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ABSTRACT 

Interval prediction can be more useful than single value 

prediction in many continuous data streams. This paper 

introduces a novel Interval Prediction Tree IP3 algorithm for 

interval prediction of numerical target variables from 

temporal mean-variance aggregated continuous data. This 

algorithm characterized by: processing incoming mean-

variance aggregated multivariate temporal data, splitting each 

of the continuous features of the input according to the best 

mean-variance and making stable interval predictions of a 

target numerical variable with a given degree of statistical 

confidence. As shown by empirical evaluations in forest fires 

data set the proposed method provides better performance 

than existing regression tree models. 
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1. INTRODUCTION 
In many data streams, the data is available as time-continuous 

statistical moments such as mean or variance that are 

calculated over pre-defined measurement intervals, rather than 

as raw values sampled at discrete points in time. Examples of 

such aggregated data streams include meteorological data, 

financial data, process control systems, and sensor networks. 

For example, a meteorological station may be continuously 

storing aggregated mean and variance estimators for a large 

number of meteorological attributes at predefined time 

intervals (such as every 10 minutes). However, reporting 

single predicted values for the mean response values of new 

measurement intervals can be misleading. The reason is that 

due to a large unexplained variance of the target variable, in 

many intervals the actual mean values may be very different 

from any specific point estimation. In this paper, the attention 

was shifted from predicting a single mean value to predicting 

intervals, which are expected to contain the actual mean 

values with a given probability. The above considerations 

cause a need for a stable algorithm that can process incoming 

mean-variance aggregated multivariate temporal data and 

makes stable interval predictions of a target numerical 

variable, with a given degree of statistical confidence. This 

work contributes to the field of mining massive temporal data 

sets and continuous data streams by introducing Interval 

Prediction Tree IP3 algorithm, which builds compact and 

stable interval-based prediction tree models of numerical 

output variables using aggregated statistical moments of 

numerical input attributes. The paper is organized as follows: 

the related work is described in the next section, while in 

Section 3 the IP3 algorithm methodology is introduced and 

represented. In Section 4, experimental results are reported for 

forest fires data set. Finally, Conclusion section discusses the 

main features of the proposed algorithm and summarizes the 

main experimental findings.  

2. RELATED WORK 
Most batch regression and tree models for predicting 

numerical variables, such as MARS [7], CART [3], RETIS 

[10], M5 [12], M5P[14], SMOTI [5], MAUVE [13], MOPT 

[1], GUIDE [11], and FIMT [9], are not designed for 

aggregated temporal data. Hence, they cannot utilize the 

relationship between multiple statistical moments (such as 

mean and standard deviation) of aggregated numerical 

attributes. Actually, most of the regression tree algorithms 

apply binary recursive partitioning binary, since the nodes are 

always split into two child nodes, and recursive, because the 

process is repeated at every node. It is also possible to split 

the data into three or more subsets or child nodes. Regression 

trees provide quite simple and easily interpreted regression 

models with reasonable accuracy. However, according to 

Breiman et al. [4], these methods are known for their split 

instability. Finally, the interested reader may find a more 

detailed survey of regression tree methods in [1]. 

The IP3 Interval Prediction Tree methodology presented in 

this paper extends the main idea of the traditional  interval 

regression trees algorithms and includes the following 

principal enhancements: First, in the case of numerical 

attributes traditional interval regression trees algorithms 

calculates every possible splitting point by using the recursive 

least squares algorithm. This task is computationally 

expensive and it has a negative effect on the scalability of the 

algorithm. The proposed IP3 algorithm avoids the 

computationally intensive and memory exhaustive sorting 

operation by a more simple and accurate non-sorting 

procedure. The IP3 tree stopping criterion is significantly 

extended by two stopping rules. The first stopping rule is 

applied by the algorithm when the selected terminal node 

instances are normally distributed. The second stopping rule is 

applied when the terminal node instances are within a 

constant unbiased prediction interval. 

3. INTERVAL PREDICTION TREE 
The proposed method is based on the assumption that input 

and output variables in an aggregated data stream are 

characterized by linear or nonlinear dependencies (or both), 

which can be represented using the proposed IP3 model. The 

proposed algorithm differs from currently described state-of-

the-art regression tree algorithms such as CART, RETIS, M5, 
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M5P, SMOTI, MAUVE, GUIDE and FIMT by the following 

characteristics: 

 The use of synchronous mean and variance unbiased 

estimators of numerical features.  

 Node splitting based on the Mahalanobis distance 

between the two statistical estimators.  

 Novel representation of prediction intervals at the 

tree leaves.  

Both statistics can be used as candidate predictive features by 

a prediction tree induction algorithm. Therefore, if the two 

represented statistics indeed exhibit independent and identical 

behavior, then the aggregated input variable can be 

represented within a robust two-tail prediction interval at a 

user-defined confidence level, such as 95%. An IP3 tree 

segment example is displayed in Figure 1. 

 

 

Figure 1: The IP3 tree representation 

Finally, he suggested approach enables one to utilize 

predictive feature information obtained from mean and 

variance of temporally aggregated instances  This approach 

also enables one to achieve a considerable reduction in the 

depth of the induced prediction tree by using interval 

prediction tree leaves.  

3.1 The IP3 Construction Procedure 
The pseudocode in Figure 2 identifies the best split for 

predicting the mean and variance of a numerical target 

variable. This procedure applies to splitting the values of a 

bivariate numerical input variable X with respect to the target 

variable Y, where both variables X and Y are represented by 

the sample mean and variance, according to the predefined 

temporal resolution r. Generally, the splitting procedure 

includes five principal steps, where the first three steps 

perform Mahalanobis distance calculations between bivariate 

mean-variance input and target variables, while the last two 

steps identify the best splitting feature (mean or variance) and 

the corresponding splitting threshold. 

The first step consists of the Mahalanobis distance calculation 

M(X) for the numerical input variable in each aggregated 

instance using AVG(X) and VAR(X) and the chi - square 

outlier test detection procedure. Outlying instances are 

ignored by the algorithm in order to split the regression tree 

only on values generated by stable data points. In IP3 

algorithm, data point stability is measured by MXMY, which 

is the Mahalanobis distance between input and target 

variables. A high Mahalanobis distance is an indication of 

instability, and vice versa. Thus, the best splitting aggregated 

instance should minimize Mahalanobis distance MXMY. The 

best (most stable) predictive feature (sample mean or 

variance) for the selected instance should have a minimal 

contribution to the value of the Mahalanobis distance MXMY. 

This means that it should maximize the absolute difference 

between the value of MXMY and the values of input 

estimators (mean and variance of X).  

The second step consists of the Mahalanobis distance 

calculation M(Y) for the target numerical variable in every 

aggregated instance using AVG(Y).  

The third step of the algorithm is the evaluation of all 

candidate splits (represented by the values of the input 

variable X in aggregated instances, which are not outliers) and 

selecting the best splitting aggregated instance (having the 

minimum Mahalanobis distance MXMY).  

The fourth step is aimed at selecting the best predictive 

feature (sample mean or variance) of a given input variable in 

the selected splitting instance. In this step, according to the 

previously identified non-outlying instances of MXMY, the 

algorithm recalculates the value of the target numerical 

variable M(Y) in the best splitting instance of X Temp_Min.  

 

 

 

IP3  Root

Left Node: Temp (0C)

Mean <= 22.61

Left Node: Pressure (mb)

Variance  <= 56.34

Prediction  Leaf : Wind  Direction  (Degrees)

P(JB) : (0.16)  ->  Non - Normally 

Prediction  Interval : [10.25;  35.14] 

Right  Node: Pressure (mb)

Variance > 56.34

Right  Node: Temp (0C)

Mean > 22.61

Prediction  Leaf : Wind  Direction  (Degrees)

P(JB): (0.001) ->  Normally 

Prediction  Interval : [168.74;  306.73] 
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Input: 
The mean-variance aggregated input variable, X 

Target variable, Y  

Output: 
The best mean or variance contributor for input attribute X 

The best split point for input attribute X  

Begin 

For every instance with distinct values in input X Do 

       Calculate the Mahalanobis distances vector MX, where MX = M(AVG(X),VAR(X)) 

 Next 

 

)1) 

For every instance in target Y Do  

       Calculate the Mahalanobis distances vector MY, where MY = M(AVG(Y),VAR(Y))      Next 
)2) 

If MX is not outlier 

      Calculate the Mahalanobis distances vector MXMY, where MXMY = M(M(X), M(Y)) 

      If MXMY is not outlier 

           Temp_Min=Min {MXMY} 

       End If 

End If 

)3) 

For every non-outlying instances MXMY in target Y Do  

       Recalculate the MY vector value in Temp_Min instance 

       [MY = M(AVG(Y),VAR(Y))]  

Next  

(4) 

With Temp_Min instance  

         MAVG = M(M(Y), AVG (X))  

         MVAR = M(M(Y), VAR (X))  

         Best_Contributor = (Max(|MXMY - MAVG |, |MXMY - MVAR|)) 

End With 

Return IP3 Best_Split for Best_Contributor 

(5) 

End  

Figure 2: IP3 splitting criterion pseudo-code 

Finally, in the final fifth step, the algorithm calculates the 

absolute differences between the value of MXMY and the 

values of the input estimators (mean and variance of X) in the 

best splitting instance of X Temp_Min, and chooses the best 

node estimator Best_Contributor that maximizes that 

difference. If the number of outliers is equal to the number of 

aggregated instances in the training set, the algorithm ignores 

a given input variable and shifts to the next variable, or stops 

the tree construction if there are no remaining input variables. 

This subroutine can mitigate the shortcomings of classical 

regression tree split methods because it is based on 

correlations between bivariate mean-variance input and target 

variables, by which different patterns can be identified and 

analyzed. Furthermore, this subroutine is a useful way to 

determine similarity between temporally aggregated data sets. 

It differs from the existing regression tree split methods in 

being scale-invariant and by taking into account the 

correlations of the temporally bivariate mean-variance 

aggregated data sets, subsequently choosing the best node 

estimator.  

4. FOREST FIRES DATA SET 
The Forest Fire Data Set from the Montesinho Natural Park in 

northern Portugal is available at the UCI KDD Archive 

(http://www.ics.uci.edu). The final data set contains 517 

numerical instances collected by Cortez and Morais [6] from 

January 2000 to December 2003, and is integrated from two 

different databases. The data in the first database, which 

contains 517 instances, was collected on a daily basis every 

time a forest fire occurred. Each instance in the first database 

represents a forest fire occurrence that has following 

numerical Fire Weather Index (FWI) attributes: Fine Fuel 

Moisture Code (FFMC), Duff Moisture Code (DMC), 

Drought Code (DC) and Initial Spread Index (ISI). The first 

three indices are related to fuel codes: the FFMC denotes the 

moisture content of surface litter that influences ignition and 

fire spreading, while the DMC and DC represent the moisture 

content of shallow and deep organic layers, which affect the 

fire's intensity. The ISI represents a score that correlates with 

the velocity of fire spreading. The timestamp in the first 

database represents the day of a specific forest fire 

occurrence. The XC and YC attributes represent the X and Y 

spatial coordinates. 

The target (prediction) attribute in the Forest Fire Data Set is 

the total burned forest area (AREA). To reduce skewness and 

improve symmetry, the logarithm function y = ln(x + 1), 

which is a common transformation that tends to improve 

regression results for right-skewed targets, was applied by 
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Cortez and Morais [6] to the numerical total burned area 

(AREA) target attribute. 

Finally, in order to compare the obtained results with results 

presented by the Cortez and Morais [6], and to draw 

inferences about the impact of fire and weather attributes, four 

distinct feature sets were evaluated: STFWI - using spatial, 

temporal, and the four FWI components (TST, XC, YC, 

FFMC, DMC, DC, and ISI); STM - with the spatial, temporal, 

and four weather variables (TST, XC, YC, TMP, RH, WS, 

and RN); FWI - using only the four FWI components (FFMC, 

DMC, DC, and ISI); and M - with the four weather conditions 

(TMP, RH, WS, RN).  

The results in Table 1 show that under RMSE and RMAE 

criteria the SVM, M5P, Bagging M5P, MOPT and IP3 models 

statistically outperform Additive Regression, B-RepTree, 

M5Rules, NN-MLP, MOPT, RepTree, and Retis-M 

algorithms in the STFWI and STM data sets. 

 

Table 1: STFWI and STM data set learners comparison (10 time 10 fold cross validation) 

Learner 
STFWI Data Set STM Data Set 

TS RMAE RMSE CCM TS RMAE RMSE CCM 

Add. Reg. - 1.42±0.10 1.88±0.16 - - 1.47±0.11 1.97±0.16 - 

B-M5P 164 1.16±0.10 1.45±0.15 2.18±0.15 170 1.16±0.11 1.44±0.16 2.25±0.16 

B-RepTree 383 1.21±0.12 1.57±0.16 3.28±0.16 359 1.21±0.12 1.56±0.17 3.26±0.17 

M5 Rules 138 1.28±0.12 1.63±0.15 2.25±0.15 140 1.30±0.13 1.64±0.20 2.3±0.2 

M5P 191 1.16±0.11 1.46±0.15 2.31±0.15 203 1.20±0.11 1.49±0.19 2.45±0.19 

NN-MLP - 1.97±0.10 2.56±0.18 - - 2.13±0.11 2.72±0.17 - 

IP3 29 1.15±0.15 1.43±0.12 1.56±0.12 29 1.15±0.14 1.43±0.18 1.57±0.18 

MOPT 110 1.56±0.10 1.84±0.18 2.12±0.12 95 1.48±0.14 1.79±0.17 2.06±0.15 

RepTree 320 1.26±0.15 1.71±0.18 3.14±0.18 299 1.29±0.14 1.70±0.19 3.12±0.19 

RETIS-M 193 1.25±0.09 1.63±0.19 2.49±0.19 193 1.23±0.11 1.59±0.19 2.5±0.19 

SVM RBF  - 1.16±0.10 1.41±0.16 - - 1.16±0.12 1.41±0.17 - 

 

An interesting result that might be inferred from the Table 1 

tree size measure TS is that it provides information indicating 

that the proposed IP3 model builds more compact and 

accurate prediction trees than other state-of-the-art regression 

tree models. The MOPT algorithm induced relatively compact 

prediction tree models but also demonstrated low prediction 

accuracies. This result can be explained by the global MOPT 

split point calculation procedure and an unavailable 

subroutine for the removal of the outliers of two statistical 

moments which was successfully implemented in 

corresponding IP3 algorithm. 

Figure 3.a and Figure 3.b show that in STFWI and STM data 

sets under the RMSE measure the SVM, IP3, B-M5P, and 

M5P models significantly outperformed the other state-of-the-

art models with a 90% confidence level. In the case to 

combine the accuracy RMSE with the tree size TS in the Cost 

Complexity Measure CCM [3] the IP3 model significantly 

outperformed other state-of-the-art models with 

corresponding values of 1.56 and 1.57 in STFWI and STM 

data sets. 

  

 P-RMSE  P-CCM  CL  P-RMSE  P-CCM  CL 

3.a  STFWI data set 3.b  STM data set 

Figure 3: STFWI and STM data sets learners (%) of confidence level (CL) comparison

The results in Table 2 show that in the FWI data set under 

RMSE and RMAE criterion, the SVM, M5P, IP3, and M5 

Rules models significantly outperformed Additive Regression, 

B-RepTree, NN-MLP, MOPT, RepTree and RETIS 

algorithms. Respectively, in the M data set under RMSE and 

RMAE criterion, the SVM, B - REPTree, B - M5P, and IP3 

models significantly outperform Additive Regression,  

M5Rules, M5P, NN-MLP, MOPT, RepTree and RETIS 

algorithms.  
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Table 2: FWI and M data sets learners comparison (10 time 10 fold cross validation) 

Learner 
FWI Data Set M Data Set 

TS RMAE RMSE CCM TS RMAE RMSE CCM 

Add. Reg. - 1.28±0.10 1.65±0.15 - - 1.32±0.10 1.76±0.15 - 

B-M5P 122 1.20±0.09 1.54±0.14 2.7±0.14 175 1.19±0.10 1.50±0.16 3.16±0.16 

B-RepTree 169 1.20±0.11 1.52±0.15 3.12±0.15 213 1.44±0.11 1.44±0.16 3.46±0.16 

M5 Rules 114 1.20±0.10 1.45±0.14 2.53±0.14 143 1.25±0.11 1.57±0.16 2.92±0.16 

M5P 137 1.18±0.11 1.44±0.22 2.74±0.22 201 1.19±0.11 1.46±0.16 3.36±0.16 

NN-MLP - 1.21±0.15 1.61±0.18 - - 1.20±0.14 1.6±0.17 - 

IP3 19 1.19±15 1.45±0.18 1.63±0.18 37 1.17±0.16 1.47±0.20 1.82±0.2 

MOPT 87 1.25±17 1.58±0.17 1.75±0.18 112 1.24±0.16 1.52±0.18 1.72±0.2 

RepTree 111 1.20±0.12 1.53±0.16 2.58±0.16 197 1.27±0.16 1.67±0.20 3.54±0.2 

RETIS-M 155 1.27±0.16 1.60±0.19 3.07±0.19 165 1.22±0.15 1.61±0.17 3.17±0.17 

SVM RBF - 1.16±0.12 1.41±14 - - 1.16±0.11 1.41±0.14 - 

 

Finally, Figure 4.a and 4.b show that the proposed IP3 

algorithm outperforms state-of-the-art tree algorithms in terms 

of the CCM, in both FWI and M data sets. Also, here the 

MOPT algorithm demonstrates relatively compact and 

balanced trees but gives way to IP3 and other state-of-the-art 

tree algorithms in terms of prediction accuracy.  

  

 P-RMSE  P-CCM  CL  P-RMSE  P-CCM  CL 

4.a  FWI data set 4.b  M data set 

 Figure 4: FWI and M data sets learners (%) of confidence level (CL) comparison 

Additional interesting result that can serve as an important 

added value to Cortez and Morais [6] work is the irrelevance 

of the spatial and temporal variables, because when they are 

removed, the performance of the IP3 and SVM models does 

not decrease significantly. In fact, a tree with the best cost-

complexity configuration (𝛼 ≥ 0.01) is yielded by the FWI 

setup and IP3 model, which statistically confirms the 

significance of this result. For the IP3 method, it is better to 

use spatio-temporal components in conjunction with FWI or 

weather conditions, rather than FWI or weather variables 

only. However, from the RMSE or RMAE point of view, the 

best option is the SVM RBF model predictor. 

5. CONCLUSIONS 
The results presented in each segment of the data set in Table 

3 display the comparative analysis of the forest fires 

experiment described in previous section 4. They reflect the 

relative preference of some methods that are significantly 

better than the worst model at the 90% of confidence level. 

Each cell should be viewed clockwise starting with the top-

left corner. For example, in STFWI data set, the SVM RBF, 

IP3, B-M5P, and M5P models significantly outperform other 

state-of-the-art tree algorithms such as Neural Network MLP 

[2] and kernel-based Additive Regression [8] in terms of 

RMSE measure. In case of CCM, for the same data set, only 

the IP3 and the B-M5P models are significantly more accurate 

than other corresponding state-of-the-art models. 

Summarizing the results presented in the Table 3 it can 

concluded that the principal advantage of IP3 is that it 

provides a more compact representation of prediction tree size 

TS and statistically significant prediction accuracy in 

comparison to other regression tree algorithms. According to 

the demonstrated experiments results the IP3 models achieved 

on average a 31% reduction in interval prediction tree size TS 

and an 11% improvement in CCM accuracy, without 

significant loss in RMSE accuracy. These results were 

achieved due to the use of mean-variance predictors, outlier 

detection and removal, and implementation of new node 

splitting techniques that were implemented in the proposed 

IP3 algorithm. 
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Table 3: Experiments comparing between IP3 and state-of-the-art methods 

Data Set RMSE CCM TS 

STFWI 
SVM RBF[1] IP3 [2] IP3[1] B-M5P[2] IP3[1] M5 Rules[2] 

M5P[4] B-M5P[3] - - M5P[4] B-M5P[3] 

STM 
SVM RBF[1]  IP3[2] IP3[1] - IP3[1] M5 Rules[2] 

M5P[4] B-M5P[3] - - RETIS-M[4] B-M5P[3] 

FWI 
SVM RBF[1]  M5P[2] IP3[1] - IP3[1] RepTree[2] 

M5 Rules[4] IP3[3] - - B-M5P[4] M5 Rules[3] 

M 
SVM RBF [1] B-RepTree[2] IP3[1] - IP3[1] M5 Rules[2] 

IP3[4] B-M5P[3] - - B-M5P[4] RETIS-M[3] 
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