
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.16, December2015

10

Distributed Arithmetic based Low-Power LMS Adaptive

FIR Filter Design

Wasim Maroofi
Research Scholar

NIIST, Bhopal
Madhya Pradesh, India

Lalit Jain
Assistant Professor

NIIST, Bhopal
Madhya Pradesh, India

ABSTRACT

Adaptive filtering forms a significant class of DSP algorithms

employed in several hand held mobile devices for applications

like echo cancellation, signal de-noising, and channel

equalization. This paper presents a different pipelined

architecture for low-power implementation of Adaptive filter

based on distributed arithmetic (DA). The traditional adder-

based shift accumulation for Distributed Arithmetic based

computation of inner-product is swapped by conditional

signed carry-save accumulation. A fast bit clock is employed

only for carry-save accumulation which results in reduction of

power consumption in the proposed design, while use of a

much slower bit clock is used for rest of the operations. It

contains the smaller Look-Up Table (LUT), same quantity of

multiplexers and almost half the number of adders in

comparison to the existing Distributed Arithmetic-based

design. By changing the inner block, a reduction in power

consumption is aimed at. So the previous DA-based adaptive

filter in average for filter lengths N=4 and N=16 have been

implemented.

General Terms

Distributed Arithmetic, LMS Adaptive Filter, VHDL

Keywords

Distributed Arithmetic, DA, Adaptive Filter, LMS algorithm,

Carry save adder, Noise Cancellation, Digital Signal

Processing

1. INTRODUCTION
In the last few decades, the field of digital signal processing,

and particularly adaptive signal processing, has developed

immensely due to the increasing availability of technology for

the implementation of the emerging algorithms. These

algorithms have been applied to a widespread range of

problems which include noise and acoustic echo canceling,

channel equalization, signal prediction, adaptive arrays,

wireless channel estimation, radar guidance systems as well as

many others [1]. An adaptive algorithm is employed for

estimating a time varying signal. There are many adaptive

algorithms at our disposal like the Recursive Least Square

(RLS), Kalman filter, etc., but the most frequently used is the

Least Mean Square (LMS) algorithm. LMS is a simple yet

powerful algorithm which can be implemented to take

advantage of the Lattice FPGA architecture. The tapped-delay

line finite impulse response (FIR) filter wherein the weights

are updated by the well-known Widrow–Hoff LMS algorithm

[2] is the most popularly used adaptive filter also because of

its satisfactory convergence performance [3]. The direct form

configuration on the forward path of the FIR filter

consequently leads to a long critical path due to an inner-

product computation to obtain a filter output. Hence, when the

input signal is having a high sampling rate, it becomes crucial

to reduce the critical path of the structure so that it could not

surpass the sampling period [4]. Distributed Arithmetic based

technique comprises of a structure which is devoid of

multiplier that increases the throughput. Such DA-based

structures have been proposed by Allred et al [5].

2. FIR FILTER
Finite Impulse Response (FIR) filters are one of the key

building blocks of numerous signal processing applications in

communication systems. Channel equalization, interference

cancellation and matched filtering are some of the variety of

FIR filter applications. Hence, the programmable and

reconfigurable FIR filter architectures are required for next

generation communication systems which consume less

power, have low complexity and satisfy high speed operation

requirements. The major holdup in FIR filter implementation

is the implementation of the multiplier coefficients, which are

conventionally implemented using add/sub/shift operations.

Digital filters are the essential units for digital signal

processing systems. Traditionally, digital filters are realized in

Digital Signal Processor (DSP), but DSP-based solution

cannot meet the high speed requirements in some applications

because of its structure which is sequential in nature.

Nowadays, Field Programmable Gate Array (FPGA)

technology is extensively used in digital signal processing

area because FPGA-based solution can accomplish high

speeds owing to its parallel structure and configurable logic,

thus providing great amount of flexibility and high reliability

throughout design process and later maintenance. A number

of architectures have been reported in the literature for

memory-based implementation of DSP algorithms which

involve orthogonal transforms and digital filters [6].

The FIR filter is implemented serially using a multiplier and

an adder with a feedback which is illustrated in the high level

schematic in Fig. 1.

Fig.1: FIR Filter

The LMS algorithm updates the coefficient in an iterative

manner and feeds it to the FIR filter. The FIR filter then uses

this coefficient c(n) in addition to the input reference signal

x(n) to generate the output response y(n). The output y(n) is

then subtracted from the desired signal d(n) to generate an

error signal e(n), which is ultimately utilized by the LMS

algorithm to compute the next set of coefficients.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.16, December2015

11

3. ADAPTIVE FIR FILTER
An adaptive filter may be understood as a self-modifying

digital filter that adjusts its coefficients in order to minimize

an error function. This error function, which is also denoted as

the cost function, is a distance measurement between the

reference (desired signal) and the output response of the

adaptive filter. The sheer ability of an adaptive filter to

operate satisfactorily in an indefinite environment along with

tracking of time variations of input statistics make the

adaptive filter a powerful device for signal processing and

control applications [7]. They can automatically adapt (self-

optimize) in the face of varying situations and changing

system requirements. They can be trained to perform specific

filtering and decision-making tasks in accordance with some

updating equations. Moreover, an adaptive filter, due to its

real-time self-adjusting characteristic, is occasionally

expected to track the optimum behavior of a slowly varying

environment. Due to its simplicity and efficacy, the most

widely employed adaptive filter structure is by far the

transversal filter (or tapped-delay line) associated to standard

finite-duration impulse response (FIR) filters. Filter structure

significantly influences the computational complexity of a

given adaptive filter algorithm and the overall speed of the

adaptation process. The basic configuration of an adaptive

filter, operating in the discrete-time domain k, is shown in

Figure 2. In such a scheme, the input signal is denoted by

x(k), the reference or desired signal d(k) (that usually includes

some noise component), y(k) is the output of the adaptive

filter, and the error signal is defined as e(k) = d(k)− y(k).

Fig.2: Block diagram of adaptive filter

The error signal is used by the adaptation algorithm for

updating the adaptive filter coefficient vector w(k) according

to some performance criterion. In broader sense, the entire

adaptation process targets at minimizing some metric of the

error signal, driving the adaptive filter output signal to

approximate the reference signal.

4. LMS ADAPTIVE FILTER (EXISTING

DESIGN)
The Least Mean Square (LMS) algorithm was introduced by

Widrow and Hoff in 1959. The LMS algorithm has

established itself as the mainstay of adaptive signal processing

for two major reasons:

 Simplicity of implementation and a computational

efficiency that is linear in the number of adjustable

parameters.

 Robust performance

It is an adaptive algorithm, which makes use of a gradient-

based method of steepest decent. LMS algorithm uses the

estimates of the gradient vector from the data that becomes

available. LMS incorporates an iterative procedure that makes

successive corrections to the weight vector in the negative

direction of the gradient vector which eventually leads to the

minimum mean square error (MSE). The gradient is the del

operator (partial derivative) and is applied to find the

divergence of a function, which represents the error with

respect to the nth coefficient in this case. The LMS algorithm

approaches towards the minimum of a function so as to

minimize error by taking the negative gradient of the function.

Fig.3: LMS Implementation Using FIR Filter

The desired signal d(n) is tracked by adjusting the filter

coefficients c(n). The input reference signal x(n) is a known

signal that serves as an input to the FIR filter. The difference

between d(n) and y(n) is the error e(n). The error e(n) is then

given to the LMS algorithm to compute the filter coefficients

c(n+1) which minimizes the error in an iterative manner. The

LMS equation for computing the FIR coefficients is as

follows:

c(n+1) = c(n) + µ . e(n) . x(n) (1)

where e(n) = d(n) – y(n) (2)

 y(n) = cqT(n) . x(n) (3)

The convergence time of the LMS algorithm depends on the

step size µ.

The input vector x(n) and the weight vector c(n) at the nth

training iteration are respectively given by:

x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]T (4)

c(n) = [c0(n), c1(n), . . . , cN−1(n)]T (5)

d(n) is the desired response,

y(n) is the filter output of the nth iteration.

e(n) denotes the error computed during the nth iteration, used

for updating the weights,

μ is the convergence factor, and

N is the filter length.

In pipelined architecture, the feedback error e(n) becomes

available only after a definite number of cycles, called the

adaptation delay. So, the pipelined architectures make use of

delayed error e(n − m) in order to update the current weight

instead of the most recent error, where ‘m’ is the adaptation

delay. The weight-update equation of such delayed LMS

adaptive filter is given by:

c(n + 1) = c(n) + μ · e(n − m) · x(n − m). (6)

5. DISTRIBUTED ARITHMETIC (DA)
Distributed arithmetic (DA) is an efficient multiplication-free

technique for calculating inner products first introduced by

Croisier, et al. [8] and Zohar [9] and further developed by

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.16, December2015

12

Peled and Liu [10] more than three decades ago. The

multiplication operation is substituted by a mechanism that

generates partial products before summing the products

together. The basic difference between distributed arithmetic

and standard multiplication is the way in which the partial

products are generated and added together. Since its

introduction, distributed arithmetic has been extensively

implemented in many digital signal processing applications,

including but not limited to digital filtering, discrete cosine

transform, discrete Fourier transform.

6. DISTRIBUTED ARITHMETIC BASED

APPROACH (PROPOSED DESIGN)
The LMS adaptive filter involves performing of an inner-

product computation during each cycle, which contributes to

the most of the critical path. Let the inner product of eqn. (3)

be given by:

 (7)

where ck and xk for 0 ≤ k ≤ N − 1 are the N-point vectors

corresponding to the current weights and most recent N − 1

input, respectively. If L is assumed to be the bit width of the

weight, then each component of the weight vector may be

expressed in two’s complement representation as follows:

 (8)

where ckl denotes the lth bit of ck.

Substituting (8), we can write (7) in an expanded form as

follows:

 (9)

Now for converting the sum-of-products form of (7) into a

distributed form, the order of summations over the indices k

and l in (6) may be switched to get:

 (10)

and the inner product given by (10) can be computed as:

 , where

 (11)

Fig.4: Traditional implementation of DA-based four-point

inner product

Fig.5: Carry-save implementation of shift accumulation

Since any element of the N-point bit sequence {ckl for 0 ≤ k ≤

N − 1} can either be zero or one, the partial sum yl for l = 0,

1,…, L − 1 can have 2N possible values. If all 2N possible

values of yl are pre-computed and stored in a LUT, the partial

sums yl can be read out from the LUT using the bit sequence

{ckl} as address bits for computation of the inner product.

Hence, the inner product of eqn. (11) can be calculated in L

cycles of shift accumulation, which is then followed by LUT-

read operations corresponding to L number of bit slices {ckl}

for 0 ≤ l ≤ L − 1, as shown in Fig. 4. As the shift accumulation

in Fig. 4 encompasses substantial critical path, it is performed

using carry-save accumulator, as shown in Fig. 5. The bit

slices of vector c are fed one after the other in the LSB to the

MSB order to the carry-save accumulator. However, the

negative (two’s complement) of the LUT output is required to

be accumulated in case of MSB slices. So, the entire bits of

LUT output are passed through XOR gates with a sign-control

input which is set to ‘1’ only when the MSB slice appears as

address. The XOR gates thus produce the one’s complement

of the LUT output corresponding to the MSB slice but do not

affect the output for other bit slices. Finally, the sum and carry

words that are acquired after L clock cycles are essential to be

added by a final adder which has been excluded from the

figure, and the input carry of the final adder is needed to be

set to ‘1’ to account for the two’s complement operation of

the LUT output corresponding to the MSB slice. The content

of the kth LUT location can be expressed as:

 (12)

where kj is the (j + 1)th bit of N-bit binary representation of

integer k for 0 ≤ k ≤ 2N − 1. Note that ck for 0 ≤ k ≤ 2N – 1 can

be pre-computed and stored in RAM-based LUT of 2N words.

However, instead of storing 2N words in LUT, we store (2N −

1) words in a DA table of 2N − 1 registers. An example of

such a DA table for N = 4 is shown in Fig. 6. It contains only

15 registers for storing the pre-computed sums of input words.

Seven adders in parallel compute the new values of ck.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.16, December2015

13

Fig.6: DA Table for generation of possible sums of input

samples

The computation of adaptive filters of large orders must be

decomposed into small adaptive filtering blocks since DA-

based implementation of inner product of long vectors

requires a very large LUT [5].

Fig. 7: Proposed structure of DA-based LMS adaptive

filter

The proposed structure of DA-based adaptive filter of length

N = 4 is shown in Fig. 7. It contains a four-point inner-product

block and a weight-increment block in addition to additional

circuits for the computation of error value e(n) and control

word t for the barrel shifters. The four-point inner-product

block [shown in Fig. 8] includes a DA table consisting of an

array of 15 registers which stores the partial inner products yl

for 0 < l ≤ 15 and a 16 : 1 multiplexer to select the content of

one of those registers. Bit slices of weights A = {w3l w2l w1l

w0l} for 0 ≤ l ≤ L − 1 are fed to the MUX as control in LSB-

to- MSB order, and the output of the MUX is given to the

carry-save accumulator (shown in Fig. 4). After L bit cycles,

the carry-save accumulator shift accumulates all the partial

inner products and generates a sum word and a carry word of

size (L + 2) bit each. The carry and sum words are shifted -

added with an input carry “1” to generate filter output which

is subsequently subtracted from the desired output d(n) to

obtain the error e(n). As is the case in [5], all the bits of the

error except the most significant one are ignored, such that

multiplication of input xk by the error is implemented by a

right shift through the number of locations given by the

number of leading zeros in the magnitude of the error. The

magnitude of the computed error is decoded to generate the

control word t for the barrel shifter. The logic used for the

generation of control word t to be used for the barrel shifter is

shown in Fig. 10. The convergence factor μ is usually taken to

be O(1/N). Convergence factor has been taken as μ = 1/N.

However, one can take μ as 2−i/N, where i is a small integer.

The number of shifts t in that case is increased by i, and the

input to the barrel shifters is pre-shifted by i locations

accordingly to reduce the hardware complexity. The weight-

increment unit [shown in Fig. 9] for N = 4 consists of four

barrel shifters and four adder/subtractor cells. The barrel

shifter shifts the different input values xk for k = 0, 1, ..., N −

1 by suitable number of locations (determined by the location

of the most significant one in the estimated error). The barrel

shifter produces the desired increments that are to be added

with or subtracted from the current weights. The sign bit of

the error is used as the control for adder/subtractor cells such

that, when sign bit is zero or one, the barrel-shifter output is

respectively added with or subtracted from the content of the

corresponding current value in the weight register.

Fig. 8: Structure of four-point inner-product block

Fig. 9: Structure of weight-increment block for N=4

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.16, December2015

14

if r6 = 1 then t = “000”;

else if r5 = 1 then t = “001”;

else if r4 = 1 then t = “010”;

else if r3 = 1 then t = “011”;

else if r2 = 1 then t = “100”;

else if r1 = 1 then t = “101”;

else if r0 = 1 then t = “110”;

else then t = “111”;

Fig. 10: Logic used for generation of control word t for the

barrel shifter for L=8

7. RESULTS
Table 1: Result Comparison of Existing and Proposed

Work with respect to Area, Delay and Power

DESIGN Gate Count
Delay

(nS)

Power

(mW)

EXISTING 31,184 13.704 183

PROPOSED 31,500 13.704 91

Here it can be seen that the power consumption has reduced to

just below half of that in the existing design. This has resulted

because of a reduced switching activity of the design based on

carry-save adder. An efficient pipelined architecture for low-

power, and low delay implementation of DA-based adaptive

filter. A carry-save accumulation scheme of signed partial

inner products for the computation of filter output has been

implemented. From the synthesis results, it was found that the

proposed design consumes less power over our previous DA-

based FIR adaptive filter. In future, work can be implemented

on digital communication, signal processing application,

digital radio receivers, software radio receivers and echo

cancellation.

8. CONCLUSION
This paper presented the implementation of carry-save

accumulation scheme of signed partial inner products for the

computation of filter output. It is well implemented for

Adaptive Filtering applications. From the synthesis results, it

was found that the proposed design consumes less power over

our previous DA-based FIR adaptive filter.

9. ACKNOWLEDGMENTS
We would like to extend sincere gratitude towards our mentor

Prof. Puran Gour, HOD (E&C Dept., NIIST, Bhopal), Prof.

Tahseenul Hasan, Asst. Professor (ETC Dept., ACET,

Nagpur) and Mr. Rehan Maroofi, who have been there for

constant guidance and provided support to achieve success in

our endeavor.

10. REFERENCES
[1] Apolinário Jr, José A., and Sergio L. Netto. "Introduction

to Adaptive Filters." In QRD-RLS Adaptive Filtering,

pp. 1-27. Springer US, 2009.

[2] B. Widrow and S. D. Stearns, Adaptive signal

processing. Prentice Hall, Englewood Cliffs, NJ, 1985. .

[3] S. Haykin and B. Widrow, Least-mean-square adaptive

filters. Wiley-Interscience, Hoboken, NJ, 2003.

[4] Park, Sang Yoon, and Pramod Kumar Meher. "Low-

power, high-throughput, and low-area adaptive FIR filter

based on distributed arithmetic." Circuits and Systems II:

Express Briefs, IEEE Transactions on 60, no. 6 (2013):

346-350.

[5] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

Anderson, “LMS adaptive filters using distributed

arithmetic for high throughput,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337, Jul.

2005.

[6] P. K. Meher, ‘LUT Optimization for Memory-Based

Computation,’ IEEE Trans on Circuits & Systems-II,

pp.285-289, April 2010.

[7] Haykin, Simon S. Adaptive filter theory. Pearson

Education India, pp.18, 1996.

[8] A. Croisier, D. Esteban, M. Levilion, and V. Rizo,

“Digital filter for PCM encoded signals US Patent 3,

777, 130,” 1973.

[9] S. Zohar, “New Hardware Realizations of Nonrecursive

Digital Filters,” IEEE Transactions on Computers, vol.

C-22, no. 4, pp. 328–338, 1973.

[10] A. Peled and B. Liu, “A New Hardware Realization of

Digital Filters,” IEEE Transactions on ASSP, vol. 22, no.

6, pp. 456–462, 1974.

IJCATM : www.ijcaonline.org

