
International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

System Reliability using Simulation Models and Formal
Methods

Wassim Trojet
ESIGELEC-IRSEEM

Technopole du Madrillet,
Avenue Galilee - BP 10024,

76801 Saint-Etienne du Rouvray Cedex

Tahar Berradia
ESIGELEC-IRSEEM

Technopole du Madrillet,
Avenue Galilee - BP 10024,

76801 Saint-Etienne du Rouvray Cedex

ABSTRACT
The general scope of the paper consists of improving the veri-
fication of simulation models through the integration of formal
methods. We offer a formal verification approach of DEVS mod-
els based on Z notation. DEVS is a formalism that allows the de-
scription and analysis of the behavior of discrete event systems, i.e.,
systems whose state change depends on the occurrence of an event.
A DEVS model is essentially validated by the simulation which
permits of verifying whether it correctly describes the behavior of
the system. However, a simulation does not cover all possible cases
that means the model is validated only for the expected behaviors.
For this reason, we have integrated the Z formal specification lan-
guage in the DEVS formalism to detect errors before simulation
which is still an important step for the validation. This integration
consists of: (1) transforming a DEVS model into an equivalent Z
specification and (2) verifying the consistency of the DEVS model
on the resulting specification using the tools developed by the Z
community. Such consistency is fulfilled by determinism and com-
pleteness. Thus, a DEVS model is subjected to an automatic formal
verification before proceeding to its simulation.

Keywords
DEVS, Discrete Event Simulation , Z, Formal Methods, Formal
Verification

1. INTRODUCTION
Modelling and simulation (M&S) play increasingly an important
role in the understanding of how things function, and they are es-
sential to effective and efficient design, evaluation, and operation
of new products and systems [1]. Modelling is the process of pro-
ducing a model; a model is a representation of the construction and
working of some system of interest. One purpose of a model is to
enable the analyst to predict the effect of changes to the system. A
simulation is an execution of a model. The outputs of the simula-
tion can be studied, and hence, properties concerning the behavior
of the actual system or a subsystem can be inferred. In its broadest
sense, simulation is a tool to evaluate the performance of a system,
existing or proposed, under different configurations of interest and
over long periods of real time. By definition [2], the M&S system
must model and predict the behavior of some real world entity. This
problem has been called “operational validation”. A second prob-

lem for M&S systems is “conceptual model verification”, which
is concerned with ensuring that the model represents correctly the
system description and does not contain errors. Our approach deals
with the second problem.
The conceptual model describes what is to be executed by the simu-
lation [2], thus it must include assumptions about the system and its
environment, equations and algorithms, data, and relationships be-
tween model entities. Although algorithms and equations are nec-
essarily formal statements, the assumptions and relationships are
most often described using natural language, which introduces the
potential for ambiguities and misunderstandings between develop-
ers, users, and subject matter experts. Formal methods (FM) [3]
have shown a potential for detecting major errors in system speci-
fication by applying a formal analysis. FM are mathematical tech-
niques for the specification, design and analysis of complex sys-
tems. A formal specification is a system description using a math-
ematical notation. A formal verification is the use of a formal tech-
nique to check a formal specification: this technique can be either
model checking or theorem proving.
The subject of this paper is discrete event simulation, in which the
central assumption is that the system changes instantaneously in
response to certain discrete events. Therefore, we will focus on the
Discrete EVent System Specification (DEVS) formalism [4]. Our
aim is to improve the DEVS conceptual model by conducting a
formal verification in order to detect eventual errors before the sim-
ulation process (see Fig. 1). An error can be either an ambiguity or
an incompleteness. There is no DEVS tool which detects automat-
ically these errors. However we suggest to do this by transforming
the DEVS model into a Z formal specification and checking for
such errors in the resulting specification by reusing Z tools already
available.
The main reasons to choose the Z specification language are the
similarity and the complementarity of DEVS and Z. In fact :

—Z and DEVS are state/transition approaches: DEVS model tran-
sitions can be interpreted by operations in Z, and the set of states
of the DEVS model can be interpreted by the abstract state in Z.

—Z and DEVS are modular: the modularity in DEVS can be inter-
preted by the promotion process in Z, which consists of forming
the global specification by combining the partial specifications.

—Z permits a functional description of a system while DEVS per-
mits a behavioral one.

1

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

Fig. 1. Integration of Z within DEVS

—Z has a logical semantics while DEVS has an operational seman-
tics.

—Verification and Validation (V&V) in Z is performed via formal
techniques while V&V in DEVS is performed via simulation
techniques.

2. INTEGRATION OF FORMAL METHODS INTO
DISCRETE EVENT M&S

2.1 Related works
In the literature of DEVS, there are some works which deal with
the integration of formal methods into the DEVS framework.
Traoré [5–7] defined a formalism called “ZDEVS” which repre-
sents each DEVS entity (model or simulator) in the Z-Object lan-
guage. The static structure of ZDEVS identifies data and operations
of the model/simulator and represents them with Z class schemas.
The dynamic structure of ZDEVS is described within a pattern
which has the style of a finite state machine generating the dynam-
ics (temporal evolution) of the static structure of ZDEVS. Accord-
ing to Traoré, ZDEVS is used to analyze the DEVS model, check
for inconsistencies and incompleteness, prove properties, and gen-
erate traces. These properties are common to any system, but they
are specifically relevant to simulation due to the importance of
these systems in decision making processes. Thus, the ultimate goal
is to build models of better quality and to increase the understand-
ing of key concepts such as Verification, Validation and Accredita-
tion (VV&A), reuse and composability.
Traoré has shown how the resulting specification allows the reuse
of tools supporting the FM to perform formal reasoning on the
source model. However the major drawback of his approach is that
the transformation is not subjected to formal rules. Indeed, it is
based on case studies that were not generalized. Hence, it can not
be automatized.
Crisitia [8, 9] specified the equivalent TLA+ (Temporal Logic of
Action +) specification [10] of a DEVS model [atomic and cou-
pled] under certain rules. In addition, he explained how to interpret
the notion of elapsed time in DEVS with TLA+. The motivation of
his approach consists of bridging the gap between DEVS and other
formal notation to make DEVS known by the FM community of
Computer Science. This translation is beneficial for DEVS since

it lays the basis for the formal semantics of this powerful mod-
elling language. Having a TLA+ specification of a DEVS model
enables the formal verification of the model or the model-checking
by means of the tools already available for TLA+. This approach
permits DEVS models to be written in a widely known formalism,
used by FM researchers and practitioners to specify hardware- or
software-based reactive or concurrent systems.
Cristia has shown how a DEVS model can be transformed into a
Z specification. This transformation is subjected to detailed formal
rules. However the major drawback of his approach is that the ver-
ification process was not elaborated. In fact, Cristia did not explain
which kinds of properties can be proved and how can the transfor-
mation be used to improve the V&V of DEVS models.
Hong [11] integrated TL (Temporal Logic) into the DEVS frame-
work. In fact, temporal constraints that present temporal properties
of the system are required for logical analysis (proving that there
are no logical conflicts in the procedure rules). These constraints
are expressed by using TL. The TL formula is translated into a fi-
nite state automaton. The state information is obtained from the
automaton. This information is applied to the DEVS model to ob-
tain a projected state space. Logical analysis is performed by using
the projected state space and the finite automaton of TL formulas to
check whether a TL assertion accepts the state transition sequences
of the DEVS model. This approach offers a way to reduce the state
spaces of DEVS models by using the projection mechanism.
The DEVS-TL approach is distinguished by the duality of speci-
fication languages. The main advantage of the dual language ap-
proach is its flexibility: the use of a specification language provides
an uniform notation for expressing a wide variety of correctness
properties and it separates models from reachability assertions [12].
Unfortunately the dual language approach also has the state explo-
sion problem for complex systems. Therefore a partial proof against
given specifications is a reasonable solution to these problems [13].
The dual language approach with a projection mechanism can be
an efficient method for the validation of large systems. The use
of the projection mechanism (projection of DEVS model states in
the states of the finite states automaton of TL assertions) is a part
of this specification. However, this mechanism is done manually
(there are no tools that support it), this probably encourages pro-
jection errors especially in complex systems. In addition, the state
variables of DEVS models are considered to take fixed values and
can not describe functions: this reduces the set of models on which
the approach can be applied.
Our approach permits of avoiding the drawbacks of the dual ap-
proach. Besides, we offer an automation of the transformation by
stating formal rules for mapping a DEVS model into a Z specifi-
cation. We offer also the automation of the formal verification of
the DEVS model via applying Z tools to the resulting specifica-
tion. The formal verification consists of proving determinism and
completeness. A summary of this discussion is shown in Figure 2.

2.2 Checking errors before simulation phase
The properties of the DEVS model we intend to verify are:

—Determinism: the behavior of a system is unambiguously de-
fined for each combination of inputs and current state. An am-
biguity occurs when there are several conditions which hold si-
multaneously, but each one implies a different transition. In this
case, the model does not know which transition to choose.
Example:
propertyi: IF system temperature ¿ 20 THEN the cooling sys-
tem has to be activated.
propertyj : IF system temperature ¿ 40 THEN the fire alarm has

2

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

Approach Goal Advantages Drawbacks
DEVS-TL (Hong 1994) Checking if DEVS model satis-

fies properties written in TL
Flexibility high cost of integration

DEVS-¿Z-Object (Traoré
2006)

Formal reasoning on DEVS
models

Formal verification of some
properties

Transformation not subjected to
formal rules (completely man-
ual)

DEVS-¿TLA+ (Cristia 2007) A logic semantics for DEVS
models

Transformation subjected to
formal rules

Verification process not elabo-
rated

DEVS-¿Z (Our approach) Checking the consistency of a
DEVS model

Automatic transformation and
verification

Sub-class of DEVS models and
properties

Fig. 2. Main DEVS approaches integrating FM

to be released.
The question here, knowing that the system does just one task
at a time, which task will it do when system temperature ¿ 40?
Activate the cooling system or the fire alarm? Thus, there is an
ambiguity.
We are interested in the determinism property for simulation rea-
sons. In fact if the model is non-deterministic, a simulation can
not be achieved, at least in our DEVS simulator.

—Completeness: The behavior of a system is defined for each
combination of inputs and current state. Incompleteness occurs
when there are several conditions held on transitions released af-
ter a state but these conditions are incomplete. Thus, there is a
possible scenario which is not specified.
Example:
propertyi: WHEN 0< car speed ¡ 50 THEN the electric engine
is activated.
propertyj : WHEN 50 ¡ car speed ¡ 220 THEN the thermal en-
gine is activated.
The question here which engine will work when the car speed =
50? Thus there is incompleteness.

3. REVIEW ON DEVS
DEVS [4, 14] is a modular formalism for discrete events systems.
It allows for the modelling of the behavior of systems. A DEVS
model has a time base, inputs, states (with functions of transition
from one state to another) and outputs. Complex models are built
from atomic and coupled models connected together in a hierar-
chical fashion. Interactions are mediated through input and output
ports, which allows for modularity.

3.1 Specification of a DEVS model
According to the literature on DEVS [4], the specification of a dis-
crete event model is a structure, M, given by:

M = ¡X, S, Y, λ, D, δint, δext¿

where X is the set of the external input events:

—X={(p,v) — p∈InPorts, v ∈ Xp}, the set of input ports and val-
ues

Y, the set of the output events:

—Y={(p,v) — p∈OutPorts, v∈ Yp}, the set of output ports and
values

S, the set of sequential states:

—S=Vs1 ×Vs2 × ...Vsn , where Vsk is the domain of the state vari-
able sk and n is the number of state variables.

λ is the output function:

—λ: S→ Y

D is the lifetime function of the states:

—D: S→ R+ ∪ ∞. For a given state, s, D(s) represents the time
interval during which the model will remain in the state s if no
external event occurs.

A state may be viewed as passive when its lifetime is assumed to
be infinite or active when the lifetime interval is assumed to be a
finite real positive number, Zeigler [4] introduces the concept of
total states, Q, of a model as:

Q={(s,e) — s∈S, 0≤ e≤D(s)}
where e represents the elapsed time in state s. The concept of total
state is fundamental in that it permits one to specify a future state
based on the elapsed time in the present state.
δint is the internal transition function:

—δint: S→ S defines the state changes caused by internal events,

and δext is the external transition function:

—δext: (Q,X) → S specifies the state changes due to external
events.

3.2 Graphical representation of a DEVS model
Song [15] represented the behavioral description of an atomic
model by a state transition diagram, which consists of nodes and
two-colored edges (see Fig. 3). Each node represents a state, a dot-
ted arc denotes an internal transition, and solid arc, an external tran-
sition. An output event is specified on a dotted line by an output port
followed by a message name with output operator ‘!’. Similarly an
input event is specified on a solid line by an input port followed
by a message name with input operator ‘?’. Optionally, a transition
condition can be specified after an input or output event with a sep-
arator notation ‘@’. It is natural that a time advance in a state be
attached to the state node because it represents a sojourn time to
fulfill its activity.
In our approach, we keep this notation for representing graphical
atomic DEVS models and we extend it by making explicit the up-
date of values of state variables and representing an active state
with a dotted node.

4. REVIEW ON Z
4.1 The Z specification language
Z [16] is a state-based formal specification language based on the
established mathematics of set theory and first-order logic. The

3

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

Fig. 3. Graphical notation of a DEVS model

set theory used includes standard set operators, set comprehen-
sion, Cartesian products and power sets. Z has been used to specify
data and functional models of a wide range of systems, including
transaction processing systems and communication protocols. In Z,
mathematical objects and their properties are collected together in
schemas: patterns of declaration and constraint. The schema lan-
guage [17] is used to structure and compose descriptions: collating
pieces of information, encapsulating them, and naming them for
reuse. A schema contains a declaration part and a predicate part.
The declaration part declares variables and the predicate part ex-
presses requirements about the values of the variables. There are
two forms of notation of the Z schema, vertical and horizontal. The
vertical notation is the following: Schema name declarations (state
space) predicates and the horizontal notation is the following:

schema [declarations — predicates]

Example. The following schema encapsulates the state information
of a light object. Light dim : 0..100
on : B dim¿0⇔ on = true The declaration part contains the dec-
laration of two variables. The variable dim represents the illumina-
tion of the light object, which is a value in between 0 and 100 (in
percent) and on is a Boolean variable indicating whether the light
object is on or not. The predicate part, referred to as the state in-
variant, places a constraint on the values of the two variables, i.e.,
the dim is nonzero if and only if the light object is on.
Example. The operation schema defines the operation Adjust by
how the state variables of the Light schema are updated. Adjust
∆Light
dim? : 0..100on = true ∧ dim′ = dim? The schema name after
∆ indicates the state schemas to be updated by the operation. The
variable dim? is an input from the environment. The state-update
is expressed using a predicate involving both primed and unprimed
state variables. In particular, the operation can only be applied when
the light is on and, after the operation, the light level is set to be
dim?. If dim? is zero, the state variable on will be set to false be-
cause of the state invariant.
A Z package contains one state schema, one initial schema which
identifies the initial valuation of the state schema, and a number
of operation schemas that may update the state schema. In other
words, a Z package identifies the state space of a set of objects.

4.2 The Z package
Generally, the structure of Z specification package consists of [16]:

(1) Declaration of free types used lately into the specification.
(2) Definition of the global abstract state of the model: State dec-

larations of the variables describing the
state of the model predicates (constraints on states variables)

(3) Definition of an initial state of the model: InitializingState
State Initialization of states variables

(4) List of operations, each one is presented by
the following schema: Operation ∆State(∆ :
to say that the state of the
system is changed) OR
ΞState(Ξ : to say that the state of the
system is the same)
Eventual declaration of input variables
(′?′ has to be placed after each input variable)
Eventual declaration of output variables
(′!′ has to be placed after each output variable)Pre −
condition(condition on values of state
variables and eventual input variables
before the operation)
Post− condition(values of state variables
and eventual output variables
after the operation)

5. FROM A DEVS MODEL TO A Z
SPECIFICATION

We have elaborated formal rules to transform a DEVS model into a
Z specification. In this transformation we used three assumptions:

(1) Basically Z does not specify real and rational numbers, thus
we transform DEVS models of which variables are not real
and rational numbers.

(2) Basically Z does not specify the time, thus the elapsed time
variable and the life time function will be excluded from the
transformation.

(3) Only deterministic DEVS models are covered by this transfor-
mation. Thus we can exploit the works of Hwang and Ziegler
[18, 19] which deal with the abstraction of infinite behaviors
of DEVS models into finite-vertex isomorphic graphs, called
reachability graphs when using a sub-class of DEVS called Fi-
nite Deterministic DEVS. However, we don’t exclude infinite
behavior of DEVS models.

At a high level of abstraction, the transformation is divided into two
parts: set transformations and function transformations.
The structure of the DEVS model is:

M = ¡X, Y, S, λ, D, δint, δext¿

Set transformation:

means: “is transformed into.”

—X XZ — XZ is the set of all inputs of Z package operations.
—Y YZ — YZ is the set of all outputs of Z package operations.
—S Z abstract state.

Function transformations:

—δint et δext schema operations.
—λ output values of operations.

Formal Rules

(1) Free type declaration
Let V be a finite set of variable values of a DEVS model, V =
val1, ..., valn, V is traduced by:
V::=val1|val2|...|valn

(2) Establishing the abstract state
Let M be the name of a DEVS model and S the set of states,
let s ∈ S:
M [s : S]

4

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

(3) Establishing the initializing operation schema
Let s0 be the initial state of the DEVS model, s0 ∈ S:
InitM [M’— s′ = s0]

(4) Establishing operation schemas
—External transition function
δext(source, e, (in?x)) = target IF condsrc−trg
source− target [∆M ; in? : Domainin?|in? = x;
s = source; condsrc−trg; s′ = target]

where Domainin? is the domain of the input port variable
in?, condsrc−trg is the condition on the source when true,
the model can cross the transition from the source state to
the target state, condsrc−trg must be written in the form of
Z notation.

—Internal transition function and output function{
δint(source) = target IF condsrc−trg

λ(source) = (out!y) IF condsrc−trg
source− target [∆M ; out! : Domainout!|s = source;
condsrc−trg; s′ = target; out! = y]

whereDomainout! is the domain of the output port variable
out!. It is possible that the internal transition does not hold
any output. In this case, lines containing the variable out!
are deleted from the schema.

6. FORMAL VERIFICATION OF A DEVS MODEL
6.1 Verification of the determinism
The determinism is the absence of ambiguity in the model. This
property is important because we use deterministic DEVS models
in our approach.

DEFINITION 1. Determinism in a DEVS model is traduced by
the following properties [20]:

—External transitions
δext(src, e, ?x1) = trg1 if Cond1 ∧
δext(src, e, ?x2) = trg2 if Cond2 ∧
?x1 = ?x2 ∧
trg1 6= trg2
=⇒¬(Cond1 ∧ Cond2) = vrai

—Internal transitions
δint(src) = trg1 if Cond1 ∧
δint(src) = trg2 if cond2 ∧
trg1 6= trg2
=⇒¬(Cond1 ∧ Cond2) = vrai

In other words, the model is said to be deterministic when external
transitions (or internal transitions) released from each state hold
distinct conditions (when some condition is true all the others are
false). Otherwise, the model is said to be non-deterministic.

—δext(src, e, ?x1) = trg1 if Cond1 is traduced in Z:
src− trg1 [∆M ; in? : Domainin?|in? = x1; s = src;

Cond1; s′ = trg1]

—δext(src, e, ?x2) = trg2 if Cond2 is traduced in Z:
src− trg2 [∆M ; in? : Domainin?|in? = x2; s = src;

Cond2; s′ = trg2]

We apply the definition of determinism to the corresponding Z
specification, thus:

[?x1 =?x2 ∧ trg1 6= trg2⇒ ¬(Cond1 ∧ Cond2) = vrai]
⇐⇒

[?x1 =?x2∧trg1 6= trg2⇒ ¬(pre src−trg1∧pre src−trg2)]

We summarize: checking the determinism of a DEVS model
is performed by checking whether all the preconditions are
pairwise distinct.
Formally this is traduced by [21]:
If the behavior of a component is defined as a set of operations
{Op1, Op2, ..., Opn} over the inputs and state, then a conjecture
on the determinism of the specification of that component can be
formulated as follows:

` ∀GlobalState, ∀Inputs, ∀i, j : 1..n|i 6= j •
¬(pre opi ∧ pre opj)

Z theorem proving tool verifies the operation two to two by
writing the following theorem for each couple of operation (opi,
opj):
Theorem CheckingDeterminism
∀GlobalState, ∀Inputs • ¬(pre opi ∧ pre opj)

In the case of internal transitions, the theorem is written as
follows:
Theorem CheckingDeterminism
∀GlobalState • ¬(pre opi ∧ pre opj)
If the Z theorem proving tool returns true for all couples of
operations, that means that DEVS transitions corresponding to
opi and opj are deterministic, or else the Z theorem proving tool
can determine non-deterministic operations and the corresponding
DEVS model transitions can be localized. We can optimize the
verification by applying the theorem only on the operations having
the same source state.

6.2 Verification of the completeness
A model is complete when it describes all possible scenarios. This
property guarantees that the model is not locked in a state during
the simulation process.

DEFINITION 2. We define completeness in DEVS by the follow-
ing property:

—External transitions
δext(src, e, ?x1) = trg1 if Cond1 ∧
δext(src, e, ?x2) = trg2 if Cond2 ∧
?x1 = ?x2 ∧
trg1 6= trg2
=⇒ Cond1 ∨ Cond2 = vrai

—Internal transitions
δint(src) = trg1 if Cond1 ∧
δint(src) = trg2 if cond2 ∧
trg1 6= trg2
=⇒ Cond1 ∨ Cond2 = vrai

In other words, the model is said to be complete when external
transitions (or internal transitions) released from each state
hold complete conditions (one condition at least must be true).
Otherwise, the model is said to be incomplete. The Z operations
corresponding to “δext(src, e, ?x1) = trg1 if Cond1” and “δext(src,
e, ?x2) = trg2 if Cond2” are given above. Formally, checking
completeness is performed by checking the following theorem for
each group of operations having the same source state [21]:
If the behavior of a component is defined as a set of operations
{Op1, Op2, ..., Opn} over the inputs and the same source state
phase, then a conjecture on the completeness of the specification
of that component can be formulated as follows:

5

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

` ∀GlobalState|phase = SourcePhase, ∀Inputs •
pre op1 ∨ pre op2 ∨ ...pre opn

Z theorem proving tool verifies the following theorem for
each group of operations {op1..n}:
Theorem CheckingCompleteness
` ∀GlobalState|phase = SourcePhase, ∀Inputs •

pre op1 ∨ pre op2 ∨ ...pre opn
In the case of internal transitions, the theorem is written as
follows:
Theorem CheckingCompleteness
` ∀GlobalState|phase = SourcePhase •

pre op1 ∨ pre op2 ∨ ...pre opn
If Z theorem proving tool returns true for all groups of operations
having the same source state, that means the model is complete.
Otherwise Z theorem proving tool can determine the incomplete
operations, and therefore their corresponding DEVS model
transitions can be localized.

7. SOFTWARE DESIGN FOR THE Z
TRANSFORMATION AND VERIFICATION
PROCESSES

We developed a tool which implements the transformation and the
verification of a DEVS model: we call this tool “DEVS-Compiler”
(see Fig. 4). Once DEVS-Compiler reads a DEVS model saved in
an XML file it generates another XML file containing the equiva-
lent Z specification, loads this file on Z theorem prover and enables
the checking process. Afterward, it recuperates the analysis results
and return them to the DEVS user. If there are some errors in the
model, the DEVS user can fix them and verify the model again
via DEVS-Compiler. Once the model is consistent (no errors in the
model), the user proceeds to the simulation process via the DEVS
simulator.

Fig. 4. Formal verification of a DEVS model with Z notation

7.1 DEVS-Compiler design and interface
DEVS-Compiler is based on XSLT(eXtensible Stylesheet Language
Transformations) which is an XML-based language used for the
transformation of XML documents into other XML documents. In

our case, the source XML file saves a DEVS model and the result-
ing XML file saves the equivalent Z specification.
The DEVS interface is shown in Fig. 5. We integrated our tool with
LSIS DME. Therefore, once the DEVS user establishes the model,
he can compile the model by clicking on the “DEVS-Compiler”
button. The compiling process is divided into two steps, the first
one is the transformation process: the XML file saving the DEVS
model is transformed into another XML file saving the equivalent
Z specification, the second one is the verification process: the re-
sulting XML file is loaded in the Z/EVES theorem prover [22] and
verified using proving techniques offered by this tool. The analy-
sis results generated by the compiling process are visualized for
the user. When there are no errors in the DEVS model, i.e., this is
traduced by writing “the model is consistent” within the analysis
results box, the user can start the simulation process to analyze the
behavior of the model.

8. CONCLUSION
This paper contributes to works dealing with the improvement of
the V&V of simulation models via the integration of FM. Thus, it
establishes a bridge between M&S and FM. Our goal was to pro-
pose an approach for the formal verification of the DEVS models
before proceeding to the simulation phase. The proposed approach
is based on the integration of Z notation into the DEVS formalism
in order to verify a DEVS model determinism and completeness
before the simulation process. This integration is done in two steps:

—transforming DEVS formalism to a Z specification.

—verifying the resulting specification using a Z tool and drawing
conclusions about the DEVS model.

Regarding the first step, we elaborated a set of rules translating a
sub-class of DEVS models to Z formal specifications. In fact, a Z
document consists of four parts: (1) the first one contains free types
declaration, each type identifies a finite set of values, it is deduced
from the finite set of values of a DEVS model variables (input, out-
put, and state variables), (2) the second one contains the abstract
state schema which includes all state variables of the system and
constraints, it is deduced from DEVS model state variables, (3) the
third one contains the initializing schema which is deduced from
the initial state of the model and (4) the last one contains operation
schemas performed by the system which are deduced from tran-
sition (internal and external) and output functions. Regarding the
second step, the formal verification of a DEVS model consists of
checking the following properties on the resulting Z specification:

—determinism: this property guarantees the absence of eventual
ambiguities in the model.

—completeness: this property guarantees that the behavior of the
system is defined for each combination of inputs and current
state.

This step is performed by elaborating the formal theorems describ-
ing these properties and using a Z theorem proving tool (Z/EVES)
to check these theorems on the resulting specification.
We developed a tool automating our approach, we call this tool
DEV S − Compiler. It performs the two steps of the integration
of Z notation into atomic DEVS models in a systematic way.
As known in software engineering, assertions are used to avoid pro-
grams to use insignificant tests that increase running time [23] [24].
Logically, it seems that our apporach which checks assertions using
DEV S − Compiler, reduces significantly the simulation time.

6

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

Fig. 5. DEVS-compiler interface

9. FUTURE WORK
In one hand, we plan to extend our approach in order to verify other
properties, such as safety property which means: ”something (bad)
will not happen” and liveness property which means ”something
good must happen” [25].
In other hand, we are applying our approach for the improvement
of cooperative systems modelling.
In addition, we are working on enlarging the sub-class of DEVS
models by integrating real numbers. In fact we will use Z exten-
sions [26, 27] and other Z tools.
Some experimentations will be done to prove that the DEV S −
Compiler has a great effect on reducing time simulation since it
permits to avoid simulation deadlock in the case of ambiguity or
incompleteness.

10. REFERENCES
[1] A. Maria. Introduction to modeling and simulation. In Pro-

ceedings of the 1997 Winter Simulation Conference, 1997.
[2] D. R. Kuhn, D. Craigen, and M. Saaltink. Practical appli-

cation of formal methods in modeling and simulation. In
SCSC’03, 2003.

[3] M. Clarke and M. Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys (CSUR), Decem-
ber 1996.

[4] B. Zeigler. Theory of Modelling and Simulation. Robert F.
Krieger Publishing, 1976.

[5] M. K. Traoré. Combining devs and logic. In OICMS, 2005.
[6] M. K. Traoré. Analyzing static and temporal properties of

simulation models. In Proceedings of the 2006 Winter Simu-
lation Conference, pages 897–904, 2006.

[7] M. K. Traoré. Making devs models amenable to formal anal-
ysis. In DEVS/HPC/MMS’06, 2006.

[8] M. Cristia. A tla+ encoding of devs models. In Inter-
national Modeling and Simulation Multiconference 2007.
Buenos Aires, Argentina, 2007.

[9] M. Cristia. Formalizing the semantics of modular devs mod-
els with temporal logic. In 7ème Conférence Internationale
de Modélisation, Optimisation et Simulation des Systèmes
MOSIM 08. Paris, France, 2008.

[10] L. Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley
Professional, 2002.

[11] G. P. Hong and T. G. Kim. The devs formalism: A framework
for logical analysis and performance evaluation for discrete
event systems. IEEE, 1994.

[12] J. S. Ostroff. Temporal Logic for Real-Time Systems, Ad-
vanced Software Development Series. Research Studies Press,
1989.

[13] S. Lam and A. U. Shankar. Protocol verification via pro-
jections. IEEE Transactions on Software Engineering, July
1984.

[14] B. Zeigler, H. Praehofer, and T. Kim. Theory of Modelling
and Simulation. Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, 2000.

[15] H. S. Song and T. G. Kim. The devs framework for discrete
event systems control. In Conference Proceedings AI, Simu-
lation and Planning in High Autonomy Systems, Gainesville,
FL, USA, 1994.

[16] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall, 1996.

[17] J. Sun and J. S. Dong. Design synthesis from interaction and
state-based specifications. IEEE Transactions on Software
Engineering, June 2006.

[18] M. H. Hwang and B. P. Zeigler. A modular verification frame-
work using finite and deterministic devs. In Proceedings of
2006 DEVS Symposium, Huntsville, AL, USA, 2006.

[19] M. H. Hwang and B. P. Zeigler. Reachability graph of finite
and deterministic devs networks. IEEE Transactions on Au-
tomation Science and Engineering, 2009.

[20] N. Giambiasi, J. L. Paillet, and F. Chaane. From timed au-
tomata to devs models. In Proceedings of the 2003 Winter

7

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.17, December 2015

Simulation Conference S. Chick P. J. Sanchez, D. Ferrin, and
D. J. Uorrice, 2003.

[21] S. Burton, J. Clark, A. Galloway, and J. McDermid. Auto-
mated v&v for high integrity systems, a targeted formal meth-
ods approach. In Proceedings of the 5th NASA Langley For-
mal Methods Workshop, june 2000.

[22] M. Saaltink. The Z/EVES 2.0 User’s Guide. TR-99-5493-06a.
ORA Canada, 1999.

[23] K. Mughwal and R. Rasmussen. A programmer’s guide to
Java scjp certification (chapter 6 section 10). Addison wesley,
third edition, december 2008.

[24] D. Rosenblum. A practical approach to programming with
assertions. IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, 21, january 1995.

[25] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on software engineering, March
1977.

[26] S. H. Valentine. Putting numbers into the mathematical
toolkit. Springer Verlag, pages 9–36, 1993.

[27] S. H. Valentine. An algebraic introduction of real numbers
into z. Harribas, pages 183–204, 1995.

8

	Introduction
	Integration of formal methods into discrete event M&S
	Related works
	Checking errors before simulation phase

	Review on DEVS
	Specification of a DEVS model
	Graphical representation of a DEVS model

	Review on Z
	The Z specification language
	 The Z package

	From a DEVS model to a Z specification
	Formal verification of a DEVS model
	Verification of the determinism
	Verification of the completeness

	Software design for the Z transformation and verification processes
	DEVS-Compiler design and interface

	Conclusion
	Future work
	References

