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ABSTRACT 

Adaptive filtering forms a significant class of DSP algorithms 

employed in several hand held mobile devices for applications 

like echo cancellation, signal de-noising, and channel 

equalization. This paper presents a different pipelined 

architecture for low-power implementation of Adaptive filter 

based on distributed arithmetic (DA). The traditional adder-

based shift accumulation for Distributed Arithmetic based 

computation of inner-product is swapped by conditional 

signed carry-save accumulation. A fast bit clock is employed 

only for carry-save accumulation which results in reduction of 

power consumption in the proposed design, while use of a 

much slower bit clock is used for rest of the operations. It 

contains the smaller Look-Up Table (LUT), same quantity of 

multiplexers and almost half the number of adders in 

comparison to the existing Distributed Arithmetic-based 

design. By changing the inner block, a reduction in power 

consumption is aimed at. So the previous DA-based adaptive 

filter in average for filter lengths N=4 and N=16 have been 

implemented.  
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1. INTRODUCTION 
In the last few decades, the field of digital signal processing, 

and particularly adaptive signal processing, has developed 

immensely due to the increasing availability of technology for 

the implementation of the emerging algorithms. These 

algorithms have been applied to a widespread range of 

problems which include noise and acoustic echo canceling, 

channel equalization, signal prediction, adaptive arrays, 

wireless channel estimation, radar guidance systems as well as 

many others [1]. An adaptive algorithm is employed for 

estimating a time varying signal. There are many adaptive 

algorithms at our disposal like the Recursive Least Square 

(RLS), Kalman filter, etc., but the most frequently used is the 

Least Mean Square (LMS) algorithm. LMS is a simple yet 

powerful algorithm which can be implemented to take 

advantage of the Lattice FPGA architecture. The tapped-delay 

line finite impulse response (FIR) filter wherein the weights 

are updated by the well-known Widrow–Hoff LMS algorithm 

[2] is the most popularly used adaptive filter also because of 

its satisfactory convergence performance [3]. The direct form 

configuration on the forward path of the FIR filter 

consequently leads to a long critical path due to an inner-

product computation to obtain a filter output. Hence, when the 

input signal is having a high sampling rate, it becomes crucial 

to reduce the critical path of the structure so that it could not 

surpass the sampling period [4]. Distributed Arithmetic based 

technique comprises of a structure which is devoid of 

multiplier that increases the throughput. Such DA-based 

structures have been proposed by Allred et al [5].  

2. FIR FILTER 
Finite Impulse Response (FIR) filters are one of the key 

building blocks of numerous signal processing applications in 

communication systems. Channel equalization, interference 

cancellation and matched filtering are some of the variety of 

FIR filter applications. Hence, the programmable and 

reconfigurable FIR filter architectures are required for next 

generation communication systems which consume less 

power, have low complexity and satisfy high speed operation 

requirements. The major holdup in FIR filter implementation 

is the implementation of the multiplier coefficients, which are 

conventionally implemented using add/sub/shift operations. 

Digital filters are the essential units for digital signal 

processing systems. Traditionally, digital filters are realized in 

Digital Signal Processor (DSP), but DSP-based solution 

cannot meet the high speed requirements in some applications 

because of its structure which is sequential in nature. 

Nowadays, Field Programmable Gate Array (FPGA) 

technology is extensively used in digital signal processing 

area because FPGA-based solution can accomplish high 

speeds owing to its parallel structure and configurable logic, 

thus providing great amount of flexibility and high reliability 

throughout design process and later maintenance. A number 

of architectures have been reported in the literature for 

memory-based implementation of DSP algorithms which 

involve orthogonal transforms and digital filters [6]. 

The FIR filter is implemented serially using a multiplier and 

an adder with a feedback which is illustrated in the high level 

schematic in Fig. 1. 

 

Fig.1: FIR Filter 

The LMS algorithm updates the coefficient in an iterative 

manner and feeds it to the FIR filter. The FIR filter then uses 

this coefficient c(n) in addition to the input reference signal 

x(n) to generate the output response y(n). The output y(n) is 

then subtracted from the desired signal d(n) to generate an 

error signal e(n), which is ultimately utilized by the LMS 

algorithm to compute the next set of coefficients. 
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3. ADAPTIVE FIR FILTER  
An adaptive filter may be understood as a self-modifying 

digital filter that adjusts its coefficients in order to minimize 

an error function. This error function, which is also denoted as 

the cost function, is a distance measurement between the 

reference (desired signal) and the output response of the 

adaptive filter. The sheer ability of an adaptive filter to 

operate satisfactorily in an indefinite environment along with 

tracking of time variations of input statistics make the 

adaptive filter a powerful device for signal processing and 

control applications [7]. They can automatically adapt (self-

optimize) in the face of varying situations and changing 

system requirements. They can be trained to perform specific 

filtering and decision-making tasks in accordance with some 

updating equations. Moreover, an adaptive filter, due to its 

real-time self-adjusting characteristic, is occasionally 

expected to track the optimum behavior of a slowly varying 

environment. Due to its simplicity and efficacy, the most 

widely employed adaptive filter structure is by far the 

transversal filter (or tapped-delay line) associated to standard 

finite-duration impulse response (FIR) filters. Filter structure 

significantly influences the computational complexity of a 

given adaptive filter algorithm and the overall speed of the 

adaptation process. The basic configuration of an adaptive 

filter, operating in the discrete-time domain k, is shown in 

Figure 2. In such a scheme, the input signal is denoted by 

x(k), the reference or desired signal d(k) (that usually includes 

some noise component), y(k) is the output of the adaptive 

filter, and the error signal is defined as e(k) = d(k)− y(k). 

 

Fig.2: Block diagram of adaptive filter 

The error signal is used by the adaptation algorithm for 

updating the adaptive filter coefficient vector w(k) according 

to some performance criterion. In broader sense, the entire 

adaptation process targets at minimizing some metric of the 

error signal, driving the adaptive filter output signal to 

approximate the reference signal. 

4. LMS ADAPTIVE FILTER (EXISTING 

DESIGN) 
The Least Mean Square (LMS) algorithm was introduced by 

Widrow and Hoff in 1959. The LMS algorithm has 

established itself as the mainstay of adaptive signal processing 

for two major reasons: 

 Simplicity of implementation and a computational 

efficiency that is linear in the number of adjustable 

parameters. 

 Robust performance 

It is an adaptive algorithm, which makes use of a gradient-

based method of steepest decent. LMS algorithm uses the 

estimates of the gradient vector from the data that becomes 

available. LMS incorporates an iterative procedure that makes 

successive corrections to the weight vector in the negative 

direction of the gradient vector which eventually leads to the 

minimum mean square error (MSE). The gradient is the del 

operator (partial derivative) and is applied to find the 

divergence of a function, which represents the error with 

respect to the nth coefficient in this case. The LMS algorithm 

approaches towards the minimum of a function so as to 

minimize error by taking the negative gradient of the function. 

 

Fig.3: LMS Implementation Using FIR Filter 

The desired signal d(n) is tracked by adjusting the filter 

coefficients c(n). The input reference signal x(n) is a known 

signal that serves as an input to the FIR filter. The difference 

between d(n) and y(n) is the error e(n). The error e(n) is then 

given to the LMS algorithm to compute the filter coefficients 

c(n+1) which minimizes the error in an iterative manner. The 

LMS equation for computing the FIR coefficients is as 

follows: 

c(n+1) = c(n) + µ . e(n) . x(n)   (1) 

where e(n) = d(n) – y(n)   (2) 

           y(n) = cqT(n) .  x(n)   (3) 

The convergence time of the LMS algorithm depends on the 

step size µ. 

The input vector x(n) and the weight vector c(n) at the nth 

training iteration are respectively given by: 

x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]T  (4) 

c(n) = [c0(n), c1(n), . . . , cN−1(n)]T  (5) 

d(n) is the desired response,  

y(n) is the filter output of the nth iteration.  

e(n) denotes the error computed during the nth iteration, used 

for updating the weights,  

μ is the convergence factor, and  

N is the filter length. 

In pipelined architecture, the feedback error e(n) becomes 

available only after a definite number of cycles, called the 

adaptation delay.  So, the pipelined architectures make use of 

delayed error e(n − m) in order to update the current weight 

instead of the most recent error, where ‘m’ is the adaptation 

delay. The weight-update equation of such delayed LMS 

adaptive filter is given by: 

c(n + 1) = c(n) + μ · e(n − m) · x(n − m). (6) 

5. DISTRIBUTED ARITHMETIC (DA) 
Distributed arithmetic (DA) is an efficient multiplication-free 

technique for calculating inner products first introduced by 

Croisier, et al. [8] and Zohar [9] and further developed by 
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Peled and Liu [10] more than three decades ago. The 

multiplication operation is substituted by a mechanism that 

generates partial products before summing the products 

together. The basic difference between distributed arithmetic 

and standard multiplication is the way in which the partial 

products are generated and added together. Since its 

introduction, distributed arithmetic has been extensively 

implemented in many digital signal processing applications, 

including but not limited to digital filtering, discrete cosine 

transform, discrete Fourier transform. 

6. DISTRIBUTED ARITHMETIC BASED 

APPROACH (PROPOSED DESIGN) 
The LMS adaptive filter involves performing of an inner-

product computation during each cycle, which contributes to 

the most of the critical path. Let the inner product of eqn. (3) 

be given by: 

      
   
                  (7) 

where ck and xk for 0 ≤ k ≤ N − 1 are the N-point vectors 

corresponding to the current weights and most recent N − 1 

input, respectively. If L is assumed to be the bit width of the 

weight, then each component of the weight vector may be 

expressed in two’s complement representation as follows: 

              
   
                   (8) 

where ckl denotes the lth bit of ck.  

Substituting (8), we can write (7) in an expanded form as 

follows: 

                             
   
       

   
   
            (9) 

Now for converting the sum-of-products form of (7) into a 

distributed form, the order of summations over the indices k 

and l in (6) may be switched to get: 

                              
   
       

   
   
           (10)    

and the inner product given by (10) can be computed as: 

            
   
         , where         

             (11) 

 

Fig.4: Traditional implementation of DA-based four-point 

inner product 

 

Fig.5: Carry-save implementation of shift accumulation 

Since any element of the N-point bit sequence {ckl for 0 ≤ k ≤ 

N − 1} can either be zero or one, the partial sum yl for l = 0, 

1,…, L − 1 can have 2N possible values. If all 2N possible 

values of yl are pre-computed and stored in a LUT, the partial 

sums yl can be read out from the LUT using the bit sequence 

{ckl} as address bits for computation of the inner product. 

Hence, the inner product of eqn. (11) can be calculated in L 

cycles of shift accumulation, which is then followed by LUT-

read operations corresponding to L number of bit slices {ckl} 

for 0 ≤ l ≤ L − 1, as shown in Fig. 4. As the shift accumulation 

in Fig. 4 encompasses substantial critical path, it is performed 

using carry-save accumulator, as shown in Fig. 5. The bit 

slices of vector c are fed one after the other in the LSB to the 

MSB order to the carry-save accumulator. However, the 

negative (two’s complement) of the LUT output is required to 

be accumulated in case of MSB slices. So, the entire bits of 

LUT output are passed through XOR gates with a sign-control 

input which is set to ‘1’ only when the MSB slice appears as 

address. The XOR gates thus produce the one’s complement 

of the LUT output corresponding to the MSB slice but do not 

affect the output for other bit slices. Finally, the sum and carry 

words that are acquired after L clock cycles are essential to be 

added by a final adder which has been excluded from the 

figure, and the input carry of the final adder is needed to be 

set to ‘1’ to account for the two’s complement operation of 

the LUT output corresponding to the MSB slice. The content 

of the kth LUT location can be expressed as: 

          
   
       (12) 

where kj is the (j + 1)th bit of N-bit binary representation of 

integer k for 0 ≤ k ≤ 2N − 1. Note that ck for 0 ≤ k ≤ 2N – 1 can 

be pre-computed and stored in RAM-based LUT of 2N words. 

However, instead of storing 2N words in LUT, we store (2N − 

1) words in a DA table of 2N − 1 registers. An example of 

such a DA table for N = 4 is shown in Fig. 6. It contains only 

15 registers for storing the pre-computed sums of input words. 

Seven adders in parallel compute the new values of ck. 
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Fig.6: DA Table for generation of possible sums of input 

samples 

The computation of adaptive filters of large orders must be 

decomposed into small adaptive filtering blocks since DA-

based implementation of inner product of long vectors 

requires a very large LUT [5].  

 

Fig. 7: Proposed structure of DA-based LMS adaptive 

filter 

The proposed structure of DA-based adaptive filter of length 

N = 4 is shown in Fig. 7. It contains a four-point inner-product 

block and a weight-increment block in addition to additional 

circuits for the computation of error value e(n) and control 

word t for the barrel shifters. The four-point inner-product 

block [shown in Fig. 8] includes a DA table consisting of an 

array of 15 registers which stores the partial inner products yl 

for 0 < l ≤ 15 and a 16 : 1 multiplexer to select the content of 

one of those registers. Bit slices of weights A = {w3l w2l w1l 

w0l} for 0 ≤ l ≤ L − 1 are fed to the MUX as control in LSB-

to- MSB order, and the output of the MUX is given to the 

carry-save accumulator (shown in Fig. 4). After L bit cycles, 

the carry-save accumulator shift accumulates all the partial 

inner products and generates a sum word and a carry word of 

size (L + 2) bit each. The carry and sum words are shifted - 

added with an input carry “1” to generate filter output which 

is subsequently subtracted from the desired output d(n) to 

obtain the error e(n). As is the case in [5], all the bits of the 

error except the most significant one are ignored, such that 

multiplication of input xk by the error is implemented by a 

right shift through the number of locations given by the 

number of leading zeros in the magnitude of the error. The 

magnitude of the computed error is decoded to generate the 

control word t for the barrel shifter. The logic used for the 

generation of control word t to be used for the barrel shifter is 

shown in Fig. 10. The convergence factor μ is usually taken to 

be O(1/N). Convergence factor has been taken as μ = 1/N. 

However, one can take μ as 2−i/N, where i is a small integer. 

The number of shifts t in that case is increased by i, and the 

input to the barrel shifters is pre-shifted by i locations 

accordingly to reduce the hardware complexity. The weight-

increment unit [shown in Fig. 9] for N = 4 consists of four 

barrel shifters and four adder/subtractor cells. The barrel 

shifter shifts the different input values xk for k = 0, 1, ..., N − 

1 by suitable number of locations (determined by the location 

of the most significant one in the estimated error). The barrel 

shifter produces the desired increments that are to be added 

with or subtracted from the current weights. The sign bit of 

the error is used as the control for adder/subtractor cells such 

that, when sign bit is zero or one, the barrel-shifter output is 

respectively added with or subtracted from the content of the 

corresponding current value in the weight register. 

 

Fig. 8: Structure of four-point inner-product block 

 

Fig. 9: Structure of weight-increment block for N=4 
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if r6 = 1 then t = “000”; 

else if r5 = 1 then t = “001”; 

else if r4 = 1 then t = “010”; 

else if r3 = 1 then t = “011”; 

else if r2 = 1 then t = “100”; 

else if r1 = 1 then t = “101”; 

else if r0 = 1 then t = “110”; 

else then t = “111”; 

 

Fig. 10: Logic used for generation of control word t for the 

barrel shifter for L=8 

7. RESULTS 
Table 1: Result Comparison of Existing and Proposed 

Work with respect to Area, Delay and Power 

DESIGN Gate Count 
Delay  

(nS) 

Power 

(mW) 

EXISTING 31,184 13.704 183 

PROPOSED 31,500 13.704 91 

 

Here it can be seen that the power consumption has reduced to 

just below half of that in the existing design. This has resulted 

because of a reduced switching activity of the design based on 

carry-save adder. An efficient pipelined architecture for low-

power, and low delay implementation of DA-based adaptive 

filter. A carry-save accumulation scheme of signed partial 

inner products for the computation of filter output has been 

implemented. From the synthesis results, it was found that the 

proposed design consumes less power over our previous DA-

based FIR adaptive filter. In future, work can be implemented 

on digital communication, signal processing application, 

digital radio receivers, software radio receivers and echo 

cancellation. 

8. CONCLUSION 
This paper presented the implementation of carry-save 

accumulation scheme of signed partial inner products for the 

computation of filter output. It is well implemented for 

Adaptive Filtering applications. From the synthesis results, it 

was found that the proposed design consumes less power over 

our previous DA-based FIR adaptive filter. 
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