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ABSTRACT 

Bayesian predictive functions for future observations from a 

generalized Pareto distribution based on generalized order 

statistics are obtained. Two cases are considered unknown one 

parameter and unknown two parameters. We also consider 

two cases fixed sample size and random sample size. The 

Bayesian predictive functions are specialized to ordinary 

order statistics, progressive type II censoring and upper record 

values. Examples are calculated for the lower and the upper 

bounds for the future observation based on ordinary order 

statistics, progressive type II censoring and upper record 

samples..   
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1. INTRODUCTION 
The generalized Pareto distribution (GPD) was first 

introduced by [1]. The probability density function (pdf) and 

cumulative distribution function of the generalized Pareto are 

given by 
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where θ is the shape parameter and σ is the scale parameter. 

See [2]. 

Generalized order statistic's concept was presented by [3] as a 

unified approach to different models of ordered random 

variables such models are order statistics (OOS), record 

values (RVs), k-th record values and sequential order 

statistics, among others. Authors [4], [5] among others 

utilized the generalized order statistics (GOS) in their works.   

Let rXXX  ...21 be the first r Generalized order 

failure times in a random sample of n components from an 

absolutely continuous distribution function F, where 

nikmniXX ii ,...,2,1),,,,(  , mi and k are real numbers 

and 1k
 
. The joint pdf of the first r GOS is given by 
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 See [3], considering two cases for the real numbers mi, the 

conditional density function )|( rs xxh  of the GOS xs given 

that r GOSs had already failed is given by, 
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See [3], [6]. The Bayes prediction of an unobserved random 

variable is frequently more significant for applications than 

interval estimation of parameters. Many authors have been 

discussed the prediction problems in general based on GOS, 

progressively type-II censored data, record values (RVs) and 

ordinary order statistics (OOS) see for example [7], [8]. The 

goal of this paper is to discuss the one-sample Bayesian 

prediction problem from generalized Pareto distribution based 

on GOS in two cases when the sample size is fixed (FSS) and 

when it is a random variable (RSS). In case of fixed sample 

size, The Bayes predictive density function of the future GOS 

nrrsxs ...,,2,1,  can be written as: 
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where the conditional pdf of the future observation is 

),|( sxh  and )|,( xf   is the posterior pdf. 

In case of random sample size, the predictive density function 
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of sx  is given by 
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where )(nv is the probability mass function of n and )(* xxf s
 

is defined in (8), see for example [9]. 

2. BAYESIAN PREDICTION BOUNDS 

BASED ON GOS IN CASE OF FSS 
 The likelihood function of the first r GOS failure times

rxxx ...,,, 21 in a random sample of n identical distributed 

random variables having the GPD defined in (1) can be 

obtained by substituting (1) and (2) into (3) as follows 
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Considering that the scale parameters σ is known and the 

unknown shape parameter θ is having the inverted gamma 

prior distribution defined by  
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the posterior pdf of θ can be written as 
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when the two parameters σ and θ are assumed to be unknown, 

the inverted gamma prior density defined in (12) is considered 

as a distribution for the unknown shape parameter θ and the 

uniform prior density is considered for the unknown scale 

parameters σ defined by 
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the joint prior density for both the parameters θ and σ takes 

the form 
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where α, β, and υ are known. The joint posterior pdf of θ and 

σ is given by 
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2.1 When σ is known 

Now let
 sx , nrrs ,...,2,1   denotes the sth lifetime 

component from the remaining (n-r) components having the 

GPD when the scale parameter σ is known, the conditional 

density function of the sth GOS given that r generalized order 

statistics had already failed can be obtained by substituting (1) 

and (2) into (5) and (6) as follows:  
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where             .                                  (20) 

The Bayes predictive density function of the future GOS xs is 

obtained by substituting (18), (19) and (13) into (8) 
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By integrating with respect to xs, the Bayesian prediction 

survival function )|Pr( xtxs   for some t , can be written 

as follows: 
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Let Ls and Us denote the lower and the upper limits of the 

100τ% Bayesian prediction interval for the GOS sx  such that 

pr [Ls  xs  Us ] =   where,
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2.2 When θ and σ are Unknown parameters 
In this subsection, The Bayes predictive density function of 

the GOS sx  is obtained by substituting (18), (19) and (16) 

into (8): 
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and the Bayesian prediction survival function of the future 

GOS xs as follows: 
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3. BAYESIAN PREDICTION BOUNDS 

BASED ON GOS IN CASE OF RSS  
 In this section, assuming that the sample size n is a random 

variable distributed as a Poisson distribution with pmf given 

by 
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Replacing ν(n) in (9) by p(n; λ) defined in (32), we get 
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3.1 When σ is known 
Assuming that σ is known, substituting (21) and (22) into 

(33), the bayes predictive functions take the forms: 
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and hence integrating (34) and (35) with respect to xs (from 

some t to σ),  the Bayesian prediction survival function is 

obtained: 
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3.2 When θ and σ are Unknown parameters 
When the two parameters having posterior pdf given by (16) 

and the sample size n has a Poisson distribution with pmf 

given by (32), The Bayes predictive density function of the 

GOS sx  is obtained by substituting (28) and (29) into (33) as 

follows: 
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and the Bayesian prediction survival function of the future 

GOS xs, s=r+1, r+2, …, n  in this case take the forms: 
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4. BAYESIAN PREDICTION BASED ON 

UPPER RVS IN CASE OF FSS  
  It is well known that the record value is a GOS when ,1k

and 1m  .  

4.1 When σ is known 
The Bayes predictive density function of the future upper RVs 

xs, s = r+1, r+2, …, n, is given by putting )1,1(  mk  in 

(21).
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the Bayesian prediction survival function of the upper RVs xs 

can be obtained from (23) as follows: 
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 The lower and the upper limits of the 100τ% Bayesian 

prediction interval for the future upper RV sx are obtained by 

substituting (43) into (27). 

4.2 When θ and σ are Unknown parameters  
When the two parameters are unknown and having joint prior 

pdf given by (16), putting )1,1(  mk  in (28) and (30) the 

Bayes predictive density function and the Bayesian prediction 

survival function of the upper RVs xs are obtained as follows: 
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5. BAYESIAN PREDICTION BASED ON 

UPPER RVS IN CASE OF RSS 
It is clear that the equations obtained in Section 4 are all 

independent of the sample size n. 

5.1 When σ is known 
Assuming that the sample size is a random variable with the 

probability mass function )(nv , substituting by (42) into (9), 

the Bayes predictive density function is obtained as follows:  
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Similarly, the survival function of the upper RV xs has the 

same formulae of equation (43) weather the sample size is 

fixed or random variable. 

5.2 When θ and σ are Unknown parameters 
Similarly, the Bayes predictive density function and the 

survival function of the upper RV xs, can be obtained from 

equations (44) and (45) respectively. 

6. BAYESIAN PREDICTION BASED ON 

PROGRESSIVELY TYPE-II 

CENSORED ORDER STATISTICS IN 

CASE OF FSS 
Let 

nnn xxx ::::2::1 ,...,, 
 denote a progressively Type-II 

censored sample, from GPD defined in (1) and (2), with 

censoring scheme ),...,,( 21 RRRR  then the conditional 

density function of the future progressively Type-II censored 

order statistic xs can be obtained by putting ii Rm   for 

11  i ,
 }1,...,2,1{  n  and 1  Rk in (19), 

for more details see [10] and [11].  

 

 

6.1 When σ is known 
The Bayes predictive density function and the Bayesian 

prediction survival function in this case will take the forms:       




























s

ri
r

iR

r

R

r

i

s

r

s

s

AT

Tsa

x
r

C

C
xxf prog

1
)1(

)(*

1

1

1*

)48(,
)(

))((

1)()|(1













  

and

)49(,ln
1

)(

)()|(Pr

1

)(

)(*

1

1





































s

ri

r

r

iR

i

r

i

r

R

s

rk

ksprog

x

t
Tsa

Txtx














 

where

                 

)1(ln)1ln()1(
1

1 



r

ri

i

r
i

iR

xx
RT  



 .

          (50)

 

   





1

1

)1()1(
i

j

j

ij

ji RnR


 ,                               (51) 

and

  

sirsa
s

ij
rj ij

r

i



 




1,
1

)(
1

)(*


.                  (52)  

6.2 When θ and σ are Unknown parameters 
The Bayes predictive density function and the Bayesian 

prediction survival function of the future progressively type-II 

censored xs, s = r+1, r+2, …, n will take the forms 
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7. BAYESIAN PREDICTION BASED ON 

PROGRESSIVELY TYPE-II 

CENSORED ORDER STATISTICS IN 

CASE OF RSS 

7.1 When σ is known 
The Bayes predictive density function and the Bayesian 

prediction survival function will take the forms 
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7.2 When θ and σ are Unknown parameters 
The Bayes predictive density function and the Bayesian 

prediction survival function of the future progressively type-II 

censored OS xs, s = r+1, r+2, …, n in this case take the forms 
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8. 10. Numerical analysis 
In this section, Bayesian prediction bounds for the sth 

observation in samples of progressively type-II censored and 

upper record sample with fixed and random sample sizes are 

obtained. 

8.1 Unknown one parameter 
By taking the parameter σ is known (σ = 0.1 and 0.5), one can 

find the 90% and 95% BPI for the future observation xs:n 

using Monte Carlo simulation study according to the 

following steps: 

1. For arbitrary given values of the prior parameters 

(α, β) = (1, 0.1), we generate θ using (12). 

2. According to an algorithm introduced by [12], two 

progressively type –II censored samples with given 

censoring scheme (1, 0, 2, 1, 0, 3, 0, 2, 0, 1) from 

GPD with α, β and σ as in step (1) and (2) are 

generated {0.0003, 0.0006, 0.0007, 0.0025, 0.0036, 

0.004, 0.0085, 0.0117, 0.0138, 0.0295} and 

{0.00017, 0.00019, 0.0002, 0.0005, 0.0006, 0.0008, 

0.0013, 0.0015, 0.0021, 0.0021}. Taking the 

number of observed failures is r = 7 and 9, the 90% 

and 95% BPI for the future xs:n , s=8, 9 and 10 by 

evaluating (49) with (27) are constructed, these are 

given in Table 1. 

3. Using generated θ obtained as in step (1), two 

samples of upper records from GPD given in (1) 

with σ = 0.1 and 0.5 and fixed sample size n = 10 

are generated, {0.0204, 0.0239, 0.0329, 0.1644, 

0.1882, 0.1965, 0.2698, 0.2870, 0.3026, 0.3421} 

and {0.0332, 0.0462, 0.0562, 0.0618, 0.0629, 

0.0689, 0.0690, 0.0712, 0.0715, 0.0745}. Taking the 

number of observed upper records is r = 7 and 8, 

90% and 95% BPI for the future observation xs:n , 

s=8, 9 and 10 are constructed by evaluating (43) 

with (27), noting that the results doesn't depend on 

the sample size n. Table 3 represents these results. 

4. Repeat step (4) with initial sample size n = 7 from 

Poisson distribution with λ = 0.9, two progressively 

type II censoring samples are generated. The 

constructed 90% and 95% BPI for the future xs:n , 

s=8, 9 and 10 by evaluating (55) with (27) are in 

Table 2. 

8.2 Unknown two parameters 
Assuming that the parameters θ and σ are unknown, the 90% 

and 95% BPI for the future observation xs:n using the Monte 

Carlo simulation study are computed according to the 

following steps: 

1. 90% and 95% BPI for the future upper RVs 

observation xs:n , s=8, 9 and 10 are obtained from 

two different samples in Table 4. 

2. Two progressively type-II censored samples with 

given censoring scheme (1, 0, 2, 1, 0, 3, 0, 2, 0, 1) 

from GPD are generated. Taking the number of 

observed failures is r = 7 and 8, the 90% and 95% 

BPI for the future xs:n , s=8, 9 and 10 are 

constructed, these are given in Table 5. 

9. CONCLUDING REMARKS 
Based on the one-sample scheme, Bayesian prediction interval 

is presented in this paper based on a sample of GOS from the 

GPD. Results based on progressively type II censored and 

upper RVs are obtained. From the results we may observe 

1. From the Tables one can observe that, the BPI 

increase when the value of the parameter σ increase, 

and that is because the observation values from the 

GPD are bounded by σ, this leads to when σ has a 

small value, the data will be in a small range and 

thus minimize the length of the BPI. 

2. Tables show that the lengths of BPI are sensitive to 

the size of known observations, i.e, increasing the 

available information leads to shrinking the 

intervals. Noted that when confidence level 

increases the length of intervals also increases.  

3. The width of the BPI increases by increasing s, i.e, 

the width of the BPI for a specific future 

observation is wider than the previous one when 

other parametric values are fixed. 

4. It has been observed from the Tables 4 and 5 that, 

all the properties of the BPI in case of unknown two 
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parameters are similar to the case when one 

parameter is known.  

5. Different values of both of the prior parameters and 

sample size rather than those appeared in the Tables 

have been considered but did not change the 

previous conclusion.  

Table 2: 90% and 95% BPI for progressive type-II censoring observation xs in case of Poisson RSS. 

r s 
σ =0.5 σ =0.1 

90% BPI (Width) 95%  BPI (Width) 90% BPI (Width) 95%  BPI (Width) 

7 8 0.3241, 0.3378 (0.0136) 0.3240, 0.3416 (0.0175) 0.0723, 0.0745 (0.0021) 0.0723, 0.0751 (0.0027) 

 
9 0.3384, 0.3548 (0.0164) 0.3374, 0.3597 (0.0222) 0.0746, 0.0771 (0.0025) 0.0744, 0.0779 (0.0034) 

 
10 0.3548, 0.3761 (0.0212) 0.3554, 0.3819 (0.0265) 0.0772, 0.0805 (0.0033) 0.0772, 0.0814 (0.0041) 

9 10 0.2212, 0.2318 (0.0105) 0.2212, 0.2347 (0.0135) 0.0618, 0.0637 (0.0019) 0.0618, 0.0642 (0.0024) 

Table 3: 90% and 95% BPI for future upper record observations 

r s 
σ =0.5 σ =0.1 

90% BPI (Width) 95%  BPI (Width) 90% BPI (Width) 95%  BPI (Width) 

7 8 0.2711, 0.3454 (0.0742) 0.2705, 0.3622 (0.0917) 0.0692, 0.0826 (0.0133) 0.0691, 0.0852 (0.0161) 

 
9 0.2783, 0.3808 (0.1025) 0.2756, 0.3983 (0.1226) 0.0706, 0.0880 (0.0174) 0.0701, 0.0905 (0.0203) 

 
10 0.2883, 0.4064 (0.1181) 0.2838, 0.4232 (0.1393) 0.0725, 0.0916 (0.0190) 0.0717, 0.0937 (0.0219) 

8 9 0.2882, 0.3538 (0.0656) 0.2876, 0.3686 (0.0810) 0.0714, 0.0830 (0.0116) 0.0713, 0.0854 (0.0141) 

 
10 0.2946, 0.3855 (0.0908) 0.2922, 0.4008 (0.1086) 0.0726, 0.0880 (0.0153) 0.0722, 0.0902 (0.0180) 

Table 4: 90% and 95% BPI for future upper record observations xs when unknown θ and σ. 

r s 
θ = 0.0155 and σ = 0.225 θ = 0.0155 and σ = 0.586 

90% BPI (Width) 95%  BPI (Width) 90% BPI (Width) 95%  BPI (Width) 

7 8 0.0177, 0.0281 (0.0104) 0.0176, 0.0313 (0.0136) 0.1074, 0.1429 (0.0354) 0.1071, 0.1522 (0.0450) 

 9 0.0185, 0.0351 (0.0165) 0.0182, 0.0394 (0.0212) 0.1106, 0.1646 (0.0539) 0.1047, 0.1763 (0.0716) 

 10 0.0196, 0.0415 (0.0218) 0.0191, 0.0469 (0.0278) 0.1154, 0.1844 (0.0690) 0.1133, 0.1986 (0.0853) 

8 9 0.0185, 0.0275 (0.0090) 0.0184, 0.0305 (0.0117) 0.1167, 0.1511 (0.0343) 0.1164, 0.1600 (0.0435) 

 10 0.0192, 0.0335 (0.0142) 0.0189, 0.0372 (0.0182) 0.1132, 0.1720 (0.0588) 0.1140, 0.1832 (0.0692) 

 

Table 5: 90% and 95% BPI for future progressive type II censoring observations xs when unknown θ and σ. 

r s 
θ = 0.0155 and σ = 0.726 θ = 0.0155 and σ = 0.184 

90% BPI (Width) 95%  BPI (Width) 90% BPI (Width) 95%  BPI (Width) 

7 8 0.0085, 0.0155 (0.007) 0.0085, 0.0174 (0.0089) 0.0020, 0.0047 (0.0026) 0.0020, 0.0054 (0.0034) 

 
9 0.0095, 0.0261 (0.0166) 0.0091, 0.0300 (0.0208) 0.0023, 0.0088 (0.0064) 0.0022, 0.0105 (0.0082) 

 
10 0.0115, 0.0403 (0.0288) 0.0107, 0.0740 (0.0633) 0.0030, 0.014 (0.0114) 0.0027, 0.0173 (0.0145) 

8 9 0.0107, 0.0245 (0.0137) 0.0106, 0.0281 (0.0175) 0.0021, 0.0067 (0.0046) 0.0020, 0.0080 (0.0059) 

 
10 0.0123, 0.0389 (0.0266) 0.0112, 0.0449 (0.0331) 0.0026, 0.0117 (0.0091) 0.0024, 0.0141 (0.0116) 

Table 1: 90% and 95% BPI for future progressive type II censoring observations xs in case of FSS 

r s 
σ =0.5 σ =0.1 

90% BPI (Width) 95%  BPI (Width) 90% BPI (Width) 95%  BPI (Width) 

7 8 0.0086, 0.0189 (0.0103) 0.0086, 0.0218 (0.0132) 0.0013, 0.0032 (0.0019) 0.0023, 0.0053 (0.003) 

 9 0.0099, 0.0344 (0.0245) 0.0094, 0.0408 (0.0313) 0.0016, 0.0061 (0.0045) 0.0015, 0.0073 (0.0058) 

 10 0.0126, 0.0552 (0.0425) 0.0115, 0.0653 (0.0537) 0.0021, 0.0100 (0.0079) 0.0019, 0.0119 (0.0100) 

8 9 0.0120, 0.0320 (0.0199) 0.0119, 0.0376 (0.0256) 0.0016, 0.0051 (0.0034) 0.0016, 0.0060 (0.0044) 

 10 0.0142, 0.0529 (0.0386) 0.0134, 0.0621 (0.0487) 0.0020, 0.0087 (0.0067) 0.0018, 0.0103 (0.0084) 
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