
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

9

Classification of Software Requirement Errors: A Critical

Review

Pawan Kumar Chaurasia
Department of Information Technology

Babasaheb Bhimrao Ambedkar University,
Lucknow-226025, India

R.A. Khan
Department of Information Technology

Babasaheb Bhimrao Ambedkar University,
Lucknow-226025, India

ABSTRACT
From last three decades various tools, techniques and methods

are developed by researchers. The objective of research is to

optimize the error and improve the quality of the software.

During development of software, various errors are introduced

by the developer at various phases of software development life

cycle (SDLC). It is difficult to identify all the errors of the

software by the developer of different phases. Various

methodologies are proposed and implemented by the researcher

to identify the errors. The objective of this paper is to review

and develop taxonomy of requirement errors, prepare a list of

requirement errors for the analysis. Conclusions are listed on

software requirement errors at last. The list of requirement

errors may support the researchers to improve their work in a

systematic way and classify all requirement errors to increase

the software quality.

Keywords
Software Quality, Systematic Review, Error, Fault, Failure,

Reliability.

1. INTRODUCTION
There is a lot of change in the size, complexity and software

code of a program. Software development is beginning with

various components and stages. Various errors and faults are

encountered during the development. Main objectives of the

developer are to optimize the error of the software and deliver

the quality software to the customer. The major problem with

the developer is to detect the hidden errors. It is time consuming

and 50% cost of the whole project invested in it. These software

errors are introduced from the requirement level. If all the errors

are identified and removed at the initial level, then the quality of

the software and reliability will be improved. Many

organizations are introduced to accumulate and maintain the

software error data. From last two-three decades; software error

tools, techniques and methodologies are tested by the developer

or software engineer. The purpose of these tools and techniques

is to improve software reliability and reduce its cost by optimize

the no of errors.

The purpose of software process is used to transform the

information from one form to another. This process is executed

by the human and probably errors are also occurred at the time

of transformation. To improve software quality, tools and

mechanism are required to prevent from these errors and

identify when they occur. A good software quality is to identify

the errors, fix the problem at early stage, minimize the expenses

and rework. To improve the software quality; error, fault and

failure causes are clearly defined to classify.

ERROR

It is defined as the difference between the actual output and the

calculated output. Errors are defects in the human thought and

occur while trying to understand given information, solve

problems, or to understand the methodology and tools.

FAULT

Fault also referred as a bug. Fault is caused due to internal error

or failure of the program. One error may cause many faults and

many errors may cause identical faults.

FAILURE

It is defined in terms of incorrect results with respect to

specification of user requirements or the system behavior is

changed on the boundary of software systems. A particular may

be caused by several faults and some faults may never cause a

failure.

According to Thomas Muller

“A human being can make an error (mistake), which produces a

defect (fault, bug) in the code, in software or a system, or in a

document. If a defect in code is executed, the system will fail to

do what it should do (or do something it shouldn’t), causing a

failure.”

Errors have multiple definitions. IEEE 610 define errors in four

different ways, it is an incorrect program, condition to a mistake

by the human behavior. It is a human error rather than program

error. Quality, always focus on the identification of error and

removed faults at the early stage of the life cycle. This paper

prepares taxonomy for classification of faults which are used in

improvement of quality approaches. In spite of these, quality is

still a problem for developer to miss the source of error.

Figure 1: Failure Life Cycle

They have not any resources to learn from error; do not have

anability to learn from mistakes and do not have any tool for

verification of error. Therefore it is required to more focus on

the faults, research required to strengthen to identify the source

of error and cause of the error.

In this paper a systematic literature review is prepared for

identification of error by other quality researcher. A systematic

literature is a continuous process of improvement of knowledge

on particular subject. The advantage of continuous knowledge is

to improve and defended to implement more ad hoc approach. It

improves the confidence of the developer to gain more relevant

information as much as possible. It is also used in medicine,

aircraft, automobile etc.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

10

Paper is organized in various phases and explained in a

following manner. Section I, introduce about the errors and

discuss its background. Section II, prepare a review literature of

various research paper proposed or implemented by the

researcher concept on errors. Section III, describes various

existing quality improvements approaches by researcher.

Section IV describes about systematic review process and

section V describes about the findings from the reviews.

2. LITERATURE
In this section, quality improvement approaches are described

which are focused on various types of faults. How these faults

are occurred and the source of error is identified.

Quality improvement approaches

The error detection can be affected by various factors such as

testing environment, testing strategy and resources. Error

detection rate may not be change, when the testing environment,

strategy and resources are changed [1]. Quality improvement

classify faults from different phases into a review to support

risk, cost and cycle time reduction. By using measurement

framework, Software Engineering Institute (SEI) increased the

quality by understanding the process and product. Software

Engineering Institute (SEI) and Software Engineering

Laboratory (SEL) approaches for fault classification to prepare a

list of faults that facilitate to understand the faults and improves

quality of the software. However faults are exist with these

approaches. Without identifying the source of the faults, it is

impossible to remove all the faults, or some faults are neglected.

Root cause analysis approach is used to classify the errors on

orthogonal defect classification (ODC), due to complex

methods; it has not found popularity [2]. It is also used to

understand the relationship between cause and effect of errors.

From the experiment, it is found that the Perspective-Based

Reading (PBR) is effective in some context for defect detection

at detecting faults in requirement documents. Requirements

faults are difficult to define classify and quantify [3].

Software inspection techniques are used to classify software

classification on the base of check list, fault based and

perspective. Using these fault techniques inspectors cannot

identify all the present faults. For undetected faults, various

techniques are introduced like re-inspection or defect estimation

techniques. Error information is only the prediction to identify

the effectiveness of the errors [4].

Some of the errors are occurred in a group which are defined in

error abstraction as described in figure 2. When one error is

discovered, then locate the other error related to that faults.

Disadvantage of this approach is that this approach is depends

on the seriousness of inspectors for identifying the errors which

comes from another error called abstraction error [3]

Fig 2: Error Abstraction

However, software development processed by human beings.

Human nature and activity may also cause the requirement

errors. Two projects are evaluated by two human beings and

found that both the observation have different results. So,

psychological effects also cause the effect on requirement errors

is defined in [16, 17, 18].

3. METHODOLOGY
The objective of this review paper is to identify and classify the

requirement errors. Various types of questions are reviewed to

achieve the objective.

What are the various methodologies for identifying the

requirement errors?

What are the attributes to classify the requirement errors?

Fig 3: Review for requirement errors

Figure 3 shows that literature collected from software errors

about faults and their efforts are combined with human errors

and communication errors literature to develop the classification

of requirement errors. All the collected problems are break into

three small segments and sub-segments.

 How to improve quality improvements approaches which

focus on errors.

These approaches helped in identifying the defects and

information about errors.

Identify the explicit requirement errors and errors generated in

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

11

different life cycle phases.

Analysis of faults helped to understand the fundamental errors.

Identify the human errors from human information and

psychological effects to identify the various types of faults.

It is helpful for analyzing the planning and problem solving

skills of human at the requirement level.

4. POINT’S TO PONDERS
Problem 1: Is there any manifest that error information can

improve the software quality?

Problem 2 : Is there any methodology or process that error

information can improve the software quality?

Problem 3: What type of requirement errors have been

identified from the previous researcher in requirement level?

Problem 4: What are the other errors occur in other phases of

software life cycle which can affect at the requirement phase?

Problem 5: What are the actual faults identified at requirement

phase?

Problem 6: What are the human errors information available

and its classification?

Problem 7: Which of the following human errors behaves as a

communication errors in software requirement errors?

Author identified above problems, based on requirement error,

discuss all its aspects in a systematic approach:

Discussion 1

Software quality improved, by identifying the source of faults.

Various researchers used this approach in different ways and

improved the result on various parameters. A review of various

methods indicate that the source of faults process improve the

result and help in prevention of errors from previous experience

and detection of defects during review as described in fig 4.

Fig 4: Error detection/removal process

Disadvantage of these approaches is that there is no

methodology or process to assist developers in finding and

fixing of errors. Laundible et. al. discussed in his research that
the error information can improve the quality of a requirement

document. There is no framework to identify the source of error.

It is only used as a tested data but some of them are hidden and

missed during the requirement testing errors.

Discussion 2

From the various research and reviewed, few of them used

software error information as to improve the software quality

for software development. The usage of types of errors, help in

identifying the source of error which are used by various

researchers are as follows:

Analysis of defects approach is a unit based quality

improvement procedure to prepare a sample of error to give help

in prevention from that error from future faults. By using this

approach Computer Science Corporation (CSC) optimize 50 %

of the defect error [5]. Most of the software faults are found in

one of the categories which is classified as follows:

Methods (Incomplete, Ambiguous, Wrong and Enforced)

Tools and Environment (Unreliable or Defective)

People (Lack of training or understanding)

Input and Requirements (Incomplete, Ambiguous or defective)

The goal of this approach, improve the software development

and process. Developers try to prepare a prototype for defect

data to find the particular module of defect error. Hawlett-

Packyard prepared a guideline to interface design to optimize

the interface error. Using these guidelines various researchers

used and found 50% of the interface error decreased [6].

Defect cause of analysis help in expert knowledge and find the

depth of the cause of errors. The cause of error found during the

development of the software, help in identifying the errors

during development and after delivery of the software. From the

review it is found that most of the defects were found from the

lack of communication [7].

Defect prevention analysis approach determine the source of a

fault and suggest about the common errors occurred, reduce in

defect rates, optimize the test time effort and customer

satisfaction is increased. Mays et. al. worked on the analysis

approach [8] and classified defect causes into various parts:

Supervision problem (like developer overlooked something or

something avoid).

Education (developer cannot understand some features).

Communication (lack of communication).

Transcription (developer understand but miss at the time of

development).

Software bug analysis approach help in identifying the source of

bugs. To assess this approach, 28 sample of bugs were found

during the debug and test phases of software. These bugs are

occurred from group leaders, designers and external designers.

Total 23 causes were found, half of them related to designers

carelessness [9].

Discussion 3

Reviewer tried to cover all the aspects of requirement errors, but

a number of requirement errors are uncovered. Various errors

and cause methods are identified and described: Some of the

requirement errors [10] occurred like communication between

developers, incomplete training, consider all the aspects,

confusion in understanding the development aspects.

Second source of errors classify the requirement errors problems

from developers which classify difficulties for influencing the

requirement errors faced during the development process [11,

12]. The outcomes from these reviews are as follows; lack of

user participation, poor skills and knowledge, complexity of

problem, undefined requirement process.

Third source of errors occurred from root causes inconvenience

projects like; wrong business plan, use of tremendous

technology, user are not available at all levels, lack of

experience, proper management, lack of guidance and work

environment.

From requirement error it is also found that influence of

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

12

requirement traceability, inconsistency, domain knowledge,

requirement management errors, time management and

commitment for execution of projects during development [13,

14, 15]. These studies of errors represent poor planning,

informal change request, lack of proper analysis and

misunderstanding between team members.

Discussion 4

Various paper are reviewed by the researcher but some of the

portions are uncovered during the design and coding phases.

These errors are also occur during the requirement phase like

missing information, insufficient specification, inappropriate

action, wrong plan, incomplete details in specification, lack of

attention, technical problems and organizational problems etc [

16, 17, 18].

Discussion 5

In addition to these errors represent in the list, this review also

identified some fundamental errors [19, 20, 21] like documents

are prepared by various team members, a functionality will be

missing because of misunderstanding. These problems occur,

because of lack of communication between team members, two

requirements are incomplete; lack of information, developer

could not incorporate the particular function in multiple places.

Discussion 6

The various types of human errors which are occurred and it is

classified in two parts human knowledge and human

psychology.

Classification of mistakes (wrong plan, forgot execution of

write statement, incorrect execution) [22, 23].

Knowledge based human errors (inattention, rule based errors

because of in intentions, unfamiliar situation)

Individual discrete errors (commission errors, sequence errors,

timing errors and omission errors)

Control Error (substitution, adjustment, forgetting the control

position and reach control in time)

 Influence factors for occurrence of errors

(Environmental conditions, organizational factors,

task factors and user qualities)

Discussion 7

Errors which are included in the initial list of errors that served

as input value. Errors which are translated into requirement

errors are listed below:

1. Wrong interpretation due to complex nature of the

problems.

2. Misunderstanding the execution of the problems.

3. Errors in applying the requirement engineering

process.

4. Poor methods of achieving goals and objectives.

5. Incorrect translating requirements written in natural

languages.

Mistakes caused by unfortunate conditions, loss of situation

knowledge, lack of motivation.

5. REQUIREMENT ERROR TAXONOMY
SN TYPES

OF

ERRORS

DESCRIPTION REF.

1

Communic

ation

errors

Insufficient project

communication

6

Requirement editing is not

communicated

7

Lack of communication between

developers and users

24

Poor communication between

developers team

11

Poor communication between

development process

25

Lack of communication

information not reach between

peoples

26

2

Participati

on errors

Involvement of users at

requirement level

5

Participate only selected users 27

Do not involve all the neutrals 7

3

Domain

knowledge

errors

Lack of domain knowledge 10, 28

Complexity of problem 11, 12

Lack of appropriate proper

knowledge and information

29

Lack of proper training 6

Misunderstanding due to

complexity

28

4

Specific

application

errors

Knowledge of hardware and

software specification

31

Knowledge of input, output and

process mappings

32

Errors in expected output 15

Requirements are interpreted or

predict while solving conflict

problems

9

Knowledge of software interface

module

30

5

Process

execution

errors

Errors in sequence of execution

or requirement process

33, 34

Storage problem, sequence order

of stages and missing stages

34, 28

6

Human

knowledge

errors

Lack of situation awareness

problem

14, 26

Environmental conditions 25

7

Inadequate

method

Incomplete knowledge for

achieving goals

28

Errors in achieving goals 28

Selection of wrong method 36

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

13

Transcription error 8

8

Manageme

nt errors

Poor management of people &

resources

29

Lack of leadership 13

9

Specificati

on errors

Missing conditions 10

Errors while documenting

requirements

36

10

Organizati

onal

requireme

nt errors

Poor organization of requirement 6

Errors in organizing

requirements

22

11

Requireme

nt analysis

errors

Selection of incorrect model 35

Misuse of error solution process 24

Unsolved issues and problems 10

Errors while analyzing

requirement use cases

24, 37

38

12 Requireme

nt

simulation

errors

Inadequate requirement

gathering process

10

Lack of information for source of

resources

29

6. FINDINGS
The objective of this review paper is to find and classify the

errors in requirement phase of software development life cycle.

A critical review was carried out for covering various research

domains. From these information, requirement error review was

formulated. The main findings of this review are as follows:

 Software quality improvement approaches that cover

error information, limitations and causes of

requirement errors.

 Software methodologies have been explained and

described the method to find software requirement

errors.

 A description of requirement errors is described in

review and revision.

 At last all the uncovered requirement errors during

review and revision are classified in requirement

errors.

7. CONCLUSIONS
Software development process starts from the transformation of

information from one stage to another. Quality research focused

on the detection and removal of the errors. To make assure to

develop high quality software, good mechanism are selected and

applied on the software. Based on the above review and the

information collected from various reviews and research papers

the critical requirement error is predicted. The main objective of

developer is to optimize the errors and apply relevant test cases

before delivering the software to the customer. Quality will be

improved these identify errors, faults and failures of the

software early. List of requirement errors help the seekers who

are searching methods and tools to improve quality and usage of

tools in more effective manner. List of error points reflect the

review of the paper in a vital manner. More systematic reviews

are required to identify errors in the other software life cycle

phases.

8. REFERENCES
[1] Nikora, A. P.; Lyu, M. R. Software reliability measurement

experience. Handbook of Software Reliability Engineering,

Lyu, M. R. Ed.;McGraw-Hill: New York, 1996; 255–301.

[2] P. Fusaro, F. Lanubile, G. Visaggio, A replicated

experiment to assess requirements inspection techniques,

Journal of Empirical Software Engineering 2(1) (1997) 39–

57.

[3] F. Lanubile, F. Shull, V.R. Basili, Experimenting with

error abstraction in requirements documents, in:

Proceedings of Fifth International Software Metrics

Symposium, METRICS’98, IEEE Computer Society,

Bethesda, MD, 1998, pp. 114–121.

[4] S. Basu, N. Ebrahimi, Estimating the number of undetected

errors: Bayesian model selection, in: Proceedings of the

Ninth International Symposium on Software Reliability

Engineering, IEEE Computer Society, Paderborn,

Germany,1998, pp. 22–31.

[5] D.N. Card, Learning from our mistakes with defect causal

analysis, IEEE Software 15 (1) (1998) 56–63.

[6] R.B. Grady, Software failure analysis for high-return

process improvement, Hewlett–Packard Journal 47 (4)

(1996) 15–24.

[7] J. Jacobs, J.V. Moll, P. Krause, R. Kusters, J. Trienekens,

A. Brombacher, Exploring defect causes in products

developed by virtual teams, Journal of Information and

Software Technology 47 (6) (2005) 399–410.

[8] R.G. Mays, C.L. Jones, G.J. Holloway, D.P. Studinski,

Experiences with defect prevention, IBM Systems Journal

29 (1) (1990) 4–32.

[9] T. Nakashima, M. Oyama, H. Hisada, N. Ishii, Analysis of

software bug causes and its prevention, Journal of

Information and Software Technology 41 (15) (1999)

1059–1068.

[10] Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, R.

Chillarege, A case study of software process improvement

during development, IEEE Transactions on Software

Engineering 19 (12) (1993) 1157–1170.

[11] S. Beecham, T. Hall, C. Britton, M. Cottee, A. Rainer,

Using an expert panel to validate a requirements process

improvement model, The Journal of Systems and Software

76 (3) (2005) 251–275.

[12] G.J. Browne, V. Ramesh, Improving information

requirements determination: a cognitive perspective,

Journal of Information and Management 39 (8) (2002)

625–645.

[13] C. Debou, A.K. Combelles, Linking software process

improvement to business strategies: experiences from

industry, Journal of Software Process: Improvement and

Practice 5 (1) (2000) 55–64.

[14] M.R. Endsley, Situation awareness and human error:

designing to support human performance, in: Proceedings

of the High Consequence Systems Surety Conference, SA

Technologies, Albuquerque, NM, 1999, pp. 2–9.

[15] D.A. Norman, Design rules based on analyses of human

error, Communications of the ACM 26 (4) (1983) 254–

258.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.7, December2015

14

[16] D.A. Norman, Steps towards a cognitive engineering:

design rules based on analyses of human error,

Communications of the ACM 26 (4) (1981) 254–258.

[17] C. Trevor, S. Jim, C. Judith, K. Brain, Human Error in

Software generation Process, University of Technology,

Loughborough, England, 1994.

[18] Endres, An analysis of errors and their causes in system

programs, IEEE Transactions on Software Engineering 1

(2) (1975) 140–149.

[19] T.E. Bell, T.A. Thayer, Software requirements: are they

really a problem?, in: Proceedings of Second International

Conference on Software Engineering, IEEE Computer

Society Press, Los Alamitos, CA, 1976, pp 61–68.

[20] T. Berling, T. Thelin, A case study of reading techniques in

a software company, in: Proceedings of the 2004

International Symposium on Empirical Software

Engineering (ISESE’04), IEEE Computer Society, 2004,

pp. 229–238.

[21] B. Freimut, C. Denger, M. Ketterer, An industrial case

study of implementing and validating defect classification

for process improvement and quality management, in:

Proceedings of the 11th IEEE International Software

Metrics Symposium, IEEE Press, 2005.

[22] P.C. Cacciabue, A methodology of human factors analysis

for systems engineering: theory and applications, IEEE

Transactions on System, Man and Cybernetics – Part A:

Systems and Humans 27 (3) (1997) 325–329.

[23] Endres, An analysis of errors and their causes in system

programs, IEEE Transactions on Software Engineering 1

(2) (1975) 140–149.

[24] S.H. Kan, V.R. Basili, L.N. Shapiro, Software quality: an

overview from the perspective of total quality

management, IBM Systems Journal 33 (1) (1994) 4–19.

[25] D. Batra, Cognitive complexity in Data modelling: causes

and recommendations, Requirements Engineering Journal

12 (4) (2007) 231–244.

[26] K. Sasao, J. Reason, Team errors: definition and taxonomy,

Journal of Reliability Engineering and System Safety 65

(1) (1999) 1–9.

[27] D.A. Gaitros, Common errors in large software

development projects, The Journal of Defense Software

Engineering 12 (6) (2004) 21–25.

[28] J. Galliers, S. Minocha, A. Sutcliffe, A causal model of

human error for safety critical user interface design, ACM

Transactions on Computer–Human Interaction 5 (3) (1998)

756–769.

[29] J. Coughlan, D.R. Macredie, Effective communication in

requirements elicitation: a comparison of methodologies,

Requirements Engineering Journal 7 (2) (2002) 47–60.

[30] P. K Chaurasia, Software Reliability Chain Model,

International Journal of Software and Web Services

(IJSWS), Vol 1, Issue 8, pp 46-50.

[31] R.R. Lutz, Analyzing software requirements errors in

safety-critical, embedded systems, in: Proceedings of the

IEEE International Symposium on Requirements

Engineering, IEEE Computer Society Press, San Diego,

CA, USA, 1993, pp. 126–133.

[32] S. Sakthivel, A survey of requirement verification

techniques, Journal of Information Technology 6 (2)

(1991) 68–79.

[33] B. Cheng, R. Jeffrey, Comparing inspection strategies for

software requirement inspections, in: Proceedings of the

1996 Australian Software Engineering Conference, IEEE

Computer Society, Melbourne, Australia, 1996, pp. 203–

211.

[34] P.M. Fitts, R.E. Jones, Analysis of factors contributing to

460 ‘pilot error’ experiences in operating aircrafts control,

in: Proceedings of Selected Papers on Human Factors in

the Design and Use of Control Systems, Dover

Publications Inc., New York, 1961, pp. 332–358.

[35] A.J. Ko, B.A. Myers, Development and evaluation of a

model of programming errors, in: Proceedings of IEEE

Symposium on Human Centric Computing Languages and

Environments, IEEE Computer Society, 2003, pp. 7–14.

[36] Swain, H. Guttman, Handbook of Human Reliability

Analysis with Emphasis on Nuclear Power Plant

Applications, Nuclear Regulatory Commission,

Washington, DC, 1983.

[37] P. K Chaurasia, How Accountability Improves Software

Reliability?, International Journal of Computer Science and

Technology (IJCSET), Vol 5, Issue 9, pp 868-871.

[38] S.T. Shorrock, B. Kirwan, Development and application of

a human error identification tool for air traffic control,

Journal of Applied Ergonomics 33 (4) (2002) 319–336.

IJCATM : www.ijcaonline.org

