
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

20

Service Level Agreement based Scheduling Techniques
in Cloud: A Survey

Rajeshwari B.S.

Assistant Professor, Dept. of
Computer

Science and Engineering
B M S College of Engineering

Bangalore, India

M. Dakshayini, PhD
Professor, Dept. of Information

Science and Engineering
B M S College of Engineering

Bangalore, India

H.S. Guruprasad, PhD
Professor and Head, Dept. of

Computer
Science and Engineering

B M S College of Engineering
Bangalore, India

ABSTRACT

Nowadays enterprises need to maintain plenty of applications

accessing by millions of users all over the world. Maintaining

their own infrastructure, managing software requirements and

handling excessive internet traffic is difficult. This makes

them to move towards cloud computing. Cloud computing is a

service provisioning technique, where customers can rent any

resources like hardware, software, or platform to develop an

application. Customers need to pay only for how much the

resources were consumed, can dynamically increase or

decrease the resource capacity as needed. Because customers

are paying for the services, they expect quality of service from

the provider. Providing a quality of service and attracting the

customers is a challenging issue for the providers. If not,

customers will move towards other cloud providers. Thus

Service Level Agreement (SLA) is made between providers

and customers that include service quality, resources

capability, scalability, obligations and consequences in case of

violations. Satisfying SLA is very important and a challenging

issue. In this paper, different framework and techniques

proposed by the different authors for providing a quality of

service and maintaining SLA are discussed.

Keywords

Cloud Computing, Quality of Service, Service Level

Agreement.

1. INTRODUCTION
Cloud computing is a service provisioning technique

consisting of various data centers distributed all over the

world connected through WAN. Each datacenter consists of

multiple physical machines connected by means of LAN. In

each physical machine multiple virtual machines were

created, sharing the hardware and storage resources. Different

applications run over on each virtual machine. Users can

access these applications through web portal. Cloud

computing has four distinct features [6]:

 It is elastic: user can increase or decrease the

resources as needed.

 Pay per use: Usage is metered and user pays only

for how much the resources were used.

 Operation: The services are completely handled by

the provider.

 Self-service: Users can operate through the console

to add a new CPU, a server instance or extra

storage.

2. SERVICE LEVEL AGREEMENT
In this cloud scenario, there will be a service providers who

are providing service and customers who are using services.

Customers pay for the resources depending on the usage.

Since customers pay for the services, they expect quality of

service from the provider. Thus there will be a clause between

providers and customers in providing a Quality of Service

(QoS) called as Service Level Agreement (SLA). SLA not

only includes functional requirements like service quality,

resource capability, and scalability but also includes non-

functional requirements like security, privacy, trust etc.

Retaining the customers is challenging for the providers. By

providing quality of service and maintaining SLA, customers

can be retained. Thus different authors’ proposed different

frameworks and SLA based techniques used for maintaining

SLA, avoiding SLA violations. According to an agreement, if

SLA violates providers may lose customers. Thus by

continuous monitoring of customer services and taking

appropriate action ahead of time avoids agreement violations

and can retain customers. SLA based scheduling includes

scheduling task to the appropriate machine based on SLA,

monitoring of resource usage, customer service execution

status, periodically checking for SLA violation. SLA mainly

includes

i) Responsibilities of both providers and customers.

ii) List of services and its description that is being provided

to the customer by the provider.

iii) Agreement on functional and nonfunctional requirements

provided by the provider.

iv) Legal context that has been negotiated by the provider and

customers.

 The SLA is split into the different stages, each addressing

specific set of customers for the same services, in the same

SLA. [22]

• Corporate-level SLA: Service level management issues are

related to every customer throughout the organization. These

issues are likely to be less volatile and so SLA reviews are not

required frequently.

• Customer-level SLA: Service level management issues are

related to the particular customer group, regardless of what

services being used.

• Service-level SLA: Service level management issues are

related to the specific services, in relation to this specific

customer group.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

21

3. SERVICE LEVEL AGREEMENT

BASED SCHEDULING TECHNIQUES
Stefano Ferretti et al., [4] proposed an architecture that

supports SLA driven configuration, management and

optimization of cloud resources and services. The architecture

mainly includes configuration service and load balancer. In

turn load balancer includes monitoring services and SLA

policy engine. Load balancer is responsible for dispatching

request and balancing load among the servers. It takes request

from clients and assigns these requests to an appropriate

platform and balancing load among them. Monitoring service

within load balancer monitors the incoming request and its

response time so as to check whether a SLA associated with

the request are satisfied or violated. SLA policy engine within

load balancer analyses the logs prepared by monitoring

service and finds whether system configuration need to be

changed or not. If necessary, invokes configuration service

module to reconfigure the resources. If SLA is fulfilled

according to an agreement and platform resources results

unused, platform reconfiguration occurs to release the unused

resources. If SLA is violated, then platform reconfiguration

occurs to add in additional resources to the platform. Proposed

strategy optimizes resource utilization by dynamically adding

and releasing number of VM’s to an application platform

depending on load, while honoring SLA but incurs additional

overhead. The downside of the strategy is as load imposed,

adding number of VM’s in execution environment exceeds

certain limit, forces some scalability problem for distributed

application such as shared DB.

Suneel K S et al., [7] presented an approach to monitor SLA

compliance at the cloud service provider that can be

implemented at the client end without need of third party.

Using this approach, the cloud users can continuously monitor

the SLA compliance at the cloud end. This proposed approach

includes mainly two functions i) Information Fetch Task

Generator function ii) Evaluator function. Information Fetch

Task Generator function, by taking SLA as input, generates

information fetch task. This information fetch task will be sent

along with the requested task to the cloud for execution. In the

cloud, for the set of task hash value is calculated and

generates log file that contains hash value of the task and their

arrival time. After getting result from the cloud, evaluator

function evaluates the SLA breach at the cloud. If percentage

of SLA breach is greater than the acceptable threshold, then

raises a SLA breach notification at the cloud user end .This is

a good effort where information fetch task is sent along with

the set of tasks and using the result of information fetch

packet returned from the cloud, percentage of SLA breach can

be identified, but the time at which information fetch task is

executed in the cloud is very important in identifying the

percentage of SLA breach.

Xiaomin Zhu et al., [15] proposed a “QoS aware fault

tolerant scheduling algorithm called QAFT”. The proposed

algorithm can tolerate failure of one processor at a time for

real time tasks that wants QoS in heterogeneous systems. The

algorithm starts execution of primary copies first and delay

execution of backup copies. By making passive execution of

backup copies, avoids execution of both primary copies and

backup copies simultaneous incorporate effective resource

utilization. The proposed model also provides higher

guarantee ratio, adaptively adjust the QoS levels of incoming

tasks depending upon the system load and avoids task

rejection. When the system is in heavy load, then QoS levels

of accepted tasks are degraded in order to increase guarantee

ratio. When the system is in light load, then QoS levels of

accepted tasks are increased in order to provide high quality

service. Hence in conclusion, proposed strategy by adaptively

adjusting QoS levels of real time systems based on system

load increases guarantee ratio, QoS, reliability and optimum

resource utilization in heterogeneous systems with tolerance

of only one processor’s permanent failure at one time instant

for real time tasks with QoS needs.

Ahmed Amamou et al., [19] proposed an algorithm “SLA

based Dynamic Bandwidth Allocator (DBA)”.The proposed

DBA algorithm allocates bandwidth to the application based

on established SLA agreement. The algorithm continuously

monitors bandwidth allocated for each application

environment and dynamically adjusts the bandwidth. The

architecture consists of a special virtual machine called driver

domain and multiple virtual machines, each hosting different

applications. Virtual machines are grouped based on priority

into different classes. Each virtual interface vifi are connected

to physical interface P. DBA algorithm browses each virtual

interface vifi and measures the bandwidth Bi currently using

by each virtual machine and adjust accordingly. i) If virtual

machine is using bandwidth within the range, then algorithm

does not perform any change. ii) If virtual machine is using

bandwidth above the specified range, then readjust bandwidth

to maximum range and remaining bandwidth will be added to

available bandwidth Bx. iii) If virtual machine is using

bandwidth below the specified range, then algorithm finds if

any bandwidth available. If so, bandwidth will be added and

readjust to minimum range. If not, then algorithm readjusts

the bandwidth of all virtual machines belonging to the same

class and will be added to the virtual machine, readjust to

minimum range. The proposed method also optimizes the

physical resource usage of CPU and memory by dropping

packets at virtual machine directly instead of driver domain.

This avoids transferring packets to destined virtual machine

from driver domain through I/O channel, saves memory

cycles and CPU cycles. Good effort, sharing of bandwidth

among VM’s depending upon the traffic honors SLA, reduces

the packet loss rate. But the model is focusing only on

bandwidth, hence application performance may be affected by

other resources such as CPU processing, memory and storage.

Rajeshwari B S et al., [21] proposed a framework “Optimized

Service Level Agreement Based Workload Balancing

Strategy in Cloud Environment”. The presented framework

offers both balancing the load among the servers as well as

QoS in cloud. In this framework, depending upon the servers

processing capacity, the servers are grouped into 3 clusters as

i)High processing power servers’ cluster ii)Medium

processing power servers’ cluster iii)Low processing power

servers’ clusters. The framework comprises two scheduling

algorithms i) SLA Based Scheduling algorithm ii) Idle-Server

Monitoring algorithm using at two different stages. At the first

stage, when a task enters into the task queue, SLA based

scheduling algorithm based on task length, deadline to finish

task and cost paid by the user computes the priority of the

task. Depending upon the calculated priority, algorithm

schedules the task to the respective servers cluster. At the

second stage, within each cluster Idle-Server Monitoring

algorithm monitors a set of servers in its cluster. When it

receives a task, algorithm checks for any idle server in its

cluster. If found, it assigns a task to the identified server. If

not, Idle-Server Monitoring algorithm running within medium

processing power servers cluster finds for any server is idle in

high processing power server’s cluster. If found, it assigns its

task to the identified high power machine. Correspondingly,

Idle-Server Monitoring algorithm within low processing

power server’s cluster finds any idle server in medium

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

22

processing power servers’ cluster. If found, it assigns its task

to the identified medium power machine. By doing this, the

high power machines and medium power machines are

utilized effectively, provide good response time, reduce

waiting time of the task and achieves better load balancing

among the servers. In this work, easy to manage by clustering

of servers based on processing and memory capacity. By

moving medium priority tasks to idle high processing servers

and low priority tasks to medium processing servers, high

power and medium power machines are utilizing efficiently.

But the downside of the proposed strategy is that it lacks

monitoring scheme for catching QoS violations.

Attila Kertesz et al., [13] presented architecture for SLA

based resource virtualization for executing user applications

in cloud. The architecture mainly includes three modules

i) Agreement Negotiation module ii) Service Brokering

module iii) Service Deployment module. Agreement

Negotiation module is responsible for negotiation on SLA

between users and providers, determines user QoS

parameters, rewards and penalties for meeting and violating

them. Architecture includes components such as Meta

Negotiator (MN), Meta Broker (MB), Broker (B), Automatic

Service Deployment (ASD), Physical and virtual resources.

During agreement negotiation process, the negotiation takes

place between usersMN, MNMB, MBB, BASD.

Once SLA is negotiated between user and provider, Service

Brokering module finds the required services with the help of

ASD. Service Brokering module is responsible for service

discovery, match making, interactions with information

system, service registers and repositories. If the required

service is not found, it calls Automatic Service Deployment

module to install the required service on the specifically

selected resource dynamically and starts executing.

 Al Amin Hossain et al., [2] proposed a Cloud Brokage model

that boost up customer satisfaction and diminish cloud service

provider’s anxiety for continuing their business. Presented

model consist of cloud broker, different cloud service

providers to attain cloud service for a particular cloud

customer. Cloud broker is a negotiator between customers and

multiple service providers. Customer request for their service

to cloud broker. Cloud broker searches for compatible service

provider and assigns to the requested customers. While

receiving service, broker observes amount of utilization of

registered resources and QoS. If customers request to

discontinue the remaining service, broker calculates

refundable amount for unutilized resources, service quality

degradation, service cancellation and profit obtained. Thus

architecture ensures SLA by providing refundable service in

case of unused resource, service quality degradation and

service cancellation. Hence proposed model overcomes

drawback of pay-as-you-go pricing model in terms of fairness

by refunding for SLA violations, service quality degradation,

service cancellation and unutilized resources.

Vincent C et al.,[1] presented a novel scheduling strategy that

schedules the incoming requests on virtual machines based on

agreed SLA by considering many SLA parameters such as

CPU requirement, memory, storage and network bandwidth.

The proposed model includes on demand resource allocation

strategy that automatically creates new virtual machines when

an appropriate virtual machine is not available for application

deploy. The proposed method also includes a load balancer

for effective distribution of applications execution on the

cloud resources. On demand resource provisioning strategy is

evaluated by deploying applications under three different

circumstances i)The first situation deals with only the

deployment of web applications service request ii)Second

situation deals with deployment of only high performance

computing (HPC) applications service request iii)Third

situation deals with deployment of web applications and HPC

applications. The strategy obtains better resource utilization

and deployment efficiency for any kind of applications as

compared to fixed resource provisioning technique.

Xiao Liu et al., [3] proposed a standard QoS framework for

cloud workflow systems. The proposed framework mainly

consists of four modules i)QoS Requirement Specification

Module ii)QoS Aware Service Selection Module iii)QoS

Consistency Monitoring Module iv)QoS Violation Handling.

Model is implemented in a consecutive fashion in order to

provide QoS for cloud workflow instances in 3 stages

i) During modeling stage, real world e-business or e-science

processes are modeled which contains process structure, task

definition for number of workflow activities and QoS

requirement such as performance, reliability and security. The

provider will negotiate with their customers. ii) During

instantiation stage, cloud workflow system searches for cloud

service both functional and non-functional QoS requirement

that satisfies the execution of workflow activities. iii) During

execution stage, workflow execution engine will manages

data and control flows, performs runtime management such as

monitoring and exception handling mechanisms that ensures

detection and recovery of QoS violations such that service

negotiated agreement be successfully fulfilled. Good effort,

all local temporal violations are handled automatically and

make global SLA violation rate kept very close to 0%.

Kun Ma et al., [5] proposed a lightweight, scalable framework

which incorporates some open source monitoring tools. These

monitoring tools perform end to end measurements of

softwares and virtual machine instances in the public cloud.

These monitoring tools monitors QoS parameters at

Infrastructure as a Service (IaaS) layer and Software as a

Service (SaaS) layer without modifying the implementation of

the monitored objects. The proposed framework mainly

integrates 7 open source monitoring tools that periodically

monitors IaaS layer and SaaS layer, gathers runtime

information and sends UDP packet to the management. At the

bottom, it monitors infrastructures such as utilization of CPU,

memory, disk, network etc on both physical and virtual

machines and hypervisor that manages guest OS. On the top

of infrastructures, it monitors softwares and services which

provides an appropriate runtime environment for applications.

The architecture also has manager-agent and module

centralized component that improves the performance of

application in public cloud based on collected runtime

information. Hence in proposed strategy, by integrating

monitoring tools, cpu, memory, network, storage usage can be

identified, load on physical and VM machines, availability,

security, vulnerabilities of a website, software service can be

monitored, thus helps in improving overall performance of an

applications in public cloud.

 Mario Mac´ıas et al., [8] discussed 7 business rules for

revenue maximization of cloud providers. It encompasses the

automatic enforcement of Business Level Objective (BLO) by

means of bi-directional data flow between market and

resource layers. The framework incorporates integrated set of

policies that work together for revenue maximization of cloud

provider along with the performance concerns. The 7 business

rules discussed that maximizes revenue of providers includes

1)Dynamic Pricing 2)Resource Over Provisioning 3) Selective

SLA Violation 4) Selective SLA Cancellation 5) Ranges for

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

23

QOS 6) Tasks Reallocation and 7) Redistribution of Assigned

Resources.

Xiaomin Zhu et al., [9] proposed a “QoS based self-adaptive

scheduling algorithm called QBSA”. The presented

algorithm improves QoS of real time applications that are

running on heterogeneous clusters based on the current system

load. When the system is in heavy load, the QBSA algorithm

degrades the QoS level of new arrival tasks or tasks waiting in

the local queue of nodes to guarantee high schedulability. In

contrast, when the system is in a light load algorithm increase

QoS level for the newly arrived task in order to provide higher

quality service by an effective utilization of system resources.

Thus the proposed algorithm provides good schedulability and

higher guarantee ratio, when the system is in heavy load i.e.,

avoids task rejection and provides higher quality service and

effective resource utilization when the system is in light load.

Schedulability is the main goal of the algorithm when

numbers of nodes are less or tasks arrive quickly. The

proposed methodology is advantageous that when number of

nodes is more, algorithm improves overall performance of a

system in terms of both guarantee ratio and QoS of all

accepted tasks. But downside, when number of nodes is less,

algorithm provides higher guarantee ratio, but comparatively

not strives to maximize QoS of all accepted tasks.

 Hien Nguyen Van et al.,[11] presented an automatic resource

management system that provides automatic dynamic

provisioning and placement of virtual machines based on SLA

and resource cost. The presented method has a capacity to

“scale up” by increasing more resources to a single server or

“scale out” by increasing more servers for an application. In

the proposed approach, set of pre-defined virtual machine

classes were created and the algorithm chooses virtual

machines from the pre-defined set for an application. Each

virtual machine class was defined with a specific CPU and

memory capacity. The proposed framework mainly contains

two modules i) Local Decision Module (LDM) ii) Global

Decision Module (GDM). LDM is connected with each

application environment (AE), evaluates whether need to

allocate more virtual machines or releasing existing virtual

machines from AE depending upon the current workload and

SLA metric received from application specific monitoring

probes. Then all LDM’s interact with GDM. GDM by

receiving a utility function from every LDM’s and system

performance of virtual machines and physical machines

,suggests to hypervisor either to add new virtual machine to

an AE, upgrade virtual machines to next class of virtual

machines, degrades virtual machines to previous class of

virtual machines or live virtual machines migration. Then

GDM notifies LDM. Hence in proposed strategy, by

collecting local and global utilization of resources

dynamically add and removes VM’s on physical machines

satisfies both SLA and optimal placement of VM on physical

machine, reduces energy consumption

 Asma Al Falasi et al., [12] presented SLA monitoring model

designed for federated cloud environment. The proposed

model administers social relationships established between

different cloud services. In the paper, the author discussed

lifecycle of SLA by taking sky framework as an example of

federated cloud environment. Sky framework is a collection

of interconnected cloud services from different cloud vendors

forming. The proposed model manages multi-level SLA’s,

monitors socially interconnected cloud services, detects all

SLA violations and communicates these violations to the

concerned providers. The proposed architecture mainly

includes two modules i) Socialization module ii) Federation

Module. Socialization module is responsible for i) storing and

manipulating data pertaining to cloud services

ii) implementing sky business model iii) managing

membership, enforcement of rules, finding of violations and

deciding on penalties. Federation module is responsible for

i) receiving requests from sky broker, performing agreement

between provider and users, forwards the required information

to the monitoring manager to monitor run time operations

ii) maintains information regarding each application and

allocated resources iii) Monitor manager module checks for

SLA violations, ensuring that SLA is honored. The advantage

of the proposed architecture is that by administering and

monitoring SLA at different levels such as uploading SaaS,

searching SaaS, downloading SaaS, creating folder SaaS,

broker detects QoS violations and sends report to the

concerned cloud providers to take future actions. Thus

manages the social relationship between the cloud services in

federated cloud and improves service performance.

Asma Al Falasi et al., [14] proposed a framework that

provides dynamic specification of SLA, verification and

composition of services depending on SLA in the cloud using

genetic algorithm. The framework mainly composed of three

components i)Third Party Cloud Directory ii) Cloud Providers

iii)Trusted Broker. Third party cloud directory acts as an

intermediator between requestors and providers, acts like

yellow pages. In this, providers offering their infrastructures

as a service. They expose their infrastructure as web services

for clients. They offer different service plans with different

QoS range like Bronze, Gold, Silver where each plan is a

specific service that needs to be composed to carry out tasks.

Broker module includes two modules i) Web Service Verifier

ii) Composition Engine. Web service verifier tests concrete

services for QoS parameter specified by requestor.

Composition engine decides on what concrete services of

different QoS range needs to be composed to satisfy client’s

SLA. In this framework, first client searches repository of

cloud service providers and give their QoS parameters. Then

cloud provider looks up services, QoS parameters specified by

the user and communicate with a list of service API’s to a

trusted broker. Broker performs few verification tests on the

specified services to validate the QoS parameters. Only the

services that passed the verification tests are given as input to

the composition engine. Composition engine decides on

which specific services to be included in the composition in

order to satisfy specified SLA. Finally resultant SLA is

negotiated back to the client, either to agree on or select an

alternate solution or to move on to the other cloud provider.

The proposed framework helps to delegate the process of

monitoring the cloud service QoS measures to a trusted

broker, thus reducing load on providers.

Ivona Brandic et al., [16] presented an approach “A Layered

Approach for SLA-Violation Propagation in Self-

Manageable Cloud Infrastructures (LAYSI)”. Proposed

layered architecture maps low resource metric like down time,

uptime and currently available storage into the SLA

parameters like service availability periodically and

propagates possible future SLA violation to an appropriate

layer. The algorithm finds the future SLA violation by

defining more restrictive threshold called Threat Threshold

than the SLA violation threshold. The architecture includes

five layers like Meta Negotiator (MN), Meta Broker (MB),

Broker (B), Automatic Service Deployer (ASD) and services

and resources. First user starts negotiation with the MN with

specific QoS parameters. MN than calls MB. MB compares

the requirements specified by the user with the available

brokers. If found, accepts and performs negotiation else offers

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

24

for renegotiation. This process continues until both sides

agree. If agree for negotiation, user calls for execution of

service with a specific Service Description that contains

image of OS, middleware, application, data, configuration

along with SLA. Broker executes service if available

otherwise calls ASD to deploy the service and execute. The

architecture uses knowledge database to take a decision based

on past experience to avoid future SLA violation. It looks for

similar cases stored in the database periodically and uses the

solution of that particular case in order to avoid possible SLA

violation, stores that experience in the knowledge database

probably to be useful for future problem solving. If broker not

find solution, then propagates failure to the ASD possibly for

virtual machine migration. This is a good effort, by

identifying SLA’s that might be violated in future, uses

knowledge database, retrieve most similar case, and reuse the

solution that has taken up, avoids future SLA violations

almost to 0%. But overhead in maintaining knowledge

database and case based reasoning

 Rajkumar Buyya et al., [17] discussed vision, challenges and

architectural elements of SLA based resource management.

The proposed architecture supports integration of market

based provisioning policies and virtualization technologies in

order for the flexible allocation of resources to an application.

The architecture mainly includes 4 main entities

i) Users/Brokers ii) SLA Resource Allocator iii) Virtual

Machines and iv) Physical Machines. Users interact with

cloud management system through broker. SLA resource

allocator acts as an interface between users and the

infrastructure. SLA resource allocator includes 1) SLA

request examiner, which understands QoS requirements given

by the user and determine whether to accept or reject. 2)

Pricing component charges to service requests and manages

computing resources by prioritizing resource allocation.3)

Dispatcher component deploys application on appropriate

virtual machine; create virtual machine image and starts on

selected physical machine.4) Virtual Machine and Application

Monitor component, keep tracks of availability of virtual

machines and their resource capacities, monitors the

performance continuously in order to identify whether any

breach in SLA and notifies resource allocator.5) Accounting

and SLA management component maintains actual usage and

calculates final costs. Multiple virtual machines are started

and stopped on physical machines dynamically depending

upon the requests. The proposed strategy handles dynamic

nature of cloud very well by adding and allocating resources

for the tasks depending upon deadlines, meets deadline for all

incoming tasks with resource cost optimization to a larger

extent compared to static allocation. But overhead in finding

number of servers to be added based on deadline of incoming

tasks.

K C Gouda et al., [18] presented priority based resource

allocation algorithm. The algorithm takes different parameters

like time, processor requests, importance and cost for each

task. Time is the execution time needed to finish the task.

Processor request is the number of CPU’s needed to execute

the task. Importance is how important the user is to the cloud

administrator and cost paid is amount paying by the user to

the cloud administrator. The proposed algorithm for each

tasks, computes the node priority and time priority value

based on the specified conditions. It checks whether total

number of requested nodes is less than the currently available

nodes. If yes, schedules the task. If request cannot be satisfied

with the currently available nodes, then those tasks are put

into the queue. Finally the queue is sorted based on the

priority and begins executing the task from the beginning of

the queue. If the requested resource exceeds the limit, then

those tasks will be rejected. Good effort, algorithm by

calculating priority based on some parameters helps in proper

scheduling of tasks to an appropriate server provides sustained

performance of different application running on different

configuration servers and optimizes resource allocation, but

algorithm does not take care of task rejection.

Xiaomin Zhu et al., [10] proposed a “Self-Adaptive QoS

Aware Scheduling Algorithm SAQA” for soft real time

applications that are running on heterogeneous clusters.The

proposed algorithm defines QoS level range for each

incoming tasks. When the system is in a less load, the

algorithm increases the QoS level for all incoming tasks

within the specified range to provide high QoS by utilizing the

system resources efficiently. When the system is in heavy

load, the algorithm decreases the QoS level of incoming tasks

as well as tasks waiting in the queue within the specified

range in order to provide high load distribution and avoids

task rejection. i.e., High load distribution and avoiding task

rejection is the major goal when the system is in the heavy

load and providing quality service is the major goal when the

system is in a light load by effective utilization of the system

resources. The proposed SAQA algorithm uses the techniques

of two algorithms: non-preemptive EDF (Earliest Deadline

First) algorithm and RF (Response First) algorithm that

considers both deadline as well as a response time of the task

into the account while scheduling. Thus proposed algorithm

considers deadline and quality service needs into account for

scheduling independent, aperiodic, soft real time applications

running on heterogeneous clusters.

 Rajkumar Buyya et al., [20] discussed vision, challenges and

architectural elements of Intercloud: federation of cloud

computing environments. Presented federated cloud

environment supports scaling of applications across multiple

cloud providers. Architectural framework mainly consists of 3

components i) Exchange ii) Cloud Coordinator iii) Cloud

Broker. Cloud Exchange component acts as a market maker,

brings together several cloud providers and consumers. It

aggregate infrastructure requests from the brokers and

evaluates them against currently available infrastructure

published by cloud coordinators. Cloud coordinator service

component specific to each cloud manages a domain specific

enterprise cloud and its membership to the overall federation

which is driven by market based trading and negotiation

protocols. Cloud Coordinator component exports services of

the cloud to the federation includes components like

scheduling and allocation, market and policy engine,

application composition engine, virtualization, sensors,

discovery and monitoring. Cloud Broker component selects

suitable cloud service providers for the requested users

according to their requirements through cloud exchange and

negotiates with cloud coordinators for assignment of

resources that meets QoS needs specified by the users. This is

a good effort of finding a perfect match between provider’s

capability and customer’s requirements.

4. CONCLUSION
Currently cloud computing has created a big trend, as users no

need to maintain hardware, software, storage. Users can takes

all services from the cloud as and when needed. Since more

number of users are attracting towards cloud, providing QoS

to the users is challenging task for the cloud service providers.

SLA is made between the cloud service providers and users in

providing quality service. By avoiding SLA violations, cloud

users enjoy better services from the provider. This will also

help provider to improve his market reputation and revenue.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

25

In this paper, various SLA based scheduling strategies

proposed by different authors in satisfying the agreed SLA are

discussed. Different architecture that take care of SLA

violations by considering multiple parameters such as CPU

requirement, memory, storage, network bandwidth and fault

tolerance, avoiding SLA violations by using open source

tools, SLA violations on federated cloud environment are

discussed.

5. ACKNOWLEDGMENTS
The work reported in this paper is supported by the college

through the TECHNICAL EDUCATION QUALITY

IMPROVEMENT PROGRAMME [TEQIP-II] of the MHRD,

Government of India.

6. REFERENCES
[1] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer,

Ivan Breskovic, “SLA-Aware Application Deployment

and Resource Allocation in Clouds”, Computer Software

and Applications Conference Workshops

(COMPSACW), 2011 IEEE 35th Annual, Munich 18-22

July 2011, PP:298-303,PrintISBN:978-1-

4577-0980-7,DOI:10.1109/ COMPSACW.2011.97.

[2] Al Amin Hossain, Eui-Nam Huh, “Refundable Service

through Cloud Brokerage”, IEEE Sixth International

Conference on Cloud Computing, Santa Clara, CA, June

28 2013-July 3 2013, PP: 972–973, Print ISBN:978-0-

7695-5028-2, DOI:10.1109/CLOUD.2013.115.

[3] Xiao Liu , Yun Yang, Dong Yuan, Gaofeng Zhang,

Wenhao Li, Dahai Cao, “A Generic QoS Framework for

Cloud Workflow Systems”, Ninth IEEE International

Conference on Dependable, Autonomic and Secure

Computing, Sydney, NSW, 12-14 Dec. 2011, PP: 713 –

720, PrintISBN:978-1-4673-0006-

3,DOI:10.1109/DASC.2011. 124.

[4] Stefano Ferretti, Vittorio Ghini, Fabio Panzieri, Michele

Pellegrini, Elisa Turrini, “QoS–aware Clouds”, IEEE 3rd

International Conference on Cloud Computing, Miami,

FL, 5-10 July 2010, PP: 321 – 328, Print ISBN:978-1-

4244-8207-8, DOI:10.1109/CLOUD.2010.17.

[5] [5] Kun Ma, Runyuan Sun, Ajith Abraham, “Toward a

lightweight framework for monitoring public clouds”,

Fourth International Conference on Computational

Aspects of Social Networks (CASoN), Sao Carlos, 21-23

Nov. 2012, PP: 361 – 365, Print ISBN:978-1-4673-4793-

8, DOI:10.1109/CASoN. 2012.6412429.

[6] Rajeshwari B S, Dr. M Dakshayini, “Comprehensive

Study on Load Balancing Techniques in Cloud”, an

International Journal of Advanced Computer

Technology, Volume 3, Issue 6, June 2014, PP: 900-907,

ISSN: 2320-0790.

[7] Suneel K S, Dr. H S Guruprasad, “A Novel Approach for

SLA Compliance Monitoring In Cloud Computing”,

International Journal of Innovative Research in

Advanced Engineering, Volume 2, Issue 2, February

2015, PP: 154-159, ISSN: 2349-2163.

[8] Mario Mac´ıas, J. Oriol Fito , Jordi Guitart, “Rule-based

SLA Management for Revenue Maximisation in Cloud

Computing Markets”, Proceedings of the 6th IEEE/IFIP

International Conference on Network and Service

Management (CNSM). 2010, PP: 354-357, ISBN: 978-1-

4244-8908-4.

[9] Xiaomin Zhu, Peizhong Lu, “A QoS-Based Self-

Adaptive Scheduling Algorithm for Real-Time Tasks on

heterogeneous clusters”.

[10] Xiaomin Zhu, Jianghan Zhu, Manhao Ma, and Dishan

Qiu, “SAQA: A Self-Adaptive QoS-Aware Scheduling

Algorithm for Real-Time Tasks on Heterogeneous

Clusters”, 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, 2010, PP: 224-232,

ISBN: 978-0-7695-4039-9 DOI:

10.1109/CCGRID.2010.64.

[11] Hien Nguyen Van, Frederic Dang Tran, Jean-Marc

Menaud, “SLA-aware Virtual Resource Management for

Cloud Infrastructures”, IEEE Ninth International

Conference on Computer and Information Technology,

Xiamen,11-14 October 2009,PP: 357 – 362, ISBN:978-

0-7695-3836-5,DOI: 10.1109/CIT.2009.109.

[12] Asma Al Falasi, Mohamed Adel Serhani, Rachida

Dssouli, “A Model for Multi-levels SLA Monitoring in

Federated Cloud Environment”, 2013 IEEE 10th

International Conference on Ubiquitous Intelligence &

Computing and 2013 IEEE 10th International

Conference on Autonomic & Trusted Computing, Vietri

sul Mere, 18-21 December 2013, PP: 363 – 370,

ISBN:978-1-4799-2481-3, DOI:10.1109/UIC-

ATC.2013.14.

[13] Attila Kertesz, Gabor Kecskemeti, Ivona Brandic, “An

SLA-based Resource Virtualization Approach For On-

demand Service Provision”, 3rd international workshop

on Virtualization technologies in distributed computing,

15th June, 2009, PP: 27-34, ISBN: ACM 978-1-60558-

580-2 DOI: 10.1145/1555336.1555341.

[14] Asma Al Falasi, Mohamed Adel Serhani, “A Framework

for SLA-Based Cloud Services, Verification and

Composition”, International Conference on Innovations

in Information Technology, Abu Dhabi, 25-27 April

2011, PP: 287–292, ISBN: 978-1-4577-0311-9, DOI:

10.1109/ INNOVATIONS.2011.5893834.

[15] Xiaomin Zhu, Jianghan Zhu, Manhao Ma, Dishan Qiu,

“QAFT: A QoS-Aware Fault-Tolerant Scheduling

Algorithm for Real-Time Tasks in Heterogeneous

Systems”, 13th IEEE International Conference on

Computational Science and Engineering, Hong Kong,

11-13 December 2010, PP: 80 – 87, ISBN: 978-1-4244-

9591-7, DOI:10.1109/CSE.2010.20.

[16] Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer,

Schahram Dustdar, Sandor Acs, Attila Kertesz, Gabor

Kecskemeti, “LAYSI: A Layered Approach for SLA-

Violation Propagation in Self-manageable Cloud

Infrastructures”, 34th Annual IEEE Computer Software

and Applications Conference Workshops, Seoul, 19-23

July 2010, PP:365–370,ISBN:978-1-4244-8089-

0,DOI:10.1109/ COMP SACW.2010.70.

[17] Rajkumar Buyya, Saurabh Kumar Garg, Rodrigo N.

Calheiros, “SLA-Oriented Resource Provisioning for

Cloud Computing: Challenges, Architecture, and

Solutions”, International Conference on Cloud and

Service Computing, Hong Kong, 12-14 December 2011,

PP: 1 – 10, ISBN: 978-1-4577-1635-5, DOI:

10.1109/CSC.2011.6138522.

[18] K C Gouda, Radhika T V, Akshatha M, "Priority Based

Resource Allocation Model for Cloud Computing",

International Journal of Science, engineering and

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.5, December2015

26

Technology Research, Volume 2, Issue 1, January 2013,

PP: 215-219, ISSN: 2278 – 7798 .

[19] Ahmed Amamou, Manel Bourguiba, Kamel Haddadou

,Guy Pujolle, “A Dynamic Bandwidth Allocator for

Virtual Machines in a Cloud Environment”, 9th Annual

IEEE Consumer Communications and Networking

Conference- Multimedia & Entertainment Networking

and Services, Las Vegas, 14-17 January, 2012, PP: 99 –

104, ISBN:978-1-4577-2070-3, DOI:

10.1109/CCNC.2012.6181065.

[20] Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros,

“InterCloud: Utility-Oriented Federation of Cloud

Computing Environments for Scaling of Application

Services”, Algorithms and architectures for parallel

processing. Springer Berlin Heidelberg, 2010. PP: 13-31.

[21] Rajeshwari B S, Dakshayini M, "Optimized Service

Level Agreement Based Workload Balancing Strategy

for Cloud Environment," Advance Computing

Conference (IACC), 2015 IEEE International, PP: 160-

165, 12-13 June 2015, Print ISBN: 978-1-4799-8046-8,

DOI: 10.1109/IADCC. 2015.7154690.

[22] https://en.wikipedia.org/wiki/Service-level_agreement.

[23] John W. Rittinghouse, James F. Ransome, “Cloud

Computing: Implementation, management, and security”,

crc press, 2009.

[24] Demystifying_The_Cloud_eBook[1].pdf.

IJCATM : www.ijcaonline.org

