among other
algorithms in model 2, while it is the second best algorithm in
model 1, for small instances of two objectives and medium in-
stances of two objectives. ACOMOFS algorithm performs best in
model 1 for small instances of three objectives and medium in-
stances of two objectives, although it is outperformed by PSACO
algorithm in model 2. However, it performs best among other algo-
rithms, while it obtains second best performance for large instances
of two objectives. MACS algorithm achieves significantly good
performance for medium instances of three objectives in model 1,
where as it performs better in model 2. MCAA algorithm obtains
significantly good performance for medium instances of two ob-
jectives in model 1, however it achieves very poor performance in
model 2. Therefore, it can be shown that PSACO and MACS al-
gorithms achieve better performances for some instances in model
2 than model 1. Also, MCAA algorithm returns good performance
for some instances in model 1 than model 2. Therefore, it is shown

that the performances of algorithms depend on the number of ants
used.
Nevertheless, ACOMOFS algorithm performs best in most of the
instances in both models. Also, PSACO and mACO4 algorithms
achieve better performances for small instances of all the objec-
tives considered, in both models. MACS algorithm obtains best per-
formances for larger instances of some objectives in both models.
Further, CPACO and MCAA algorithms achieve significantly good
performances for most of the instances in both models. Moreover,
mACO4 algorithm returns very poor performances for medium
and large instances in both models. However, MCAA algorithm
achieves very poor performances for small instances of all the ob-
jectives in both models. Therefore, it can be shown that, the perfor-
mances of algorithms are not changed for some instances of both
models.

5. CONCLUDING REMARKS
In this contribution, the performances of six recent multi-objective
ant colony optimization algorithms are evaluated by applying them
to the job shop scheduling problem and taxonomy is presented on
these MOACO algorithms. In order to compare the performance
of algorithms, sixteen benchmark instances of JSSP are tested on
two, three and four objectives by changing the number of ants. A
detailed analysis is performed by using the performance indicators:
RPD and ARPD.
According to the experimental results in this study, ACOMOFS al-
gorithm is the best performing algorithm in most of the instances,
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as it obtains minimum mean of ARPDs, while PSACO performs
best for small instances, as it returns minimum of ARPDs. Fur-
ther, MACS algorithm achieves better performances for larger in-
stances than others and mACO4 algorithm performs better in small
instances. Also, MCAA achieves significantly better performances
for medium and larger instances. However, CPACO algorithm is
outperformed by MACS and ACOMOFS algorithms and it is bet-
ter than the mACO4 algorithm in medium and larger instances.
Moreover, according to the analysis of the results, it can be con-
cluded that the performances of the MOACO algorithms depend on
the number of objectives considered in both models. Also, perfor-
mances of algorithms for some instances are changed when using
the different number of ants. In other words, some algorithms like
PSACO and MACS perform better when using the large number of
ants in a colony. However, some algorithms like ACOMOFS and
mACO4 are not depend on the number of ants used in a colony.
According to our previous study (Ariyasingha and Fernando 2015)
and this study, it is shown that the ACOMOFS algorithm performs
best in both combinatorial optimization problems: TSP and JSSP.
Although, MACS algorithm performs better in TSP, it is not per-
formed well in JSSP. Further, PSACO algorithm achieves best per-
formance for small instances of JSSP, while obtaining slightly bet-
ter performance in TSP. Also, CPACO algorithm returns good per-
formance in TSP, but it obtains slightly better performance in JSSP.
Further, MCAA algorithm achieves slightly good performance only
for larger instances of both combinatorial optimization problems.
Although, mACO4 algorithm obtains very poor performance in
TSP, it achieves better performance only for small instances of
JSSP. Therefore, it can be concluded that MOACO algorithms be-
have differently and obtain different performances for each com-
binatorial optimization problem. In other words, the performances
of MOACO algorithms depend on the combinatorial optimization
problem.
The future work that arises out of this study is to apply the other
nature-inspired algorithms – such as the particle swarm optimiza-
tion algorithm and the artificial bee colony algorithm – to the job
shop scheduling problem and compare their performances.
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