
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.17, December2015

29

Efficient Wu Manber String Matching Algorithm for Large

Number of Patterns

Vasudha Bhardwaj
LNCTE, Bhopal

Vikram Garg
LNCTE, Bhopal

ABSTRACT
String matching is one of the most important concept used in

computer science in various real life applications like as

Intrusion detection system, Data mining, Plagiarism detection

system. There are many string matching algorithms which

help to find pattern from the text. These algorithms are

categorized in single string matching and multiple string

matching. The Wu-Manber (WM) algorithm is multiple

patterns algorithm which is the finest string matching

algorithm. The performance of WM depends on various table

build in pre processing phase these are prefix table, shift table

and hase table. We introduce a new algorithm namely the

Efficient Wu Manber algorithm (EWM) algorithm which is

advance version of Wu Manber algorithm with respect to

time. Efficient Wu-Manber Algorithm eliminate the prefix

table which is unused most of the cases in wu manber,

construct two shift table instead of single shift table and uses

nonlinear data structure i.e. AVL tree instead of linear data

structure i.e. linked list used in WM in Hash table, which

reduce the traversed number of nodes to find exact match.

The experimental results and analysis show that EWM

algorithm has better performance as compare to WM and its

existing improved algorithm and also better from various

string matching tools.

Keywords
Wu-Manber, String Matching, Single pattern matching,

Multiple pattern matching, Boyer Moore, KMP, Advance Wu

Manber.

1. INTRODUCTION
Sting matching algorithms [1] plays important role in the real

life applications of the computer science world. There are lots

of algorithms for string matching. Morris Pratt Algorithm[2],

Knuth-Morris Pratt Algorithm[3], Boyer-Moore Algorithm[4],

Boyer Moore Horspool algorithm[5] and Robin Karp [10] are

some benchmark algorithms of single pattern matching while

Aho-Corasick [6] algorithm, Commentz-Walter [7] algorithm

and Wu- Manber [8] algorithm are some benchmark

algorithms of multi-pattern matching. These algorithms are

further classified into two categories (a) automata-based

algorithms and, (b) hashing based algorithms.

Automata based algorithm carried out into two phase in first

phase automata is created based on patterns while in second

phase searching is done based on automata. Aho-Corasick

algorithm and its all variants are representatives of automata

based algorithms and the Wu-Manber algorithm and its all

variants are comes under hashing based algorithms. Automata

approach has a linear-time complexity. As we have to make an

automata for each and every pattern memory requirement as

well as complexity of the algorithm is also increases.

Wu Manber [8] string matching algorithm is implemented by

the Sun Wu and Udi Manber which works on multiple

patterns in 1994. Wu manber algorithm works in two steps

pre-processing and scanning. In pre-processing phase various

tables are constructed these ideas is taken from Boyer-Moore

(BM) [4]. Other hand in scanning phase searching is done

based on the various tables. This algorithm gives the better

results and takes less space with compares to automata based

algorithm.

Based on Wu Manber many varients are proposed to

overcome limitation of Wu manber algorithm. Quick Wu-

Manber (QWM) [9] is implemented after the wu manber in

2006 by Yang Dong Hong, Xu Ke and Cui Yong which is

based on Quick Search [12]. In wu manber algorithm when

suffix are same so we have to find out the all pattern which

ahs same suffix. To overcome this limitation QWM construct

another table named as Head table which keep the details of

first two characters of the patterns. When suffix of pattern is

same it checks the head table value and reaches the maximum

shift distance in comparison to WM algorithm.

Improved Wu Manber is the another variant of wu manber

algorithm. Improved WM [11] is implemented by Chen Zhen

and Wu Di in 2008, in improved WM algorithm implement

two shift table instead of single shift table. First shift table is

constructed based on Boyer more algorithm [4] while second

shift table is created based on Wu Mnaber algorithm[8]. By

doing so the shift distance is increases which improve the

performance of algorithm.. But when the number of patterns

reaches 40,000 or more the introduced extra shift table still

cannot improve the performance.

In 2009 an improved WM algorithm based on address filtering

named as AFWM [13] was proposed by Baojun Zhang and

others. Based on the address pointers of the patterns the Prefix

table in AFWM is utilized to filter the link list of possible

matching patterns. The patterns in the link list are sorted in

ascending order according to the address pointers [13].

Advantages of address filtering algorithm is that it avoids

traversing the whole link list [13].

In 2013 Yoon Ho proposed B-LAyered bad-character Shift

Tables (BLAST) [14] algorithm. The idea of BLAST is use

multiple shift tables of single character (gives us the

advantage of maximum shift distance) instead of block of

character. Here the memory size of shift table is also reduced.

But if every character in the rightmost position of the patterns

is present the performance of BLAST algorithm decreases

because the Hash table will be compared for every character

in the text [14].

We have proposed here an algorithm named Efficient Wu-

Manber or EWM based on Wu-Manber. It improves the

performance of Wu-Manber when numbers of patterns are

very large. The Main change made to EWM is that it uses

nonlinear structure i.e. AVL tree which reduce the traversed

number of nodes to find exact match. In the following section

we have given an overview of WM algorithm then described

EWM algorithm. Next section includes experimental results

and analysis and in the last we conclude this paper.

2. WU-MANBER ALGORITHM (WM)
The Wu-Manber algorithm is an hasing based algorithm

which uses the concept of bad character shift from boyer more

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.17, December2015

30

algorithm. These bad character shift value helps to get the

maximum shift distance in case of mismatch of pattern. Wu-

Manber algorithm calculates the hash value of the suffix block

of a pattern using the Hashing technique and links all the

patterns with the same suffix block in a list. This list is stored

in an entry of the hash table. The hash value is calculated for

the character block inside the match window and is checked in

the hash table to get the entry having the same suffix patterns

as the character block [8].

The Wu-Manber algorithm is divided into two stages which

are described as follows:

1. Pre-processing Stage

The pre-processing stage comprises of construction of various

tables which are further used in the scanning stage of the

algorithm. WM consist of three tables named as Prefix table,

the Hash table and the Shift table. First of all minimum

pattern length (say m) is is search among the all patterns. WM

uses only first m characters (known as pattern representative

or PR) of the each pattern to build these tables.WM take

characters in a block instead of taking them one by one and

represent this block with a symbol B, 2 or 3 is a good value

for B [8]. Let BL is a string of size B. WM build entries in all

tables for all possible BL.

The shift table consists of the maximum safe shift distance for

the matching window used in scanning stage. Each string of

size B is mapped to an index to the SHIFT table. Hash table

value is a pointer to a list of pattern with PR having same

suffix. Prefix table is similar to hash table but the difference

lies in the key being the prefix instead of suffix of the PR.

Hash Table and Prefix table are used when the shift value is

zero.

The above process can be understood for the pattern set P =

{honey, funeist, list, money}; here m is 4. Table 1 and Figure

1 represent the shift table and hash table for the pattern set

respectively.

Table 1: Shift Table for WM

Key Ho on ne fu un ne li is st mo *

shift 2 1 0 2 1 0 2 1 0 2 3

Figure-1 Hash table for WM

2. Scanning Stage

Scanning step in WM algorithm comprises the use of a sliding

window of size m which starts from initial character of text.

First hash value of the window is computed for suffix of

window. If hash value is greater than zero then window is

shifted with the same value forward in text character stream.

When shift value is zero then Hash table is checked and a list

of possible matched candidates is found using suffix hash

value. Whole of the retrieved list is traversed in this

procedure. The exact comparison to find a match is done when

the prefix of pattern in the list is same as prefix of the

window. After traversing whole list window is slided by one

and whole process repeated till window reached the end of

text. For text t= “funeyneedmoney” scanning stage of Wu-

Manber is described in Table 2:

Table 2: Scanning stage in Wu-Manber

3. EFFICIENT WU-MANBER

ALGORITHM
This algorithm is an efficient version of WM Algorithm with

some changes in hash table data structure which leads to a

better running time for scanning stage. WM Algorithm uses

linear data structure i.e. Linked List. While in EWM

Algorithm we use nonlinear data structure i.e. AVL tree which

reduces the number of possible matching patterns to find exact

matching patterns with current window. EWM has two stages

similar to WM:

1. Pre-processing Stage

In pre-processing stage various tables are created which helps

in searching the pattern in scanning stage. Here in EWM

algorithm there is no prefix table and instead of single shift

table it construct two shift table. One is constructed on the

basis of the single character while other is based on the block

of character. While hash table is differ with respect to data

structure used. The Pre-processing Stage is done in following

steps:

1. Find out the minimum pattern length among all

patterns & denoted as m(min pattern length).

2. Take only first m letters of each patterns for

further process & denoted as PR(Pattern

Representative) to which they belong.

3. Shift table Creation using PRs.

4. Hash Table Creation using PRs.

Constructing Shift table in EWM is same as used in WM there

is only difference in Hash table which is described below.

Constructing HASH Table

The last B characters of each PR are used to determine index

of pattern in HASH table. Hash table value points to an AVL

tree. The structure of an AVL Node contains a left pointer,

right pointer, pointer to a linked list and key value of node.

The key of AVL node is determined by 1st and 2nd character

of PR. The value of an AVL node is the Linked List of

patterns with the same node key. The method to form a HASH

table is as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.17, December2015

31

1. Consider last Bcharacter hash value for each PR.

2. Construct Hash table based on this.

1. Add PR to AVL tree if hash table already

has an entry.

2. Else PR as a root node Create new entry

in Hash Table.

For previous example HASH Table can be form as follows:

for pattern = “honey”; suffix value = “ne” HASH [ne].insert

(“honey”); The final HASH table will be as follows:

Figure 2: HASH Table for Efficient Wu-Manber

3. Scanning Stage

In scanning step Efficient Wu-Manber Algorithm maintains a

window of size m and starts from the beginning of Text. This

stage consists of the following steps:

1. Start

2. Start from left most place of text

3. Consider window with min pattern length

4. Take last B characters of window WB

5. dot

6. shift [WB] is greater than zero

a. Shift the window by value shift[WB]

b. Continue;

7. Otherwise

a. Compute the hash value from hash table

which is in form of AVL tree.

b. Compute node value

c. Find the node by traversing the AVL tree

with same key.

i. Successful

Match the pattern store at that

place of node.

ii. Unsuccessful

 Shift window by 1.

8. while(WB<=Length of text)

9. End

Figure 3: Scanning steps for Efficient Wu-Manber

For the patterns taken in previous example the scanning step

for the Text “honeyneedmoney” is shown as follows:

Table 3: Scanning stage in Efficient Wu-Manber

4. PERFORMANCE ANALYSIS
The performance of EWM algorithm can be measured in

terms of the performance of scanning stage as this process is

repeated again and again for different Texts which have same

set of patterns. Pre-processing can be done offline just once

for a fixed set of patterns. Scanning stage performance

depends on two factors one is the shifting of window and

other one is finding exact matching patterns.

In WM and EWM number of entries are same in hash table as

we are using same suffix and prefix technique. Let there are

„n‟ Pattern in the structure(linked list in WM and AVL tree in

EWM) retrieved for current window suffix then finding exact

matching patterns in best case(when all prefix are different for

these PR‟s) takes just O(log(n)) which is O(n) in WM . But in

worst case (when all the prefixes are same for all PR‟s) it will

be O(n).So except worst case in all other cases time taken to

find exact matching pattern is less in EWM.

Here we described an another example to compare EWM and

WM with respect to the number of node traversed and number

of exact matching is done in both algorithms.

For a pattern set P= {abdication, aberration, abjuration,

abnegation, absolution, abstention, abreaction, absorption,

unconscionable, undulation, unquestionable, unillusioned,

unsanctioned, unsynchronized, recitation, recreation,

redemption, redivision, reelection, reemission, reflection,

refraction, regulation, repetition, reposition} and Text = “try

absorption repetition and reposition”. The performance

comparison is shown in Table 4. Nodes traversed in EWM are

always less than or equal to node traversed in WM.

Table 4: Comparison of WM and EWM

5. EXPERIMENTAL RESULTS
In this section we compare our algorithm‟s performance with

WM and other tools such as agrep, egrep and fgrep.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.17, December2015

32

Experimental results show that EWM is faster than WM and

other tools. In our experiment alphabet set and text file is

constant for all test cases. Text file used in all test cases is

taken from Bible whose size is 101 MB. All the patterns used

in our experiments are words taken from English Dictionary.

We have tested all these tools on different variants of patterns.

We analyzed the performance with minimum pattern length,

number of patterns and block size (B). All experiments were

performed on a system Ubuntu, with Linux 3.2.6 (64bit) on

2nd Gen Intel CORE i3-2310M 2.10 GHz, 4GB RAM. WM

and EWM were implemented in C++ using Microsoft Visual

Studio 2010 as IDE. Each experiment was performed 10 times

and the average was taken.

Table 5 shows relationship among EWM (B=2), WM. Figure

4 shows the graphical comparision of table 5 where X-axis

represents the number of patterns and Y-axis represents

running times taken in scanning step given in seconds. The

results clearly show that EWM performs better than WM

algorithms with the increase in number of patterns.

Table 5: comparison of EWM with WM timing (in sec.)

with various pattern lengths

Figure 4: Graphical comparison of EWM with WM

timing (in sec.) with various pattern lengths

Table 6 shows the comparison of proposed algorithm EWM

with the various tools like as EGRAP, FGRAP, AGRAP with

different pattern lengths. On comparison of various tools our

algorithm gives a better result which is shown in figure 5

graphically.

Table 6: comparison of EWM with various tools timing (in

sec.) with various pattern lengths

Figure 5: Graphical comparison of EWM with various

tools timing (in sec.) with various pattern lengths

6. CONCLUSIONS
We have introduced here a new algorithm EWM for multi

pattern exact matching which is efficient version of the WM

algorithm. In this algorithm we eliminate the prefix table

which is used in the WM. Instead of single shift table we use

the two shift table one for single character and another for

block of character. While in hash table we use AVL tree

instead of linear data structure. By doing all of these changes

the proposed algorithm gives us better result as compares to

WM algorithm and some other tools of pattern matching. Our

experimental result and shows that proposed algorithm is

efficient in both respect (time as well as memory).

7. REFERENCES
[1]. Christian Charras and Thierry Lecroq,” Handbook of

Exact String_Matching Algorithms”, Published in King‟s

college publication, Feb 2004.

[2]. Knuth D E, Morris Jr J. H and Pratt V. R,” Fast pattern

matching in strings”, In the procd. Of SIAM J.Comput.,

Vol. 6, 1, pp. 323–350, 1977.

[3]. Jingbo Yuan, Jisen Zheng and Shunli Ding, “An

Improved Pattern Matching Algorithm”, In the proc. of

Third International Symposium on Intelligent

Information Technology and Security Informatics

(IITSI), pp. 599-603, 2-4 April 2010.

0

0.5

1

1.5

2

2.5

50 100 150 250 500

WM

EWM

0

2

4

6

8

10

12

14

16

50 100 150 250 500

EGREP

FGREP

AGREP

EWM

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.17, December2015

33

[4]. Boyer R S and Moore J S,”A fast string searching

algorithm”, Communication of ACM 20, Vol. 10, pp.

762–772, 1977.

[5]. Horspool R N,”Practical fast searching in strings”, In

proc. Of Software Practical Exp, Vol. 10, 6, pp. 501–506,

1980.

[6]. Alfred v aho and Margaret j corasick,”efficient string

matching: an aid to bibliographic search” communication

of acm, vol. 18, June 1975.

[7]. Commentz-Walter, “A string matching algorithm fast on

the average,” In the Proc. of 6th International

Colloquium on Automata, Languages, and Programming,

pp. 118–132,1979.

[8]. Wu S. and U.Manber, “A Fast Algorithm for Multi-

Pattern Searching,” Technical Report TR-94-17

Department of Computer Science, University of Arizona,

Tucson, AZ (May 1994).

[9]. Yang Dong hong, XuKe and Cui Yong,”An improved

Wu-Manber multiple patterns matching algorithm”, In

the proc. Of 25th IEEE International Performance,

Computing, and Communications Conference, IPCCC,

pp. 680, 10-12 April 2006.

[10]. R. M. Karp and M. O. Rabin, “Efficient randomized

pattern-matching algorithms,” In: (2nd ed.), Tech. Rept.

31-81, Aiken Computer Lab, Harvard University,

Cambridge, MA, 1981.

[11]. Chen Zhen and Wu Di, “Improving Wu-Manber: A

Multi-pattern Matching Algorithm”, In the proc. of 2008

IEEE International Conference on Networking, Sensing

and control (ICNSC), pp. 812 – 817, 6-8 April 2008.

[12]. D.M. Sunday, “A Very Fast Substring Search

Algorithm”, Communications of the ACM, Vol. 33, 8,

pp. 132-142, 1990.

[13]. Baojun Zhang, Xiaoping Chen, Xuezeng Pan, and

Zhaohui Wu “High concurrence Wu-Manber Multiple

Patterns Matching Algorithm”, Proceedings of the

International Symposium on Information Proces,

p.404,August 2009.

[14]. Yoon-Ho,Seung-Woo,”BLAST: B-LAyered bad-

character SHIFT tables for high-speed pattern matching”,

Journal of Information Security, Institution of

Engineering and Technology (IET), Volume 7, pp.195-

202,sept. 2013.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Seung-Woo%20Seo.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6587875&queryText%3DBlast+b+layered
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6587875&queryText%3DBlast+b+layered
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149673
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149673
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149673
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149673

