
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

42

A Review and Basic Guidelines on Developing Android

Applications

Saurabh Malgaonkar
Computer Engineering

Department,
Mukesh Patel School of

Technology Management &
Engineering,

NMIMS University, Mumbai,
India

Shailja Sumeet
Computer Engineering

Department,
Mukesh Patel School of

Technology Management &
Engineering,

NMIMS University, Mumbai,
India

Yash Radia
Computer Engineering

Department,
Mukesh Patel School of

Technology Management &
Engineering,

NMIMS University, Mumbai,
India

Nipun Philip
Computer Engineering Department,

Mukesh Patel School of Technology Management & Engineering,
NMIMS University, Mumbai, India

ABSTRACT

Users in today’s world are on the move and they are using

mobile application platformsto get there. Whether they use

mobile phones, tablets, or other mobile devices they have all

theinformation they need. That's why mobile apps are so much

important in today’s market. Android is now the most

commonly used mobile operating system in the world.

Android now has more users, more phones and more tablets

worldwide than any other mobile operating system.

This paper gives a complete knowledge of how to start

working on Android Studio and develop an application and

get it run on emulator.

Keywords

Android SDK, Java/C++, Android Apps Development,

Android Studio, IDE.

1. INTRODUCTION
Android operating system based mobile smartphones are

very popular and are always in demand. It's got all the low-

level "stuff" as well as the needed middleware to power and

use an electronic device, and it is freely given away to anyone

who wants to grab the code and build the operating system

from it. [1]

When we say open source as mentioned above, it is free for

everyone to use. Since we want to make an android

application, we can make an application using the languages

of C, C++ or Java. Java is more preferable.

Android also requires us to learn XML for the app design,

understanding concepts of Android and using said concepts

with the programming language.

 Now to start making programs in Android we need an IDE

(Integrated Development Environment).

Now the question is what is an IDE?

An IDE basically is an interface to help you write your

programs. Take for example Turbo C, we use Turbo C to

write a program and we are able to compile and run programs

effectively on it. Thus Turbo C is an interface for user to let

them compile and run the program.

In case of Android Development we use Android Studio or

previously we used Eclipse.

Now we also come across a term called SDK (Software

Development Kit). SDK only includes the necessary building

blocks for developing applications. This includes frameworks,

libraries, header files, whatever as well as compilers,

debuggers, and various other tools, such as profilers, etc.[2]

Some SDK’s have their own IDE so you don’t need to

download one separately. Basically a SDK is a necessity since

it has all the tools required for an application. To make an

android program you need an android SDK since to compile

an android program you need a compiler, whose code or tools

required for it resides in the SDK. In summary, an IDE is just

an interface for using the compiler and so on, but a SDK is the

kit which has the compiler. So without a SDK an IDE will not

be there. Another term which we frequently come across is

API. API stands for application program interface. The API

specifies how software components should interact and APIs

are used when programming graphical user interface (GUI)

components.[3] You can consider an API as the alternative

"user interface" that software uses to interact with other

software.

We humans are familiar with user interfaces that have fancy

layouts with buttons, fonts, colors, graphics, etc; and most of

that is unnecessary to a machine. Machines wouldn't open up

a program or website, take a screenshot of that section of the

monitor, and then try to parse its meaning visually like a

humans do.

Machines just need a shorthand way to do things like

checking the current weather or adding an event to your

calendar. That's what an API provides.

APIs can be web-based, or specific to a platform. Google has

APIs for search, calendars, translations, etc. Facebook and

Twitter have APIs that allow software to automatically post

status updates. Apple provides many APIs for building

iPhone apps.

1.1 Java Language
Java is programming language. First generation of language was

Machine language. Binary number 0 and 1, positive and

negative. Than update machine language to second-

generation language like Forton, Assembly etc. Now we are

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

43

using 3rd Generation programming language. C, C++, Java

etc. Java language has using everywhere for development

application, operating system, Mathematical equation,

algorithm, etc. Using java make an appropriate application.

Develop an Android application in Java language, satisfactory

and functionality of activities is good.

2. ARCHITECTURE

Figure 1: Android Architecture

2.1 Linux Kernel
The linux layer is responsible for the management of

processes, memory as well as the input and output devices.

The kernel efficiently controls and manages networking

activities and connectivity among various devices through

means of compatible interfacing.[4]

2.2 Libraries
The libraries provide support for the integration of many

technologies like database systems, real time systems,

networking frameworks etc. and their respective

functionalities such as data transfer, security, streaming etc.[4]

A summary of the libraries are as follows:

 OpenGL (Open Graphics Library) It provides

libararies for rendering 2D or 3D graphics.[4]

 SSL: For web security. It has no effect or use in our

project.

 Surface Manager: Manages the display subsystem

and handles the graphic layers for various

applications.

 SGL: SGL stands for "Scalable Graphics Library"

and is the graphics subsystem used by Android.

 WebKit: It is the browser engine used to display

HTML content

 FreeType: It is the font engine.

 SqlLite: SqlLite is embedded into every Android

device. Using an SqlLite database in Android does

not require a setup procedure or administration of

the database. You only have to define the SQL

statements for creating and updating the database.

Afterwards the database is automatically managed

for you by the Android platform.

 Media Framework: Media framework provides

different media codecs allowing the recording and

playback of different media formats[4]

2.3 Android Runtime
It provides a virtual machine system known as 'Dalvik Virtual

Machine' which provides the functionalities such as memory

management and multithreading. It is an optimized version of

the Java Virtual Machine.

2.4 Application Framework
It provides with many services which can be utilized by the

developers to develop the Android applications.

A Summary of them is as follows:

2.4.1 Activity Manager
Users request to launch an application via a tap on an App

icon from the home screen. The home screen as users know it

is an application and the only one listening for onClick().

When this happens the launcher contact the ActivityManager.

That is, request a handler through the Binder and call

startActivity() method from the Activity Manager. [5]

2.4.2 Window Manager
Window manager is responsible for organizing the screen,

applications don't get to decide that. The window manager

allocates surfaces and decides where they go and how they are

layered; it never touches their bits, which is up to the

application.[6]

2.4.3 Content Providers
Content providers manage access to a structured set of data.

They encapsulate the data, and provide mechanisms for

defining data security.[7]

2.4.4 View System
Helps to design and develop interactive user interfaces.

2.4.5 Package Manager
Package Manager is an API that actually manages application

install, uninstall, and upgrade. Telephony Manager: Provides

information to the application about the telephony services

available on the device such as status and subscriber

information.

2.4.6 Resource Manager
Provides with all the essential resources required by the

developer. It stores bitmaps strings etc.

2.4.7 Notification Manager
Provides a consistent and non-intrusive mechanism for

signaling your users (example: when you are playing a game

and someone sends you a text message, a notification does not

terminate your game, instead, you might hear a sound).

2.5 Applications
Developers are given access to this layer for making the

Android applications. Application development related

contents are installed on this layer.

3. ANDROID APP COMPONENTS
Now that we have understood basic terminology and

architecture of Android, lets understand some basic App

components used in Android App components are the

essential building blocks of an Android app.

http://anatomyofandroid.com/2013/10/02/the-binder-i/

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

44

An android application consists of four components. They are

as follows:

3.1 Activities
An activity indicates the respective single screen instance

through the user interface. Activity indicates the instance of

the operation being performed by the user.

3.2 Services
Service component manages all the processes and the

operations of the application with a extensive

support for multithreading which allows multiple activities to

run despite of the main activity being currently performed by

the user.[8] For example, user can keep music running in the

background while performing other activities such as chat, e-

mail etc.

3.3 Content Providers
It manages the overall data shared by various applications and

provides proper interactivity among them. Through this

component the applications have access to

the data as per the privileges granted by the content provider.

3.4 Broadcast Receivers
It is responds to the system calls, APIs or the calls generated

by the applications. The interdependencies among the

applications for performing the same operations is properly

handled by the Android operating system. Intent indicates the

activation of three out of four components through

asynchronous messaging. For example an intent can indicate a

request for the current activity to capture a photo or to play a

song. Broadcast receivers only broadcast the status of activity

as required. E.g "Battery Low".

4. APP BUILD STEPS

Figure 2: Sample output

The following steps are applicable once you have downloaded

and installed Android Studio in your pc.

8 Steps:
Step 1: Android Studio Installation

Figure 3: Android Studio Installation

1. Visit http://developer.android.com/sdk/index.html to

download Android Studio.

2. Run the installer file to install Android Studio.

3. After successful installation follow the below

instructions.

Step 2: Open a New Project

1. Run Android Studio.

2. Under the "Quick Start" menu, select "Start a new

Android Studio project."

3. Click the "Create New Project" window that opens,

name your project "HelloWorld".

4. If you choose to, set the company name as desired*.

(Optional)

5. Check where the project file location is and change

it if desired.

6. Click on "Next."

7. Make sure that "Phone and Tablet" is the only

checked box.

8. For testing the app on your phone, make sure the

minimum SDK is below your phone's operating

system level.

9. Click on "Next."

10. Now Select "Blank Activity."

11. Click on "Next."

12. Leave all of the Activity name fields as they are.

13. Click "Finish."

http://www.instructables.com/file/FEBX9MXI7MXG4I1/
http://www.instructables.com/file/FEBX9MXI7MXG4I1/

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

45

Figure 4: Creating a New Project (1/5)

Figure 5: Creating a New Project (2/5)

Figure 6: Creating a New Project (3/5)

Figure 7: Creating a New Project (4/5)

Figure 9: Creating a New Project (5/5)

Step 3: Welcome Message for your app

1. Navigate to the activity_main.xml tab if it is not

already open.

2. Make sure that the Design tab is open on the

activity_main.xml display.

3. Click and drag the "Hello, world!" from the upper

left corner of the phone display to the center of the

screen.

4. In the project file system on the left side of the

window, open the values folder.

5. In the values folder, double-click the strings.xml

file.

6. In this file, find the line "Hello world!".

7. After the "Hello world!" message, add "Welcome to

my app! (Or any message of your choice)"

8. Navigate back to the activity_main.xml tab.

9. Make sure that your centered text now reads "Hello

world! Welcome to my app!"

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

46

Figure 8: Preview Screen

Figure 10: Code to edit the welcome message

Step 4: Adding a Button in your app

1. Navigate to the Design tab of the activity_main.xml

display.

2. In the Palette menu to the left of the phone display,

find Button (under the heading Widgets).

3. Click and drag Button to be centered underneath

your welcome message.

4. Make sure your button is still selected.

5. In the Properties menu (on the right side of the

window), scroll down to find the field for "text."

6. Change the text from "New Button" to "Next Page."

Figure 11: Additional Options

Figure 12: Preview Screen

Step 5: Creating an Additional Activity in your app

1. At the top of the project's file system tree, right

click on "app."

2. Navigate through to New > Activity > Blank

Activity.

3. Change the name of this activity to

"SecondActivity".

4. Click "Finish."

5. Make sure you are in the Design view of

activity_second.xml.

6. Drag the text box in the upper left of the phone

display down to the center as you did on the Main

Activity.

7. With the text box still selected, find the "id" field in

the Properties menu on the right, and set it to

"text2".

8. Open strings.xml again.

9. Add a new line under "Hello world! Welcome to my

app!" that reads "Welcome to the second page!".

10. Navigate back to activity_second.xml.

11. Select the text box again.

12. In the Properties pane, set the "text" field to

"@string/second_page".

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

47

13. Make sure that the text box now reads "Welcome to

the second page!" and is in the center of the screen

in the phone display.

Figure 13: Navigating Menu

Figure 14: Code for addition of second page

Figure 15: Properties

Step 6: Making it Interactive ("onClick")

1. Select the MainActivity.java tab along the top of the work

environment.

2. Add the following lines of code at the end of the onCreate

method:

Button button = (Button)

findViewById(R.id.button);

button.setOnClickListener(new

View.onClickListener()

{ @Override

public void onClick(View v)

{

goToSecondActivity();

}

});

3. Add the following method to the bottom of the

MainActivity class:

private void goToSecondActivity()

{

Intent intent = new Intent(this, SecondActivity.class);

startActivity(intent);

}

4. Click the + next to import at the third line of

MainActivity.java to expand the import statements.

5. Add the following to the end of the import statements if

they are not already there:

import android.content.Intent;

import android.view.View;

import android.widget.TextView;

Step 7: Testing the App

1. Click the green play symbol from the toolbar at the

top of the Android Studio window.

2. When the "Choose Device" dialog appears (this may

take a few moments), select the "Launch emulator"

option.

3. Click OK.

4. When the emulator opens (this too could take a

while), the app will automatically launch the app

upon the virtual phone being unlocked.

5. Make sure that all of your text displays correctly

and that the button takes you to the next page.

Figure 16: Testing through emulation

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

48

Step 8: And it’s READY!

From here you have the cursory knowledge you need to go on

to learn all there is to know about Android application

development.

Case Study
Our system is divided into four layers, namely the UI layer,

logic layer, App interface layer, the network access layer.

Figure 10 is system architecture. UI layer is responsible for

displaying the various forms of the system and the

coordination between the various forms of invocation logic.

The logical layer core control scheduling module is used to

access the data transferred by UI, tasks need to be performed

are calling App interfaces, accessing network data, returning

message, refreshing UI, etc Network Access Layer is

responsible for the system and the server's network connection

and data transfer[9].

Figure 37: System Architecture

 Authentication needs to be done before App SDK interacts

with the server. SDK provides a class, when start the program,

the following code needs to be executed to create an App

object, and set App Key, App Secret and URL.

 App = App.getInstance(); // Create App object

App.setupConsumerConfig(Consumer.consumerKey,

Consumer.consumerSecret); // set App Key, App Secret

App.setRedirectUrl(Consumer.redirectUrl); // Set the redirect

URL

App.authorize(activity,newAuthDialogListenerImpl(activity))

; After executing the above code, the login interface will

appear, enter user name and password, after that, click the

Login button. If it is the first time of login, the Authorization

page appears. The main screen will show up after the user

login.

Figure 18: Flowchart

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.3, December2015

49

Specific functions of this system development are based on

Android SDK, calling its wrapper classes to complete the

corresponding task. For example, the main interface is divided

into three parts: the top is a toolbar, the middle area is a

ListView, bottom is the button bar. App List is in the middle

of the main interface part, displayed through the ListView. As

long as App data was obtained from the service side, it will be

shown directly on the ListView control through the Adapter.

The function of posting is achieved through

AppManager.update method. This method can submit text and

message containing pictures. The App browse window class is

AppViewer and the interface layout file is app_viewer.xml.

5. REFERENCES
[1] ”Android Central”, http://www.androidcentral.com/what-

android, January 2016.

[2] ”DifferencebetweenIDESDK”.http://bytes.com/topic/soft

ware-development/answers/910050-what-difference-

between-ide-sdk., January 2016.

[3] ”AndroidAPI”,http://www.webopedia.com/TERM/A/AP

I.html, January 2016.

[4] “AndroidArchitecture”,http://www.eazytutz.com/android

/android-architecture/, January 2016.

[5] ”AndroidSupportFiles”,http://anatomyofandroid.com/201

3/10/16/activity-manager/, February 2016.

[6] ”WindowsAndroidManager”,http://stackoverflow.com/q

uestions/14952574/windows-manager-in-android-

architecture, February 2016.

[7] “AndroidPackage”, http://java.dzone.com/articles/depth-

android-package-manager, February 2016.

[8] ”AndroidDeveloperGuide”,http://developer.android.com/

guide/components/fundamentals.html, March 2016.

[9] Research and Development of Mobile Application for

AndroidPlatform“”,http://www.sersc.org/journals/IJMU

E/vol9_no4_2014/20.pdf, March 2016, International

Journal of Multimedia and Ubiquitous Engineering,

Vol.9, No.4 (2014), pp.187-198.

6. AUTHOR PROFILE
Saurabh Malgaonkar is an assistant professor in the

computer engineering department of Mukesh Patel School of

Technology Management & Engineering, NMIMS University,

Mumbai India.

Areas of Interests: Computer Networks, Data Mining Email:

Shailja Sumeet is an assistant professor in the computer

engineering department of Mukesh Patel School of

Technology Management & Engineering, NMIMS University,

Mumbai India.

Areas of Interests: Database Systems, Artificial Intelligence,

Parallel Processing, Programming, Email: Nipun Philip is a

student from the computer engineering department of

Mukesh Patel School of Technology Management &

Engineering, NMIMS University, Mumbai India. Areas of

Interests: Software Development, Programming,

Yash Radia is a student from the computer engineering

department of Mukesh Patel School of Technology

Management & Engineering, NMIMS University, Mumbai

India. Areas of Interests: Web Development, Human

ComputerInterfacing

IJCATM : www.ijcaonline.org

http://www.androidcentral.com/what-android
http://www.androidcentral.com/what-android
http://bytes.com/topic/software-development/answers/910050-what-difference-between-ide-sdk
http://bytes.com/topic/software-development/answers/910050-what-difference-between-ide-sdk
http://bytes.com/topic/software-development/answers/910050-what-difference-between-ide-sdk
http://bytes.com/topic/software-development/answers/910050-what-difference-between-ide-sdk
http://www.eazytutz.com/android/android-architecture/
http://www.eazytutz.com/android/android-architecture/
http://www.eazytutz.com/android/android-architecture/
http://anatomyofandroid.com/2013/10/16/activity-manager/
http://anatomyofandroid.com/2013/10/16/activity-manager/
http://anatomyofandroid.com/2013/10/16/activity-manager/
http://java.dzone.com/articles/depth-android-package-manager
http://java.dzone.com/articles/depth-android-package-manager

