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ABSTRACT
An all new technique has been devised to solve non-linear Lane-
Emden type equations. This novel technique is based on the Pertur-
bation Iteration Algorithm. In this paper, a few examples are pre-
sented for the illustration of the power and wide usability of the
proposed method. Moreover, a compare and contrast with the ac-
tual solution is provided. It has been evaluated that by employment
of this method, the construction of perturbation solutions converg-
ing swiftly to the true solutions usually becomes easy, by giving
us room to exactly demonstrate how ε-terms influence linearized
equations. This swift convergence of the method gives solutions
that are accurate quantitatively through relatively little iteration.

Keywords
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1. INTRODUCTION
The Lane-Emden type equations are non-linear differential equa-
tions exist on a semi-infinite domain; the former lie under the cate-
gory of singular initial value problems. These types of equations
discuss the variation of temperature in a gas cloud of spherical
shape taking into account the mutual attraction between molecules
and conditional on the laws of classical thermodynamics. The poly-
trophic theory of stars essentially emerges from thermodynamic
considerations that take into account the issue of energy transport,
by considering the transfer of material among different stages of
the star. The Lane-Emden type equations are the main equations in
stellar structure’s theory and have consequently been the subject of
a great number of papers. The Lane-Emden equation is generally
presented as:

y
′′
(x) +

m

x
y
′
(x) + f(x, y) = g(x); 0 < x ≤ 1; m ≥ 0 (1)

with the initial conditions y(0) = A and y
′
(0) = B; where f(x, y)

is a continuous real-value function and g(x) is an analytical func-
tion. Eq. (1) was employed to demonstrate multiple types of phe-

nomena in physics, mathematics, and astrophysics; including the
thermal behavior of a spherical cloud of gas, the theory of stel-
lar structure, isothermal gas sphere, and the theory of thermionic
currents [4, 21]. The solution of the Lane-Emden type, and of all
those corresponding to a variety of non-linear problems in quan-
tum mechanics, becomes difficult numerically because there being
a singular point at the origin. Bender et al. [2] introduced an en-
tirely new perturbation technique based on an artificial parameter
δ; this technique is also referred to as the δ-method. El-Gebeily
and O’Regan [5] used the quasi linearization approach to solve the
Lane-Emden type equations. The technique reckons the solution of
a non-linear differential equation by taking into account the non-
linear terms as a perturbation close to the linear ones, It is different
from other perturbation theories as it does not rely on the presence
of a small parameter. Numerical solutions to the problems under
question were introduced by authors of [22–24] by using the Ado-
mian method which offers solution in the form of convergent se-
ries.
Nouh [11] step up the convergence by employing an Euler-Abel
transformation and Pade approximation on a power series solu-
tion of the Lane-Emden type equation. Mandelzweig and Tabakin
[9] discussed Bellman and Kalaba’s quasi linearization method.
While Ramos [19] made use of a piecewise linearization technique.
Bozkhov and Gilli Martins [3] and later Momoniat and Harley [10]
used the Lie Group method effectively to generalized Lane-Emden
equations. Goenner and Havas [6] also investigate the exact solu-
tions of generalized Lane-Emden equation of the first kind . Liao
[8] explained solution of Lane-Emden equation by using the Ho-
motopy Analysis Method. Ozis and Yildirim [12, 13] explored the
solutions of Lane-Emden type equation by using Homotopy Pertur-
bation and Variational Iteration Method. Parand et al. [15–18] put
forward three numerical techniques to solve Lane-Emden. Their
approach depended on the Rational Chebyshev, Rational Legendre
Tau, and Hermite function collocation methods. He [7] obtained
an approximate solution by applying a variational approach which
employs a semi-inverse method. Ramos [20] introduced a series ap-
proach to the Lane-Emden equation and gave the comparison with
Homotopy Perturbation Method.
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In this research, Perturbation Iteration Algorithm will be introduced
for analytical solution of Lane-Emden equation. In Section 2 of this
paper, the Perturbation Iteration Algorithm for this type of equa-
tions is introduced. Then, in Section 3, the suggested method is
applied to some Lane-Emden equations, and a comparison is made
with existing exact or analytic solutions. Finally, a brief discussion
with conclusion is presented in section 4.

2. PERTURBATION ITERATION ALGORITHM
(PIA)

An iteration method novel in its ways, known as the “perturbation-
iteration method” that differs from prior published iteration-
perturbation methods, has been introduced recently Pakdemirli and
Aksoy [14]. This technique uses a blend of Taylor series and pertur-
bation expansions to build a scheme for iteration. Authors in [1,14]
introduced a single correction term in the perturbation expansion
and correction terms in the Taylor Series expansion for first deriva-
tives only, i.e. n = 1, m = 1. The algorithm is labeled PIA(1, 1).
Let us take into consideration a general second order differential
equation,

G(y
′′
, y
′
, y, ε) = 0 (2)

with y = y(t) and ε the perturbation parameter. Only one correc-
tion term is taken in the perturbation expansion

yn+1 = yn + ε(yc)n (3)

Upon substitution of (3) into (2) and expanding in a Taylor series
with first derivatives only yields

G(y
′′
n, y

′
n, yn, 0) +Gy(y

′′
n, y

′
n, yn, 0)ε(yc)n+

Gy′ (y
′′
n, y

′
n, yn, 0)ε(y

′
c) +Gy′′ (y

′′
n, y

′
n, yn, 0)ε(y

′′
c)n+

Gε(y
′′
n, y

′
n, yn, 0)ε = 0

(4)

where Gy = ∂G
∂y

, Gy′ =
∂G

∂y
′ , Gy′′ =

∂G

∂y
′′ , Gε = ∂G

∂ε
. Reorganiz-

ing the Eq.(??) and simplification gives

(y
′′
c)n +

Gy′

Gy′′
(y
′
c)n +

Gy
Gy′′

(yc)n = −
Gε +

G
ε

Gy′′
(5)

Taking into account the fact that all derivatives are calculated at
ε = 0, it is easily determined that the given is a variable coefficient
second order linear differential equation. Starting with an initial
guess y10, first (yc)◦ is computed from Eq.(5) and then replace into
Eq.(2) to calculate y11. The iteration process is then repeated using
Eq.(5) and Eq.(3) until an acceptable result is found. Consider that
in the case of a marginally more general algorithm, n number of
correction terms in place of a single one can be used in expansion
Eq.(3) that would then become a PIA(n,m) algorithm. More so,
this algorithm can be generalized to a differential equation system
encompassing derivatives of an arbitrary order. In this paper, how-
ever, authors of this paper only take into account a case n = m = 1
for simplicity’s sake as more algebra is used in the construction of
iteration solutions for PIA(1, 2) and PIA(1, 3) as evaluated to
PIA(1, 1). The percentage error, which will be calculated in next
section, is defined as

%Error =
∣∣∣Exact Solution−Numerical Solution

Exact Solution

∣∣∣× 100

(6)
Note that all computations pertaining to this paper have been con-
ducted through the well-known symbolic software “Mathematica
9.0”

3. NUMERICAL EXAMPLES
In order to show the effectiveness of Perturbation Iteration Algo-
rithm for solving the Lane-Emden equation,some numerical exam-
ples has been presented.

3.1 Example 1
Let look into the following non-linear Lane-Emden equation:

u
′′
(x) +

2

x
u
′
(x)− (4x2 + 6)u(x) = 0 (7)

subject to the initial conditions, u(0) = 1; u
′
(0) = 0, with exact

solution u(x) = ex
2
. Rewrite Eq. (7) in the following form

F (u
′′
, u
′
, u, x, ε) = u

′′
+

2

x
u
′ − ε(4x2 + 6)u = 0 (8)

where ε is an artificially introduced small parameter. Re-organizing
the Eq.(8) yields;

Fig. 1. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 1

x2üc + 2xu̇c =
−x2ü− 2xu̇

ε
+ (6x2 + 4x4)u (9)

On calculating the relevant terms and setting ε = 1. The initial test
function has opted for u10 = 1. The approximate solution at each
steps is

u11 = 1 + x2 +
1

5
x4

u12 = 1 + x2 +
1

2
x4 +

13

105
x6 +

1

90
x8

u13 = 1 + x2 +
1

2
x4 +

1

6
x6 +

4

105
x8 +

59

11550
x10 +

1

3510
x12

u14 =1 + x2 +
1

2
x4 +

1

6
x6 +

1

24
x8 +

47

5775
x10 +

151

128700
x12+

4987

47297250
x14 +

1

238680
x16
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Table 1. Percentage error of Example 1 with PIA(1, 1)

%Error in %Error in%Error in%Error in%Error in
x u11 u12 u13 u14 u15

0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.1 0.00298669 0.00000427 0.00000000 0.00000000 0.00000000
0.2 0.04715307 0.00027113 0.00000091 0.00000000 0.00000000
0.3 0.23344395 0.00304317 0.00002321 0.00000012 0.00000000
0.4 0.71502286 0.01674168 0.00022989 0.00000207 0.00000001
0.5 1.67640114 0.06210859 0.00135375 0.00001938 0.00000020
0.6 3.30764262 0.17904701 0.00572466 0.00012043 0.00000179
0.7 5.77683532 0.43249094 0.01921812 0.00056306 0.00001167
0.8 9.20446292 0.91542291 0.05435449 0.00213323 0.00005932
0.9 13.64326247 1.74729396 0.13453147 0.00686681 0.00024871
1.0 19.06652294 3.06668693 0.29896820 0.01938970 0.00089385

%

Mean 4.87943036 0.58391914 0.04676406 0.00264498 0.00011050
Error

Percentage errors of Example 1 is shown in Table 1, which shows
the convergence of proposed method.

3.2 Example 2
Let examine the following non-linear Lane-Emden equation:

u
′′
(x) +

2

x
u
′
(x)− un(x) = 0; 0 < x ≤ 1 (10)

with initial conditions, u(0) = 1; u
′
(0) = 0. Where n ≥ 0

Fig. 2. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 2 (n = 1)

is constant. Substituting n = 0, 1 and 5 into Eq.(10) gives the
following exact solution u(x) = 1 − 1

6
x2, u(x) = sinx

x
and

u(x) =
(
1 + 1

3
x2
)− 1

2
respectively. For n = 0, solve Eq.(10)

by perturbation iteration method PIA(1, 1) with initial function
u10 = 1.

Table 2. Percentage error of Example 2 (n = 1) with PIA(1, 1)

%Error in %Error in %Error in %Error in
x u11 u12 u13 u14

0.0 0.00000000000 0.00000000000 0.00000000000 0.00000000000
0.1 0.00008345251 0.00000001987 0.00000000000 0.00000000000
0.2 0.00134098624 0.00000127763 0.00000000070 0.00000000000
0.3 0.00683765809 0.00001466521 0.00000001833 0.00000000001
0.4 0.02182973067 0.00008329294 0.00000018523 0.00000000026
0.5 0.05399627610 0.00032220418 0.00000112010 0.00000000254
0.6 0.11378410681 0.00097877953 0.00000490234 0.00000001605
0.7 0.21488914877 0.00251924610 0.00001718517 0.00000007665
0.8 0.37490784102 0.00574922752 0.00005126114 0.00000029875
0.9 0.61620628222 0.01197972026 0.00013529549 0.00000099842
1.0 0.96707451848 0.02325473632 0.00032453164 0.00000295818

%

Mean 0.21554090917 0.00408210632 0.00004859092 0.00000039553
Error

x2üc + 2xu̇c =
−x2ü− 2xu̇

ε
+ x2 (11)

For this equation, one may find u11 = 1 − 1
6
x2. The exact solu-

Fig. 3. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 2 (n = 5)

tion has been achieved in first iteration easily. For n = 1, by solv-
ing Eq.(10) by perturbation iteration method with initial function
u10 = 1 gives

x2üc + 2xu̇c =
−x2ü− 2xu̇

ε
+ x2u (12)

In this example, the following terms has been obtained

u11 = 1− 1

6
x2

u12 = 1− 1

6
x2 +

1

120
x4

3
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Table 3. Percentage error of Example 2 (n = 5)
with PIA(1, 1)

%Error in %Error in
x u11 u12

0.0 0.000000000000 0.000000000000
0.1 0.000416204570 0.000000494130
0.2 0.006637257303 0.000031262686
0.3 0.033418083842 0.000349364222
0.4 0.104825312101 0.001911428737
0.5 0.253504192248 0.007047991035
0.6 0.519750703971 0.020196159557
0.7 0.950466469586 0.048530235984
0.8 1.598072888488 0.102343140120
0.9 2.519450658093 0.195069847030
1.0 3.774955135062 0.342899309485

% Mean Error 0.887408809569 0.065307202999

u13 = 1− 1

6
x2 +

1

120
x4 − 1

5040
x6

u14 = 1− 1

6
x2 +

1

120
x4 − 1

5040
x6 +

1

362880
x8

which is very close to exact solution. Percentage errors of Example
2 (for n = 2) are shown in Table 2. For n = 5 in Eq.(10) and solve
it by PIA(1, 1), trial solution became u10 = 1.

x2üc + 2xu̇c =
−x2ü− 2xu̇

ε
+ x2u5 (13)

Other approximation solutions are

u11 = 1− 1

6
x2

u12 = 1−1

6
x2+

1

24
x4− 5

756
x6+

5

7776
x8− 1

28512
x10+

1

1213056
x12

The required accuracy has been achieved easily in second iteration
[see Table 3]

3.3 Example 3
Consider the following non-linear Lane-Emden equation:

u
′′
(x)+

8

x
u
′
(x)+xu(x) = x5−x4+44x2−30x; 0 < x ≤ 1 (14)

Subject to the initial conditions, u(0) = 0; u
′
(0) = 0, having

the analytical solution u(x) = x4 − x3. Then Eq.(14) takes the
simplified form

x2üc + 8xu̇c =
−x3u+ x7 − x6 + 44x4 − 30x3

ε
− x2ü− 8xu̇

(15)
For the initial assumed function, one may take u10 = x2. By using
PIA(1, 1), the approximate solution at each steps is

u11 = −x3 + x4 − 1

60
x5 − 1

78
x6 +

1

98
x7

u12 = −x3 + x4 +
1

7200
x8 +

1

11232
x9 − 1

16660
x10

u13 = −x3 + x4 − 1

1425600
x11 − 1

2560896
x12 +

1

4331600
x13

Fig. 4. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 3

Table 4. Percentage error of Example 3 with PIA(1, 1)

%Error in %Error in %Error in %Error in
x u11 u12 u13 u14

0.1 0.0198296412582 0.0000001635464 0.0000000000007 0.0000000000000
0.2 0.0941130298271 0.0000061717679 0.0000000002463 0.0000000000000
0.3 0.2519286835613 0.0000556109423 0.0000000074777 0.0000000000010
0.4 0.5376591662304 0.0002814252083 0.0000000896440 0.0000000000195
0.5 1.0262951334379 0.0010524909750 0.0000006554591 0.0000000002755
0.6 1.8616954474097 0.0033183895096 0.0000035802773 0.0000000026031
0.7 3.3713675213683 0.0096247560884 0.0000165580213 0.0000000191584
0.8 6.5255886970166 0.0281310976357 0.0000726535898 0.0000001258886
0.9 16.1512558869699 0.1006181061270 0.0003727418390 0.0000009234620

%

Mean 3.3155259118977 0.0158986902001 0.0000518096173 0.0000001190453
Error

u14 = −x3+x4+ 1

419126400
x14+

1

845095680
x15− 1

1594028800
x16

which is very close to analytical solution. Table 4 shows that the
Perturbation Iteration Algorithm solution is very near to the exact
solution.

3.4 Example 4
Consider the following non-linear Lane-Emden equation:

u
′′
(x) +

2

x
u
′
(x) + u(x) = 6 + 12x+ x2 + x3;x ≥ 0 (16)

subject to the initial conditions, u(0) = 0; u
′
(0) = 0, which has

the analytical solution u(x) = x2 + x3. Then Eq.(16) takes the
simplified

x2üc + 2xu̇c =
x5 + x4 + 12x3 + 6x2

ε
− x2u (17)

For the initial trial function, one may take u10 = 0. By using
PIA(1, 1), the successive iterations are as follow. Remember that

4
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Fig. 5. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 4

Table 5. Percentage error of Example 4 with PIA(1, 1)

%Error in %Error in %Error in %Error in

x u11 u12 u13 u14

0.1 0.00303030303 0.00000054112 0.00000000006 0.00000000000
0.2 0.02222222222 0.00001587301 0.00000000705 0.00000000000
0.3 0.06923076923 0.00011126373 0.00000011126 0.00000000007
0.4 0.15238095238 0.00043537415 0.00000077399 0.00000000093
0.5 0.27777777777 0.00124007936 0.00000344466 0.00000000652
0.6 0.45000000000 0.00289285714 0.00001157142 0.00000003155
0.7 0.67254901960 0.00588480392 0.00003203948 0.00000011893
0.8 0.94814814814 0.01083597883 0.00007705584 0.00000037360
0.9 1.27894736842 0.01849906015 0.00016649154 0.00000102165
1.0 1.66666666666 0.02976190476 0.00033068783 0.00000250521

%

Error 0.50372302068 0.00633433965 0.00005656210 0.00000036895
Error

ε = 1

u11 = x2 + x3 +
1

20
x4 +

1

30
x5

u12 = x2 + x3 − 1

840
x6 − 1

1680
x7

u13 = x2 + x3 +
1

60480
x8 +

1

151200
x9

u14 = x2 + x3 − 1

6652800
x10 − 1

19958400
x11

Table 5 shows that the Perturbation Iteration Algorithm solution is
very close to the exact solution.

3.5 Example 5
Let us consider the following non-linear Lane-Emden equation:

u
′′
(x) +

2

x
u
′
(x) + 4

[
2eu + e

u
2

]
= 0; 0 ≤ x ≤ 1 (18)

Table 6. Percentage error of Example 5 with PIA(1, 1)

%Error in %Error in %Error in
x u11 u12 u13

0.1 0.499170807131 0.001179377880 0.000001626937
0.2 1.986926764113 0.018352116726 0.000099243924
0.3 4.435374726491 0.088774168783 0.001045030233
0.4 7.802179276641 0.263725045364 0.005273376549
0.5 12.035502943114 0.596415763377 0.017579287099
0.6 17.078996221628 1.131785092974 0.044676682926
0.7 22.875963598920 1.902948866105 0.093391201968
0.8 29.372318986008 2.940648680245 0.167848966880
0.9 36.518346750491 4.307195458556 0.266594016455
1.0 44.269504088896 6.177848144712 0.381301629761

% Mean Error 17.687428416343 1.742887271472 0.097781106273

subject to the initial conditions, u(0) = 0; u
′
(0) = 0; which has the

following analytical solution u(x) = −2ln(1 + x2). Then Eq.(18)
takes the simplified form as

Fig. 6. Comparison of solution obtained by PIA(1, 1) with exact solution
of Example 5

x2üc + 2xu̇c =
−x2ü− 2xu̇

ε
− x2

(u5

10
+

11u4

32
+

17u3

12
+

9u2

2
+ 10u+ 12

)
(19)

One may take u10 = 0, as initial test function. By usingPIA(1, 1),
the approximate solution at each steps is

u11 = −2x2

u12 = −2x2 + x4 − 3

7
x6 +

17

108
x8 − 1

20
x10 +

4

195
x12

5
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u13 = −2x2 + x4 − 2

3
x6 +

353

756
x8 − 1247

3780
x10 +

7807

32760
x12−

6138481

36117900
x14 +

10772227

93562560
x16 − 7919743

108591840
x18+

1879497509

43688211840
x20 − 2401561993

101219025600
x22 +

2391219833

195036660000
x24−

64043445838231

10764862773799680
x26 +

56378863071233

20752774388236800
x28−

111220659961319

950742866066208000
x30 +

899117216016931

1889218082239488000
x32−

48079907405864407

2627730605296774240000
x34 +

132134658278053

1987359281316864000
x36−

9712091484260141

425427376820563353600
x38 +

59248890114131

8006519251261440000
x40−

226090676220211687

99984045443051427840000
x42 +

658887479300087

1014972775815398400000
x44−

41456559628747

23748605425461920000
x46 +

418742503147

9568766910044160000
x48−

8220115189969

809195467010112000000
x50 +

83383814749

38561100859008000000
x52−

1941057299

4674973811508000000
x54 +

412463

5815296641700000
x56−

3466

333981355865625
x58 +

8

6614995359375
x60

Table 6 shows that the Perturbation Iteration Algorithm solution is
very near to the exact solution.

4. DISCUSSION OF RESULTS AND CONCLUSION

5. CONCLUSION
In this research paper, the Perturbation Iteration Algorithm is intro-
duced in order to come up with solutions for the non-linear singular
Lane-Emden equation. While the merits and demerits of PIA are
still hazy, it proves to be a highly useful method. The Perturbation
Iteration Algorithm with n = m = 1, i.e. PIA(1, 1) is utilized
to simplify the Lane-Emden equation. Perturbation Iteration Algo-
rithm reduces Lane-Emden equation into a set of algebraic equa-
tions. Numerical examples demonstrate the authority and applica-
bility of the method. The results have been compared to the analyt-
ical solution to study and assess their accuracy.
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