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generalized Pareto distribution based on generalized order
statistics are obtained. Two cases are considered unknown one
parameter and unknown two parameters. We also consider
two cases fixed sample size and random sample size. The
Bayesian predictive functions are specialized to ordinary
order statistics, progressive type Il censoring and upper record
values. Examples are calculated for the lower and the upper
bounds for the future observation based on ordinary order
statistics, progressive type Il censoring and upper record
samples..
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1. INTRODUCTION
The generalized Pareto distribution (GPD) was first
introduced by [1]. The probability density function (pdf) and
cumulative distribution function of the generalized Pareto are
given by
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f(x;a,H):olg(l—XJg :0>00<x<ao, (1)
o

and F(x;a,e)zl—[l—gjz, )

where 0 is the shape parameter and o is the scale parameter.
See [2].

Generalized order statistic's concept was presented by [3] as a
unified approach to different models of ordered random
variables such models are order statistics (OOS), record
values (RVs), k-th record values and sequential order
statistics, among others. Authors [4], [5] among others
utilized the generalized order statistics (GOS) in their works.

Let X; <X, <...< X, be the first r Generalized order

failure times in a random sample of n components from an
absolutely continuous distribution function F, where
X, =X(@i,n,m,k), i=12,..,n, M, and k are real numbers

and K >1 . The joint pdf of the first r GOS is given by

<a-Fon 10} @
where f(x,) and F(x;)are the pdf and the cdf of Xi , and
i oo — _1. 4
CJflzl_‘[}/H y|:k+n7|+ZmJ and r 1,2’.”’n 1 ()
i=1 j=i
See [3], considering two cases for the real numbers m;, the
conditional density functionh(x, |x,) of the GOS xs given
that r GOSs had already failed is given by,

Casel: When m =m,=..=m _,=m=-1
ks—r s—r-1
(X [ %,) = m[ln(l— F(x)—In(Ll—F(x))]
xL=F OO L= F )] f (%), )
Case Il: When m; = m, fori=j,
Co
hZ(Xs | Xr) = CPl
o FEFO) V(o) NG
i;lai (s)(l_ F(xr)] (1_ F(xs)]' 1<r<n-1,
where a"(s) = 11171 . orel<ics. @

}:imﬂ/ i = 7i
See [3], [6]. The Bayes prediction of an unobserved random
variable is frequently more significant for applications than
interval estimation of parameters. Many authors have been
discussed the prediction problems in general based on GOS,
progressively type-1l censored data, record values (RVs) and
ordinary order statistics (OOS) see for example [7], [8]. The
goal of this paper is to discuss the one-sample Bayesian
prediction problem from generalized Pareto distribution based
on GOS in two cases when the sample size is fixed (FSS) and
when it is a random variable (RSS). In case of fixed sample
size, The Bayes predictive density function of the future GOS

X, S=r+1r+2,..,ncan be written as:

f7(x, |5)=”h(xs 16,0)f(6,0|x)d&o, ®)
o6
where the conditional pdf of the future observation is
h(xs |6,0) and f(0,01X) is the posterior pdf.

In case of random sample size, the predictive density function
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of X is given by

a(xs | x,n) = Zv(n)f (x.]x), O

Pr ( =
where v(n)is the probability mass function of nand f"(x|x)

is defined in (8), see for example [9].

2. BAYESIAN PREDICTION BOUNDS

BASED ON GOS IN CASE OF FSS
The likelihood function of the first r GOS failure times

X1y X5y «oey X, in a random sample of n identical distributed

random variables having the GPD defined in (1) can be
obtained by substituting (1) and (2) into (3) as follows

L(o,6;x) = Crfl(oﬁ)frn(a)e%, (10)
where
n(o) = H(l —')’ T= If(m +1)In(1- )+7rln( X
(11)

Considering that the scale parameters ¢ is known and the
unknown shape parameter 6 is having the inverted gamma
prior distribution defined by

B g . ; 12)
e’ if 6>0, (a, )
9.(9) = @) (a, B)
the posterior pdf of 8 can be written as
a+r BT
f (el X) (ﬂ T) 9 (r+a+l)e o , (13)
L(a+r)

when the two parameters ¢ and 6 are assumed to be unknown,
the inverted gamma prior density defined in (12) is considered
as a distribution for the unknown shape parameter 6 and the
uniform prior density is considered for the unknown scale
parameters o defined by

gz(a)zl, 0<o<uv: (14)
1

the joint prior density for both the parameters 6 and o takes

the form

a B
g(oc,0)= P g (Ve 0 1, 0<o<v,(a, B,6,0)>0,(15)
I'(a) v

where a, B, and v are known. The joint posterior pdf of 6 and
o is given by

AT
f2 (O', 9 | 5) — 77(0-) 9—(r+a+1)e 0 ’ (16)
T(a+r)o'l,
where | = _[Lc:)(ﬁ—T)’(”“)do: 17
o

0

2.1 When o is known
Now let X,, s=r+1r+2,..,

component from the remaining (n-r) components having the
GPD when the scale parameter o is known, the conditional
density function of the s GOS given that r generalized order
statistics had already failed can be obtained by substituting (1)

n denotes the s lifetime
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and (2) into (5) and (6) as follows:

Case l:
s—r sS—r 7&
h (X %)= K (1J (1_§)—1 A la 0 ,(18)
oI'(s—r)\ & o
Case I

7
hz(xslxr)=o%l( Gj Za“’(S) e"0 . (19)
r-1

i=r+1

where A=_|n{o-_xs} : (20)

o—X,

The Bayes predictive density function of the future GOS x; is
obtained by substituting (18), (19) and (13) into (8)

Case I:

k" (B-KT,)*""T'(a+5)
I'(s—nT(a+r)

fu* (Xs | 5) =

(1_§) -1 Asfrfl
X g . (21)

(ﬂ—k |n(1—XS)JW
(o2

Case Il:

f (1 =S )
s ai(r) (S)(ﬂ _ T)a+rl | (22)
(B =T+ Ay)*

By integrating with respect to x,, the Bayesian prediction
survival function Pr(x, >t|X) for somet, can be written

as follows:

Case l:

_ s—r-1
Pr(x, >t|0) =R, | —— T kD)
N a+s-1) (B-kz)*

s—r-1 (KT, —kz)>"?
T ars-D@+s-2) (B-kz)~?
(s—r-1(s—-r-2) (KT, —kz)*"® .
(a+s—-D(a+s-2)(a+s-3) (B-—kz)**3
(s=r-=1! 1 } (23)
T ars—Da+s—2)(a+r) (B—K2)"

Case II:

C
Pr, (X, 2t]X) =C¥’l(,b’—T)°’+r

r-1
s al (s (asr
- 'y( p-T-5@-T)I", @4
i=r+l i
X t
where T, =In(1-—+).Z =In(1-—), (25)
(el O
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_(B-T)""T(a+s)
C T(s-nN[(a+r)

and

r,s

Let Ly and U denote the lower and the upper limits of the
100t% Bayesian prediction interval for the GOS X, such that
pr[Ls<xs<Ug] =1 where,

Prix; = L [x) =

1Y prx, zU, ) =122 @D
2 2

2.2 When 0 and ¢ are Unknown parameters
In this subsection, The Bayes predictive density function of

the GOS X, is obtained by substituting (18), (19) and (16)
into (8):

Case I:
f21*(Xs |X) = K Ia+s)
[,I(s—r)T(a+r)
L ne)d- 2yt AT
g do. (29)
° (,B— k |n(1—XS)j ot
o
Case Il:
. _(a+1)C
fr (X X)) = 1 c. C..
T n(o) S " (s) . (29)

G X £ r+1(ﬂ T+A )(a+r+1)
and the Bayesian prediction survival function of the future

GOS x; as follows:
Casel:
I'(a+59)
I, T(@+1)(s—r)
X'“[n(a)( 1 (kT —kz)**
0 O |_(a+s—1) (B-kz)*s?
s—r-1 (KT, —kz)*"?
(a+s D(a+s-2) (B—kz)*=?
(s—r-1)(s-r-2) (KT, —kz)*"3
(@+s-D(a+s-2)(a+s-3) (B-kz)*?®
(s—r-1! 1 } . (30)
(a+s D(ax+s-2)...(a+r) (B-kZ)*'
Casell:

c s
Pry, (X, Ztu):% zai(r)(s)

0 C r—1 i=r+l

STt p-T @
0 7io

Per(Xs 2t | 5) =

3. BAYESIAN PREDICTION BOUNDS
BASED ON GOS IN CASE OF RSS

In this section, assuming that the sample size n is a random

International Journal of Computer Applications (0975 — 8887)
Volume 132 — No.4, December2015

variable distributed as a Poisson distribution with pmf given
by

e—ﬂ n

p(n;A) = I’I n=0,12,..and 1>0. (32
nt

Replacing v(n) in (9) by p(n,; 1) defined in (32), we get

g, (X | x,n) = il 7 Zif (X[x). @3
N A _ n=

n=0 n!

3.1 When ¢ is known
Assuming that ¢ is known, substituting (21) and (22) into
(33), the bayes predictive functions take the forms:

Case I:

T(a+s)(oc—-x)"
C(a+1)(s— r){e‘ - 521:/1”}

ks r(ﬂ kT)a+rAs r-1

qpll(xs | X, n) =

3 o (349
n=s Il (ﬁ_kln(l_s)j
o
Case Il:
quZ(Xs|Z’n): (a+1r)n ( _Xs)1
e’ — S A
n=0 nl
a® (B-T)" -
an;‘|zr;1 (s )(ﬁ_T+A7i)(a+f+1)’ (35)

and hence integrating (34) and (35) with respect to xs (from
some t to o), the Bayesian prediction survival function is

obtained:

Casel:
Proa(Xs =t]x) =
I AN [ S
e/\. _nzzoﬁ =
S—r— 1 (kT _kz)srz
(0!+S D(a+5-2) (B-kz)**?
(s—r-1)(s-r-2) (KT, —kz)*"3
(@+s-1)(a+s—2)(a+s-3) (B-kzZ)“°

(s—r-1! 1 ﬂ’(%)
(a+s D(a+s-2)...,a+r) (B-kZ)*"
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Casell:
1
Pr,(x, 2t[x)= —
A
n=0 n!

& AC,
L2

n=si=

3”& -T)""
NCoy p[B-T -2 -T N

3.2 When 0 and ¢ are Unknown parameters
When the two parameters having posterior pdf given by (16)
and the sample size n has a Poisson distribution with pmf
given by (32), The Bayes predictive density function of the
GOS X, is obtained by substituting (28) and (29) into (33) as

follows:

37)

Casel:
I'a+s k'
q p21(Xs | )_(! n) = ( ) s—1 4n
I, T(a+r)(s—r) ol _ A"
n=0 n!

$ 2§ oo —x) A

> —_do,  (38)
me ’(ﬁ—kln(—xsj
o

Case 11:
C(a+r) &4 al(5)C,
quZ(Xsl)_(’n) s1 1n Z nl ﬁ
eﬂ_z n=s i=r+1 0~r-1
n=0 n!

])‘ 77(0-)(0- — X5 )_l d

, (39
Vo (5T + Ay 07 ()

and the Bayesian prediction survival function of the future
GOS x,, s=r+1, r+2, ..., n in this case take the forms:

Casel:
Prooi(X, 2t x) =

I'(x+5) 1
I, T(a+r)I(s-r) , &

° _n:Oﬁ

A n(a)f 1 (KT, —kz)*"*
z J.I: O' L(a‘i‘s—l) (ﬁ—kZ)a+S_1
S—r— l (kT _kz)s r-2
(0!+s D(a+s—-2) (B—kz)“™?

(s—r-1(s-r-2) (KT, —kz)*"
(a+S—l)(a+s—2)(a+s_3) (ﬂ_kz)a+s—3

sor ) ! dor, (40)

(a+s D(a+s-2)..(a+r) (B-kZ)**" ’

0
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Case II:

Proy, (X, 2t X) =

1 a“)(s)CS a
s—lﬂi ZZ -

_ n=s i=r+1 -1 n-
n=0 n!

In(a)[ﬂ T-
0 7iO

4. BAYESIAN PREDICTION BASED ON
UPPER RVS IN CASE OF FSS

It is well known that the record value is a GOS whenk =1,
and m=-1.

7Z-T)“"do, (41)

4.1 When ¢ is known

The Bayes predictive density function of the future upper RVs
X S =r+1,r+2, ..., n, is given by putting (k =1,m=-1) in
(21).

F(a+S) ( -7 )a+r

frva (X, [ X) = o (s— N (a+r)

(1 _ é) -1 As—r—l
o

[ﬁ —In- X)j
O

the Bayesian prediction survival function of the upper RVs x
can be obtained from (23) as follows:

: (42)

PrRVl(Xs 2th):
F(O{-l— S)(ﬂ_Tr )tl+r 1 (Tr _Z)s—r—l
F(S—I‘)F(a+r) (a+s_1) (ﬂ_z)oﬁ-s—l
s—r—-1 ( Z)s r-2
(a+s D(a+s-2) (B—2)“"7?
(s—r-1(s-r-2)  (T,-2"
(@+s-D(a+s-2)(a+s-3) (B-2)"3
(s—r—1)! 1 }.(43)
(a+S Da+s—-2).(a+r)(B-2)"""
The lower and the upper limits of the 100.% Bayesian

prediction interval for the future upper RV X, are obtained by
substituting (43) into (27).
4.2 When 6 and ¢ are Unknown parameters
When the two parameters are unknown and having joint prior
pdf given by (16), putting (k =1,m=-1) in (28) and (30) the
Bayes predictive density function and the Bayesian prediction
survival function of the upper RVs x; are obtained as follows:
1 I'(a+5)

L T(s—nI(a+r)

fI:VZ(Xs | )_() =

, n(e)d-"2) A
x j o do, (44)

° (ﬁ —|n(1—);5)]a+s o
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Perz(xs 2t]x)= Da +9)
LT(a+r)I(s—r)

n(a)( 1 (T -z

b o' [(a+s-1 (B-2z)“t
s—-r-1 (T, —2)""?

(a+s D(a+s—2) (B—2)“"2
(s—-r-D(s-r-2) T, —2z)"2 .
(a+s—-D(a@+s—2)(a+s-3) (B-2)"

vor=t L ldo.@5)
(0{+S 1)(0!-0—5—2) (a+l’) (ﬁ Z)a+r '
where |, :I@(ﬂ_-ﬂ)—(rm)da 46)
e

5. BAYESIAN PREDICTION BASED ON
UPPER RVS IN CASE OF RSS

It is clear that the equations obtained in Section 4 are all
independent of the sample size n.

5.1 When ¢ is known
Assuming that the sample size is a random variable with the

probability mass functionv(n), substituting by (42) into (9),
the Bayes predictive density function is obtained as follows:

Z (M) fava (X, 1 X)

Pr(n > s) %=

_ frva (X |X)Z v(n)

Pr(n>s) 4%

qRVl(Xs | )_(’ )

_ RV1(X | X)
= e Prin>s) = fo,, (X, | X). (47)

Similarly, the survival function of the upper RV x, has the
same formulae of equation (43) weather the sample size is

fixed or random variable.

5.2 When 6 and ¢ are Unknown parameters

Similarly, the Bayes predictive density function and the

survival function of the upper RV X, can be obtained from

equations (44) and (45) respectively.

6. BAYESIAN PREDICTION BASED ON
PROGRESSIVELY TYPE-II
CENSORED ORDER STATISTICS IN
CASE OF FSS

Let  Xi,.ps Xppnsees Xy, dENOte @ progressively Type-ll

censored sample, from GPD defined in (1) and (2), with

censoring scheme R=(R,R,,...,R,)then the conditional
density function of the future progressively Type-Il censored
order statistic xs can be obtained by putting M, = Ri for

1<i</-1, 7efL2,..,n-3 and y, =k =R, +1in (19),

for more details see [10] and [11].
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6.1 When ¢ is known
The Bayes predictive density function and the Bayesian
prediction survival function in this case will take the forms:

B 0= S (g1 % b
progl s I 2 _OC o

r-1
S oa () (B -T)"
i=r+l(ﬂ _TR _ A5| )(oz+r+l) !

(48)

and

Proog (X 2t X) = [0, (B-To)*"

k=r+1

—(a+r)
S a0 (s) - { i S |nL”__Xt H (49)

i=r+1 r

where
i=r-1

T, = Z (R, +1)|n(1——)+5 In(l——f) (50)

i=1
5, :i(Rj+1):n—i(Rj +1) (51)
j=i j=L

,r+l<i<s- (52)

S
and a’:(r) (S) H

J =r+1 J i
J#i

6.2 When 0 and ¢ are Unknown parameters
The Bayes predictive density function and the Bayesian
prediction survival function of the future progressively type-11
censored X, S = r+1, r+2, ..., n will take the forms

Cow ¢ n(o%)
ISCr—l 0 O'r(G—XS)

S A (s)(a+r)

f;roz (Xs | X) =

Sa(B-Ty —As) ®3)
and
Pl (X, 2| X) = 3 E’;
ZS: f & " (s)n(o; %) (54)
i o8, [f-Ty =8, (2 =T
Where 1, f (o) (B-Tz) " “do. (55)
0

7. BAYESIAN PREDICTION BASED ON
PROGRESSIVELY TYPE-II
CENSORED ORDER STATISTICS IN
CASE OF RSS

7.1 When ¢ is known
The Bayes predictive density function and the Bayesian
prediction survival function will take the forms

48



a+r _
qprolP(Xs |)_(,n)=%(0'—xs) '
A

n=0 n!

< Z =Fa ()

n=s i-rr1 N r1 (ﬂ_TR

and

(B-Ta)""
_ A5_)(a+r+l) !

(56)

1
PrprolP (Xs 2t | X) =T 1 a0
A

n=0 n!

ACy () (B-To)""
S&nC, S[B-T, -5 (z-T")n 6N
7.2 When 6 and ¢ are Unknown parameters
The Bayes predictive density function and the Bayesian

prediction survival function of the future progressively type-Il
censored OS x;, s = r+1, r+2, ..., n in this case take the forms

(a+7)
Uprozp (X5 [ X, 1) = ———F—

et -y

= n!

(s)csljn(a Xo-x)"c

=r

syia

hos izra N r—1 (,B T — Aé‘ )(a+f+1)
(58)
1
I:)rprOZP (Xs 21 | 5) = 1
A _— JE—
= nl
(s)C., A
d s-1
i Z Zl n
n=s i=r+ -1
tn(o;X) y
0 i

8. 10. Numerical analysis

In this section, Bayesian prediction bounds for the s
observation in samples of progressively type-1l censored and
upper record sample with fixed and random sample sizes are
obtained.

th

8.1 Unknown one parameter

By taking the parameter ¢ is known (¢ = 0.1 and 0.5), one can
find the 90% and 95% BPI for the future observation X,
using Monte Carlo simulation study according to the
following steps:

1. For arbitrary given values of the prior parameters
(a, B) = (1, 0.1), we generate & using (12).

2. According to an algorithm introduced by [12], two
progressively type —II censored samples with given
censoring scheme (1, 0, 2, 1, 0, 3, 0, 2, 0, 1) from
GPD with a, # and o as in step (1) and (2) are
generated {0.0003, 0.0006, 0.0007, 0.0025, 0.0036,
0.004, 0.0085, 0.0117, 0.0138, 0.0295} and
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{0.00017, 0.00019, 0.0002, 0.0005, 0.0006, 0.0008,
0.0013, 0.0015, 0.0021, 0.0021}. Taking the
number of observed failures is r = 7 and 9, the 90%
and 95% BPI for the future xs., , =8, 9 and 10 by
evaluating (49) with (27) are constructed, these are
given in Table 1.

3. Using generated & obtained as in step (1), two
samples of upper records from GPD given in (1)
with ¢ = 0.1 and 0.5 and fixed sample size n = 10
are generated, {0.0204, 0.0239, 0.0329, 0.1644,
0.1882, 0.1965, 0.2698, 0.2870, 0.3026, 0.3421}
and {0.0332, 0.0462, 0.0562, 0.0618, 0.0629,
0.0689, 0.0690, 0.0712, 0.0715, 0.0745}. Taking the
number of observed upper records is r = 7 and 8,
90% and 95% BPI for the future observation X, ,
s=8, 9 and 10 are constructed by evaluating (43)
with (27), noting that the results doesn't depend on
the sample size n. Table 3 represents these results.

4. Repeat step (4) with initial sample size n = 7 from
Poisson distribution with A = 0.9, two progressively
type Il censoring samples are generated. The
constructed 90% and 95% BPI for the future X, ,
s=8, 9 and 10 by evaluating (55) with (27) are in
Table 2.

8.2 Unknown two parameters

Assuming that the parameters 6 and ¢ are unknown, the 90%
and 95% BPI for the future observation xs., using the Monte
Carlo simulation study are computed according to the
following steps:

1. 90% and 95% BPI for the future upper RVs
observation Xs., , =8, 9 and 10 are obtained from
two different samples in Table 4.

2. Two progressively type-ll censored samples with
given censoring scheme (1, 0, 2,1, 0, 3,0, 2, 0, 1)
from GPD are generated. Taking the number of
observed failures is r = 7 and 8, the 90% and 95%
BPI for the future Xg, , $=8, 9 and 10 are
constructed, these are given in Table 5.

9. CONCLUDING REMARKS

Based on the one-sample scheme, Bayesian prediction interval
is presented in this paper based on a sample of GOS from the
GPD. Results based on progressively type 1l censored and
upper RVs are obtained. From the results we may observe

1. From the Tables one can observe that, the BPI
increase when the value of the parameter ¢ increase,
and that is because the observation values from the
GPD are bounded by o, this leads to when ¢ has a
small value, the data will be in a small range and
thus minimize the length of the BPI.

2. Tables show that the lengths of BPI are sensitive to
the size of known observations, i.e, increasing the
available information leads to shrinking the
intervals. Noted that when confidence level
increases the length of intervals also increases.

3. The width of the BPI increases by increasing s, i.e,
the width of the BPI for a specific future
observation is wider than the previous one when
other parametric values are fixed.

4. It has been observed from the Tables 4 and 5 that,
all the properties of the BPI in case of unknown two
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5.

parameters are similar to the case when one

parameter is known.

Different values of both of the prior parameters and
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sample size rather than those appeared in the Tables
have been considered but did not change the

previous conclusion.

Table 1: 90% and 95% BPI for future progressive type Il censoring observations X, in case of FSS

¢ =0.5

¢ =0.1

90% BPI (Width)

95% BPI (Width)

90% BPI (Width)

95% BPI (Width)

10

0.0086, 0.0189 (0.0103)
0.0099, 0.0344 (0.0245)
0.0126, 0.0552 (0.0425)

0.0086, 0.0218 (0.0132)
0.0094, 0.0408 (0.0313)
0.0115, 0.0653 (0.0537)

0.0013, 0.0032 (0.0019)
0.0016, 0.0061 (0.0045)
0.0021, 0.0100 (0.0079)

0.0023, 0.0053 (0.003)
0.0015, 0.0073 (0.0058)
0.0019, 0.0119 (0.0100)

10

0.0120, 0.0320 (0.0199)
0.0142, 0.0529 (0.0386)

0.0119, 0.0376 (0.0256)
0.0134, 0.0621 (0.0487)

0.0016, 0.0051 (0.0034)
0.0020, 0.0087 (0.0067)

0.0016, 0.0060 (0.0044)
0.0018, 0.0103 (0.0084)

Table 2: 90% and 95% BPI for progressive type-11 censoring observation x; in case of Poisson RSS.

¢ =0.5

¢ =0.1

90% BPI (Width)

95% BPI (Width)

90% BPI (Width)

95% BPI (Width)

10

0.3241, 0.3378 (0.0136)
0.3384, 0.3548 (0.0164)
0.3548, 0.3761 (0.0212)

0.3240, 0.3416 (0.0175)
0.3374, 0.3597 (0.0222)
0.3554, 0.3819 (0.0265)

0.0723, 0.0745 (0.0021)
0.0746, 0.0771 (0.0025)
0.0772, 0.0805 (0.0033)

0.0723, 0.0751 (0.0027)
0.0744, 0.0779 (0.0034)
0.0772, 0.0814 (0.0041)

10

0.2212, 0.2318 (0.0105)

0.2212, 0.2347 (0.0135)

0.0618, 0.0637 (0.0019)

0.0618, 0.0642 (0.0024)

Table 3: 90% and 95% BPI for future upper record observations

¢ =0.5

¢ =0.1

90% BPI (Width)

95% BPI (Width)

90% BPI (Width)

95% BPI (Width)

10

0.2711, 0.3454 (0.0742)
0.2783, 0.3808 (0.1025)
0.2883, 0.4064 (0.1181)

0.2705, 0.3622 (0.0917)
0.2756, 0.3983 (0.1226)
0.2838, 0.4232 (0.1393)

0.0692, 0.0826 (0.0133)
0.0706, 0.0880 (0.0174)
0.0725, 0.0916 (0.0190)

0.0691, 0.0852 (0.0161)
0.0701, 0.0905 (0.0203)
0.0717, 0.0937 (0.0219)

10

0.2882, 0.3538 (0.0656)
0.2946, 0.3855 (0.0908)

0.2876, 0.3686 (0.0810)
0.2922, 0.4008 (0.1086)

0.0714, 0.0830 (0.0116)
0.0726, 0.0880 (0.0153)

0.0713, 0.0854 (0.0141)
0.0722, 0.0902 (0.0180)

Table 4: 90% and 95% BPI for future upper record observations X, when unknown 6 and o.

0 =0.0155 and ¢ = 0.225

6 =0.0155 and ¢ = 0.586

90% BPI (Width)

95% BPI (Width)

90% BPI (Width)

95% BPI (Width)

10

10

0.0177, 0.0281 (0.0104)
0.0185, 0.0351 (0.0165)
0.0196, 0.0415 (0.0218)
0.0185, 0.0275 (0.0090)
0.0192, 0.0335 (0.0142)

0.0176, 0.0313 (0.0136)
0.0182, 0.0394 (0.0212)
0.0191, 0.0469 (0.0278)
0.0184, 0.0305 (0.0117)
0.0189, 0.0372 (0.0182)

0.1074, 0.1429 (0.0354)
0.1106, 0.1646 (0.0539)
0.1154, 0.1844 (0.0690)
0.1167, 0.1511 (0.0343)
0.1132, 0.1720 (0.0588)

0.1071, 0.1522 (0.0450)
0.1047, 0.1763 (0.0716)
0.1133, 0.1986 (0.0853)
0.1164, 0.1600 (0.0435)
0.1140, 0.1832 (0.0692)

Table 5: 90% and 95% BPI for future progressive type Il censoring observations xs when unknown @ and o.

0 =0.0155 and ¢ = 0.726

0 =0.0155 and ¢ = 0.184

90% BPI (Width)

95% BPI (Width)

90% BPI (Width)

95% BPI (Width)

[ee)

10

0.0085, 0.0155 (0.007)
0.0095, 0.0261 (0.0166)
0.0115, 0.0403 (0.0288)

0.0085, 0.0174 (0.0089)
0.0091, 0.0300 (0.0208)
0.0107, 0.0740 (0.0633)

0.0020, 0.0047 (0.0026)
0.0023, 0.0088 (0.0064)
0.0030, 0.014 (0.0114)

0.0020, 0.0054 (0.0034)
0.0022, 0.0105 (0.0082)
0.0027, 0.0173 (0.0145)

10

0.0107, 0.0245 (0.0137)
0.0123, 0.0389 (0.0266)

0.0106, 0.0281 (0.0175)
0.0112, 0.0449 (0.0331)

0.0021, 0.0067 (0.0046)
0.0026, 0.0117 (0.0091)

0.0020, 0.0080 (0.0059)
0.0024, 0.0141 (0.0116)
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