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ABSTRACT 

A numerical investigation has been made to study the effects of 

variable viscosity and thermal conductivity on the steady two-

dimensional MHD free convection and mass transfer flow past 

an inclined semi-infinite surface in the presence of heat 

generation along with viscous and Joule dissipation. The partial 

differential equations governing the flow, temperature and 

concentration field of the problem are reduced to ordinary 

differential equations by using similarity transformations. The 

momentum, energy and concentration equations are solved 

numerically using shooting method along with fourth order 

Runge-kutta iteration scheme. The effects of various 

parameters viz. viscosity, thermal conductivity and mass 

transfer parameters on velocity, temperature and concentration 

field are presented graphically. 

Finally, the numerical values of skin-friction co-efficient, 

Nusselt number and sheerwood number are also calculated. 

Keywords 
Variable viscosity, Thermal conductivity, Dissipation and Mass 

transfer. 

1. INTRODUCTION 
The problem of free convection and mass transfer flow of an 

electrically conducting fluid past an inclined heated surface 

under the influence of a magnetic field has attracted interest in 

view of its application in geophysics, astrophysics and many 

engineering problems, such as cooling of nuclear reactors, the 

boundary layer control in aerodynamics and cooling towers. 

Viscous dissipation changes the temperature distributions by 

playing a role like an energy source which leads to affect heat 

transfer rates. The merit of the effect of viscous dissipation 

depends on whether the plate is being cooled or heated. Apart 

from the viscous dissipation in MHD flows, the Joule 

dissipation also acts as a volumetric heat source. 

In light of these applications, Umemura and Law [1] developed 

a generalized formulation for the natural convection boundary 

layer flow over a flat plate with arbitrary inclination. They 

found that the flow characteristics depend not only on the 

extent of inclination but also on the distance from the leading 

edge. Hossain et al.[2] studied the free convection flow from an 

isothermal plate inclined at a small angle to the horizontal. 

Anghel et al.[3] presented a numerical solution of free 

convection flow past an inclined surface. Chen [4] performed 

an analysis to study the natural convection flow over a 

permeable inclined surface with variable wall temperature and 

concentration. He observed that increasing the angle of 

inclination decreases the effect of boundary force. Hazarika and 

Sarma [5] have studied the effects of variable viscosity and 

thermal conductivity on heat and mass transfer flow along a 

vertical plate in the presence of a magnetic field. Chen [6] has 

examined the effect of combined heat and mass transfer on 

MHD free convection from a vertical surface with ohmic 

heating and viscous dissipation. The flow and heat transfer due 

to a stretching porous surface in presence of transverse 

magnetic field including heat due to viscous dissipation is 

analyzed by Tak and Lodha [7] in 2005. Alam et al [8] has 

theoretically investigated the effects of viscous dissipation on 

natural convection flow over a sphere in the presence of 

magnetic field and heat generation for an electrically 

conducting fluid. Also Alam et. al [9] studied the free 

convective heat and mass transfer flow past an inclined surface 

with heat generation. 

The physical properties of fluids such as viscosities and thermal 

conductivities were assumed to be constant in most of the 

studies. It is known that these physical properties change 

significantly with temperature and when the effects of variable 

viscosity and thermal conductivity are taken into account, the 

flow characteristics are significantly changed compared to the 

constant property case. 

Here, the problems under consideration, the viscosity and 

thermal conductivity have been assumed to be inverse linear 

functions of temperature. 

In the present paper, an investigation is made to study the effect 

of variable viscosity and thermal conductivity on MHD free 

convection and mass transfer flow past an inclined surface with 

viscous and Joule dissipation based on the work of M.S.Alam, 

M.M.Rahman and M.A.Sattar [9]. 

2. MATHEMATICAL FORMULATION 

OF THE PROBLEM 
We consider a steady two-dimensional hydromagnetic flow of a 

viscous incompressible, electrically conducting fluid past a 

semi-infinite inclined plate with an acute angle α to the vertical. 

The flow is assumed to be in the x-direction, which is taken 

along the semi-infinite inclined plate and y-axis normal to it. A 

magnetic field of uniform strength B0 is introduced normal to 

the direction of the flow. In this analysis, we assume that the 

magnetic Reynolds number is much less than unity so that the 

induced magnetic field is neglected in comparison to the 

applied magnetic field. The surface is maintained at a constant 

temperature Tw , which is higher than the constant temperature 

T∞ of the surrounding fluid and the concentration Cw is greater 

than the constant concentration C∞. 

 The density is considered a linear function of temperature 

and species concentration so that the usual Boussinesq’s 

approximation is taken as- 

𝜌 = 𝜌0[1 − {𝛽 𝑇 − 𝑇∞ + 𝛽∗(𝑐 − 𝑐∞)}] 

Fluid viscosity and thermal conductivity are assumed to vary 

with temperature. 
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With the above assumptions, the equations of continuity, 

momentum, energy and the concentrations are- 

Continuity equation: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                           ...(1) 

Momentum equation: 

𝜌  𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 =

𝜕

𝜕𝑦
 𝜇

𝜕𝑢

𝜕𝑦
 + 𝜌𝑔𝛽 𝑇 − 𝑇∞ 𝑐𝑜𝑠α +

𝜌𝑔𝛽∗ 𝐶 − 𝐶∞ 𝑐𝑜𝑠α − 𝜎𝐵0
2𝑢              

             …(2) 

Energy equation:     

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

𝜌𝑐𝑝

𝜕

𝜕𝑦
 𝐾

𝜕𝑇

𝜕𝑦
 +

𝑄0

𝜌𝑐𝑝
 𝑇 − 𝑇∞ +

1

𝜌𝑐𝑝
𝜇(

𝜕𝑢

𝜕𝑦
)2 +

1

𝜌𝑐𝑝
𝜎(𝑢𝐵0)2                                     

…(3) 

Concentration equation:         

  𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=

𝜕

𝜕𝑦
(𝐷

𝜕𝐶

𝜕𝑦
)                                               …(4) 

The boundary conditions relevant to the problem are: 

𝑢 = 0, 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤  at  𝑦 = 0 

                 ...(5) 

𝑢 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞ at  𝑦 → ∞ 

where 𝑢, 𝜐 are velocity components along 𝑥-axis and 𝑦-axis, g 

is the acceleration due to gravity, 𝑇 is the temperature, 𝑇𝑤  is the 

wall temperature, 𝑇∞ is the temperature of the uniform flow, 

𝐾 is the thermal conductivity of fluid, 𝐷 is the mass diffusivity, 

𝐶 is the concentration of species, 𝐶∞ is the concentration of 

species for uniform flow, 𝐵0  is the applied magnetic field, 𝐶𝑝 is 

the specific heat at constant pressure, 𝑄0  is the heat generation 

constant, ρ is the density, υ is the kinematic viscosity,  β is the 

volumetric co-efficient of thermal expansion with concentration 

and the other symbols have their usual meaning. 

Let the following non-dimensional variables is introduced as: 

 𝜂 = 𝑦 
𝑈∞

𝜈∞𝑥
 , 𝑢 = 𝑈∞𝑓

/ 𝜂 , 𝜐 =
1

2
 

𝑈∞𝜐∞

𝑥
   𝜂𝑓/ − 𝑓 , 𝛳 𝜂 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 , 𝜑 𝜂 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞

              

             ...(6) 

In the light of Lai and Kulaki [10],  viscosity of the fluid is 

assumed as 

 
1

𝜇
=

1

𝜇∞

 1 + 𝛾 𝑇 − 𝑇∞   or  
1

𝜇
= 𝑎 𝑇 − 𝑇𝑟  

where                 

 𝑎 =
𝛾

𝜇∞

     and 𝑇𝑟 = 𝑇∞ −
1

𝛾
 

where 𝜇 is the fluid viscosity, 𝜇∞ is the viscosity at free stream, 

𝑇 is the temperature, 𝑇∞ is the temperature at free stream, 𝛾 is 

the constant based on the thermal property of the fluid. 

 Further following Khound and Hazarika [11], let the 

thermal conductivity be- 

             
1

𝑘
=

1

𝑘∞

 1 + 𝜉 𝑇 − 𝑇∞   or  
1

𝑘
= 𝑏(𝑇 − 𝑇𝑐) 

where, 

             𝑏 =
𝜉

𝑘∞

        and  𝑇𝑐 = 𝑇∞ −
1

𝜉
 

where 𝑘 and 𝑇 are the thermal conductivity and temperature of 

the fluid, 𝑘∞ and   𝑇∞ are the thermal conductivity and 

temperature at free stream,  𝜉 is a constant based on the thermal 

property of the fluid. 

The non-dimensional form of viscosity and thermal 

conductivity parameters 𝛳𝑟  and 𝜃𝑐  can be written as 

𝛳𝑟 =
𝑇𝑟 − 𝑇∞
𝑇𝑤 − 𝑇∞

  , 𝜃𝑐 =
𝑇𝑐 − 𝑇∞
𝑇𝑤 − 𝑇∞

 

The above substitutions, equation (1) is identically satisfied and 

equations (2) to (4) reduced to 

𝑓/// −
1

2
(
𝜃−𝜃𝑟

𝜃𝑟
)𝑓𝑓// −

1

(𝜃−𝜃𝑟)
𝜃/𝑓// − (

𝜃−𝜃𝑟

𝜃𝑟
)𝐺𝑟𝜃𝑐𝑜𝑠α −

(
𝜃−𝜃𝑟

𝜃𝑟
)𝐺𝑚𝜑𝑐𝑜𝑠α + (

𝜃−𝜃𝑟

𝜃𝑟
)𝑀𝑓/ = 0          

             …(7)  

𝜃// −
1

2
(
𝜃−𝜃𝑐

𝜃𝑐
)𝑃𝑟𝑓𝜃

/ −
1

 𝜃−𝜃𝑐 
𝜃/2 − (

𝜃−𝜃𝑐

𝜃𝑐
)𝑃𝑟𝑄𝜃 +

(
𝜃−𝜃𝑐

𝜃𝑐
)(

𝜃𝑟

𝜃−𝜃𝑟
)𝑃𝑟𝐸𝑐𝑓

//2 − (
𝜃−𝜃𝑐

𝜃𝑐
)𝑃𝑟𝐸𝑐𝑀𝑓/2 = 0  

              …(8)  

𝜙// −
1

2
(
𝜃−𝜃𝑟

𝜃𝑟
)𝑆𝑐𝑓𝜙

/ −
1

(𝜃−𝜃𝑟)
𝜃/𝜙/ = 0              …(9) 

where 

𝐺𝑟 =
𝑔𝛽  𝑇𝑤−𝑇∞ 𝑥

𝑈∞
2

     is the local temperature Grashof number 

𝐺𝑚 =
𝑔𝛽∗ 𝐶𝑤−𝐶∞ 𝑥

𝑈∞
2

  is the local mass Grashof number, 

𝑀 =
𝜎𝐵0

2 𝑥 𝑥

𝜌𝑈∞

           is the local magnetic field parameter, 

𝑃𝑟 =
𝑣∞𝜌𝐶𝑝

𝐾∞

              is the Prandtl number,  

𝑄 =
𝑄0𝑥

𝜌𝐶𝑝𝑈∞

              is the local Heat generation parameter and  

𝑆𝑐 =
𝜐∞

𝐷
                   is the Schmidt number 

The boundary conditions (5) transformed to  

𝑓 = 0, 𝑓/ = 0, 𝜃 = 1, 𝜙 = 1 at  𝜂 = 𝑜   

              …(10) 

𝑓/ = 0, 𝜃 = 0, 𝜙 = 0 as 𝜂 → ∞  

The local skin-friction co-efficient (Cf ), the local Nusselt 

number (Nu) and the local Sheerwood number(Sh) are the 

parameters of engineering interest which are given respectively 

as below-  

Co-efficient of skin-friction: 

𝐶𝑓 =
2𝜏𝑤
𝜌𝑈∞

2
 where 𝜏𝑤 =  𝜇

𝜕𝑢

𝜕𝑦
 
𝑦=0

 is the Shearing Stress 

=> 𝐶𝑓 = −
2𝜃𝑟

(1 − 𝜃𝑟)
𝑅𝑒

−
1
2𝑓/ /(0) 

Nusselt number: 

𝑁𝑢 =
𝑥𝑞𝑤

𝑘∞(𝑇𝑤 − 𝑇∞)
    where    𝑞𝑤 = −𝑘  𝜕𝑇

𝜕𝑦
 
𝑦=0

 

=> 𝑁𝑢 =
𝜃𝑐

(1 − 𝜃𝑐)
𝑅𝑒

1
2 𝜃/(0) 
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Sheerwood number: 

𝑆𝑕 =
𝑥𝑕𝑤

𝐷 𝐶𝑤 − 𝐶∞ 
 , where  𝑕𝑤 = −𝐷  𝜕𝑐

𝜕𝑦
 
𝑦=0

 

𝑆𝑕 =
𝜃𝑟

1 − 𝜃𝑟
𝑅𝑒

1
2𝜑/(0) 

3. RESULTS AND DISCUSSION 
The system of differential equations (7)-(9) governed by the 

boundary conditions (10) are solved numerically using Runge-

Kutta fourth order method in conjunction with shooting 

technique. 

The results are presented in graphs from fig-1 to fig-17 for 

velocity, temperature and concentration profile. 

Table-1 to table-4 gives the values of Co-efficient of skin 

friction (𝐶𝑓), Nusselt number (𝑁𝑢) and Sheerwood number 

(𝑆𝑕), for various values of the flow governing parameters as 

indicated. 

Velocity profile for various combination of parameters 𝑀 = .1, 

𝑃𝑟 = .7, 𝜃𝑐 = −12, 𝜃𝑟 = −12, 𝑄 = .25, 𝐺𝑟 = 1, 𝐺𝑚 = 1, 

𝑆𝑐 = .22, 𝛼 = 30, 𝐸𝑐 = .01 are illustrated in fig-1 to fig-6. 

From these figures, it is observed that the velocity decreases 

with the increase of viscosity parameter (𝜃𝑟 ), thermal 

conductivity parameter (𝜃𝑐 ) , magnetic parameter (𝑀) , angle of 

inclination (𝛼) and Schmidt number (𝑆𝑐 ). On the other hand 

velocity increases with the increase of Eckert number (𝐸𝑐). 

Temperature profiles are illustrated from fig-7 to fig-12. From 

these figures it is seen that temperature decreases with the 

increase of viscosity parameter (𝜃𝑟 ) and thermal conductivity 

parameter (𝜃𝑐 ), but on the other hand, temperature increases 

with the increase of magnetic parameter (𝑀), angle of 

inclination (𝛼), Eckert number (𝐸𝑐) and Schmidt number (𝑆𝑐 ).  

Concentration profile for various values of 𝜃𝑟 , 𝑀, 𝛼, 𝐸𝑐  and 𝑆𝑐  

are shown in fig-13 to fig-17. From these figures, it can be 

clearly observed that concentration decreases with the increase 

of viscosity parameter (𝜃𝑟 ), Eckert number (𝐸𝑐) and Schmidt 

number (𝑆𝑐 ) but it is increases with the increase of magnetic 

parameter (𝑀) and angle of inclination (𝛼). 

From Table-1 and Table-2, it is observed that with the increase 

of 𝜃𝑟  (viscosity parameter), co-efficient of skin friction (𝐶𝑓) and 

rate of mass transfer (𝑆𝑕) decreases but rate of heat transfer 

(𝑁𝑢 ) increases. 

From Table-2 & 4, it is seen that with the increase of 𝜃𝑐  

(thermal conductivity parameter), 𝐶𝑓  and 𝑁𝑢  decrease but 𝑆𝑕 

increases. 

From Table-1 & 2, it is observed that for the increasing values 

of 𝑀, 𝐶𝑓 , 𝑁𝑢  and 𝑆𝑕 decreases. 

Also from Table-3 & 4, it is observed that for the increasing 

values of 𝑆𝑐  , 𝐶𝑓  and 𝑁𝑢  decreases and 𝑆𝑕 increases. 

 

 

 

 

 

 

 

 

 

 

 

Fig- 1.Variation of velocity with 𝜽𝒓 

 

Fig- 2. Variation of velocity with 𝜽𝒄 

 

Fig- 3.Variation of velocity with 𝑴 

 

Fig- 4.Variation of velocity with 𝜶 
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Fig- 5:-Variation of velocity with 𝑬𝒄 

 

Fig- 6:-Variation of velocity with 𝑺𝒄 

 

Fig- 7:-Variation of temperature with 𝜽𝒓 

 

Fig- 8:-Variation of temperature with 𝜽𝒄 

 

Fig- 9:-Variation of temperature with 𝑴 

 

Fig- 10:-Variation of temperature with 𝜶 

 

 

Fig- 11:Variation of temperature with 𝑬𝒄 

 

Fig- 12:Variation of temperature with 𝑺𝒄 
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Fig- 13:Variation of concentration with 𝜽𝒓 

 
Fig- 14:Variation of concentration with 𝑴 

 

 
Fig- 15:Variation of concentration with 𝜶 

 

Fig- 16:Variation of concentration with 𝑬𝒄 

 

Fig- 17:Variation of concentration with 𝑺𝒄 

 
Table 1 

  M          𝜃𝑟               𝑓 ′′(0)                       𝜃′(0)                      Ø
′(0)                        𝐶𝑓                            𝑁𝑢                            𝑆𝑕  

0.1 

-8 0.419965 -0.02504 -0.27751 2.360969 0.007199 0.078006 

-6 0.430789 -0.02633 -0.28193 2.335325 0.007568 0.076417 

-4 0.452051 -0.02879 -0.29036 2.287218 0.008276 0.073455 

-2 0.51313 -0.03542 -0.31295 2.163547 0.010182 0.065976 

0.2 

-8 0.390274 -0.01705 -0.27587 2.194054 0.004902 0.077545 

-6 0.39999 -0.01814 -0.28014 2.168364 0.005216 0.075931 

-4 0.41905 -0.02024 -0.28825 2.120243 0.005818 0.072923 

-2 0.47363 -0.02586 -0.30988 1.997001 0.007434 0.065328 

0.3 -8 0.365582 -0.01036 -0.27451 2.055238 0.002979 0.077161 
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-6 0.374417 -0.0113 -0.27864 2.02973 0.003249 0.075527 

-4 0.391729 -0.0131 -0.28651 1.982012 0.003766 0.072481 

-2 0.441176 -0.01791 -0.30733 1.860162 0.00515 0.064792 

0.4 

-8 0.344731 -0.0047 -0.27335 1.938016 0.001351 0.076837 

-6 0.352853 -0.00552 -0.27739 1.912832 0.001586 0.075186 

-4 0.368755 -0.00707 -0.28503 1.865771 0.002034 0.072108 

-2 0.414075 -0.01124 -0.3052 1.745895 0.00323 0.064341 

 

Table 2 

  M       𝜃𝑐               𝑓 ′′(0)                   𝜃′(0)                     Ø′(0)                      𝐶𝑓                           𝑁𝑢                         𝑆𝑕  

0.1 

-8 0.41328 -0.02202 -0.2748 2.376191 0.006189 0.079 

-6 0.413091 -0.0182 -0.27482 2.375104 0.004933 0.079004 

-4 0.41278 -0.01022 -0.27484 2.373319 0.002586 0.079012 

-2 0.412312 0.016194 -0.2749 2.370626 -0.00341 0.079029 

0.2 

-8 0.384313 -0.01392 -0.27325 2.209643 0.003914 0.078554 

-6 0.384215 -0.00973 -0.27327 2.209083 0.002638 0.078559 

-4 0.384082 -0.00099 -0.27329 2.208318 0.00025 0.078566 

-2 0.38411 0.027884 -0.27335 2.208479 -0.00588 0.078582 

0.3 

-8 0.360194 -0.00714 -0.27196 2.070968 0.002007 0.078183 

-6 0.360165 -0.00263 -0.27198 2.070803 0.000712 0.078187 

-4 0.360165 0.006779 -0.272 2.070804 -0.00172 0.078194 

-2 0.360565 0.037791 -0.27205 2.073106 -0.00797 0.078209 

0.4 

-8 0.339804 -0.00139 -0.27087 1.953737 0.00039 0.07787 

-6 0.339828 0.003402 -0.27088 1.953871 -0.00092 0.077874 

-4 0.339928 0.013385 -0.27091 1.954449 -0.00339 0.07788 

-2 0.340608 0.046276 -0.27095 1.958359 -0.00976 0.077892 

Table 3 

   𝑆𝑐           𝜃𝑟                 𝑓 ′′(0)                      𝜃′(0)                       Ø
′(0)                         𝐶𝑓                             𝑁𝑢                          𝑆𝑕  

0.2 

-8 0.420285 -0.02514 -0.27615 2.362768 0.007227 0.077622 

-6 0.431126 -0.02643 -0.28051 2.337154 0.007598 0.076032 

-4 0.452424 -0.0289 -0.28882 2.289103 0.008308 0.073067 

-2 0.513615 -0.03556 -0.31108 2.165589 0.010221 0.065581 

0.4 

-8 0.417142 -0.02417 -0.28966 2.3451 0.006948 0.081421 

-6 0.427815 -0.02542 -0.29457 2.319207 0.007308 0.079843 

-4 0.448771 -0.02781 -0.30397 2.270619 0.007995 0.0769 

-2 0.508883 -0.03423 -0.32954 2.145639 0.00984 0.069472 

0.6 

-8 0.414127 -0.02324 -0.30285 2.328151 0.006682 0.085127 

-6 0.424644 -0.02446 -0.30827 2.302014 0.007031 0.083557 

-4 0.44528 -0.02677 -0.31872 2.252961 0.007697 0.080629 

-2 0.504398 -0.03298 -0.34741 2.12673 0.00948 0.073239 

Table 4 

   𝑆𝑐           𝜃𝑐                 𝑓 ′′(0)                       𝜃′(0)                     Ø
′(0)                         𝐶𝑓                            𝑁𝑢                          𝑆𝑕  

0.2 

-8 0.413589 -0.02212 -0.27347 2.377969 0.006217 0.078617 

-6 0.413399 -0.0183 -0.27349 2.376874 0.004961 0.078622 

-4 0.413086 -0.01033 -0.27352 2.375077 0.002614 0.07863 
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-2 0.412611 0.016051 -0.27358 2.372349 -0.00338 0.078649 

0.4 

-8 0.410552 -0.02115 -0.28665 2.360511 0.005944 0.082406 

-6 0.410373 -0.01729 -0.28665 2.35948 0.004686 0.082406 

-4 0.410082 -0.00923 -0.28665 2.357806 0.002334 0.082406 

-2 0.409668 0.017448 -0.28665 2.355427 -0.00368 0.082406 

0.6 

-8 0.407637 -0.02022 -0.29951 2.343749 0.005682 0.086104 

-6 0.407468 -0.01632 -0.2995 2.342778 0.004423 0.0861 

-4 0.407198 -0.00817 -0.29947 2.341221 0.002066 0.086092 

-2 0.406841 0.018785 -0.29942 2.33917 -0.00396 0.086076 

 

4. CONCLUSION 
From the above study, it is clear that the viscosity and thermal 

conductivity parameter along with the other parameters such 

as Magnetic parameter M, Schmidt number Sc, Eckert number 

Ec etc have significant effects on velocity, temperature and 

concentration profile within the boundary layer. 

Thus, it can be concluded that- 

1. Viscosity, Thermal Conductivity and Magnetic field 

retard the fluid velocity. 

2. Hartman number enhances the concentration and 

fluid temperature. 

3. Mass transfer rate decreases for the increase of 

viscosity parameter whereas it increases with the 

increase of Hartmann number (M). 

4. In the presence of viscous and Joule dissipation, the 

inclination angle α, retards the fluid velocity. 

5. Eckert number enhances the fluid velocity and 

temperature. 
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