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ABSTRACT 

Image denoising is an important image processing task, both 

as a process itself, and as a component in other processes. The 

main properties of a good image denoising model are that it 

will remove noise while preserving edges. Traditionally, 

linear models have been used. One common approach is to 

use a Gaussian filter, In spite of the great success of many 

denoising algorithms; they tend to smooth the fine scale 

image textures when removing noise, degrading the image 

visual quality. To address this problem we compare two 

methods in this paper. The Nonlocal Hierarchical Dictionary 

Learning using Wavelet (NHDLW) and Gradient Histogram 

Preservation (GHP),which is large success in denoising. 

Experimental result shows that the NHDLW get significantly 

better denoising results especially on an image denoising 

algorithms on higher noise levels. 
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1. INTRODUCTION 
The image denoising, which aims to estimate the latent clean 

image 𝐴 from its noisy observation 𝐵. it is a standard but yet 

still active topic in image processing and low level image. A 

widely used data observation model GHP is 𝐵 =  𝐴 +  𝑣, 
where v is additive white Gaussian noise (AWGN).  One 

popular approach to image denoising is the variational 

method, where energy functional is minimized to search the 

desired estimation of A from its noisy observation B. The 

energy functional usually involves two terms: a data reliability 

term which depends on the image degeneration process and a 

regularization term which models the prior of clean natural 

images. In NHDLW method the input noisy image B is from a 

clean image A contaminated by additive noise with zero-

mean. First it transforms B into the wavelet domain which 

contains several decomposition levels. Within each level, the 

wavelet coefficients are separated into overlapping patches of 

a fixed size and each patch is modeled as a vector variable. 

Then apply k-means clustering to the vectors. After that, in 

each cluster, a sub-dictionary is trained through a reweighted 

norm regularization process. 

2.  METHODOLOGY 

2.1  Nonlocal Hierarchical Dictionary 

Learning in Wavelet Domain 

(NHDLWD) 
As suggested in Ophir et al. work [1].The wavelet based 

dictionary learning can further utilize the sparsity between the 

wavelet coefficients: 

arg
min

Dw , Sw ||WY − Dw sw ||2
2  s.t. ||si

w ||0 < T, ∀i                (1) 

Where 𝑌 =  [𝒚𝟏, 𝒚𝟐. . . 𝑦𝑁  ]the set of training samples, W is is 

the wavelet analysis operator, 𝐷𝑤  denotes the learned 

dictionary in the wavelet domain, and 𝑆𝑤  is the sparse code 

matrix. It also utilizes the sparsity in the wavelet domain but 

in a nonlocal way. This can be easily extended to the wavelet 

domain - the image self similarity exists in the spatial domain, 

so there is a strong possibility that the nonlocal characteristic 

also exists in the wavelet domain for sub bands from the same 

decomposition level. Therefore, for wavelet patches from the 

same scale, propose to train different sub-dictionaries in 

different underlying clusters. Then simply to obtain a light 

representation in the form that similar wavelet patches use the 

same dictionary elements but with different sparse codes [2], 

[3], [4].This would improve the coding efficiency and reduce 

artifacts. In NHDLWD, Use clustering to obtain training 

samples for each sub-dictionary. For each decomposition level 

q, the dictionary   𝐷𝑞𝑗
𝑤 𝜖𝑅𝑀×𝑟𝑞𝑗  for each cluster j is obtained 

from a regularizer with 𝑙1 norms  

      𝑙(Sqj
w , Dqj

w ) = arg minDqj
w ,Sqj

w ||Yqj
w − Dqj

w Sqj
w ||2

2 +

λ||Sqj
w ||1(2) 

       𝑆. 𝑡.   ||dqji
w ||2

2 ≤ b ,    i = 1,2, … … . . rqj  

                 J= 1, 2……….…k,      q= 1, 2 ……L                    

Where matrix  Yqji

w , … … . . , Yqj Nq

w  ϵRM×Nq  represent the input 

wavelet coefficient patches in clusters j of decomposition 

level q, Sqj
w =  Sqj 1

w , … … Sqj Nq

w  ϵRrq ×Nq , and dqji
w denotes i-th 

column of the dictionary. In terms of patch denoising after the 

dictionary is learned, two approaches are used in NHDLWD. 

The simple method is patch reconstruction, in each cluster 

using the trained sub-dictionary. However, due to the 

hierarchical structure of 
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Fig. 1. Wavelet sub bands and quad-tree structure for a 

coefficient in subbandHL4. The highlighted patches in 

different scales depict the correlations between different 

wavelet decomposition levels. 

The wavelet coefficients, the lower sub bands generally have 

far less training samples compared to the higher sub bands, 

and therefore the sub-dictionaries are usually under-complete. 

The other method is to link all the sub-dictionaries in the same 

scale (NHDLW), which identify the problem of insufficient 

training samples. The aim behind this is that the performance 

of the dictionary learning system improves with the dictionary 

redundancy. After the entity training within each cluster, the 

scale dictionary for each decomposition level q can be 

obtained by merging the above small dictionaries into an 

over-complete dictionary 𝐷𝑞
𝑤𝜖𝑅𝑀×𝑟𝑞 : 

                                   Dq
w = [Dq1

w , … . . Dqj
w , … … . Dqk

w             (3) 

However, along the same orientation, the lower sub bands and 

higher sub bands are correlated (Fig. 1). If a coefficient is 

small in the lower sub band, its descendants in the higher sub 

bands tend to be small accordingly. There are three 

orientations: LH, HL, and HH. In each orientation, patches 

with the size m × m are extracted from all the sub bands in all 

different scales with maximum overlapping (similar to the 

grouping that has been suggested in [1]). One benefit of this 

variation is that the number of the training samples in a single 

orientation is larger than that in a decomposition level, mainly 

for lower sub bands. However, the nonlocal grouping between 

patches from different scales. 

2.2  Iterative Reweighted Regularizer 
In regularization term, it is suggested in [3] that 𝑙1norm can 

perform better in terms of dictionary training, and the 𝑙0 norm 

can reconstruct the denoise image better. The accuracy of the 

clustering stage is mainly depends on how noisy the input 

wavelet coefficients are. From the previous work [3], [5] it 

can see that better grouping can be achieved with iterative 

schemes or pre-denoising before classification. The 

regularization parameter λ controls the balance between the 

fidelity term and the sparsity term. Assuming that 

 Aqj
w(t)

=  Aqji

w t , … … Aqj Nq

w t  ∈ RM×Nq   Has already been 

denoised (M is the size of the patch vector and Nq  is the 

number of the cluster members in decomposition level q), in 

the following iterations the regularization parameter between 

the fidelity term and the sparsity term should be changed with 

a more adaptive value θ. This can be expressed as: 

              min
    Sqj

w ∈Rrq

1

2
||Xqji

w t − Dqj
w(t)

Sqj
w ||2 + γ||θ(t)Sqj

w ||1        (4) 

    s.t. j = 1,2,…..,k     q = 1,2,…..j,     t = 1,2 …..,p 

Where Dqj
w(t)

∈ RM×rq , θ(t) is the diagonal matrix with 

θ1
(t)

, … … θNq

(t)
on the diagonal and zeros elsewhere. The above 

reweighting strategy has been proposed in the compressive 

sensing field [6] that the new parameter should be inversely 

proportional to the underlying signal magnitude. In this 

algorithm, adopt this as “the new parameter should be 

inversely proportional to the underlying sparse code": 

   θ1
(t+1)

=  
1

 Sq ji

w  t 
 +ε

      i = 1……,rq                                       (5) 

Where ε is a very small constant. The intuition for this 

reweighted process is that a sparse code that has a small value 

after t iterations but is not exactly zero will have a large 

reweighting factor θ1
(t+1)

 in the next iteration. This would be  

2.3 Denoising Algorithm  
In the wavelet domain, the lowest sub band (LL) contains the 

highest energy coefficients, and it is vigorous to noise. So 

simple soft-thresholding,[6] is applied on the LL coefficients. 

The rest of the sub bands are processed by Nonlocal 

Hierarchical Dictionary learning using Wavelets (NHDW) 

algorithm, as shown in Fig. 2. 

1. Input: The noisy image B, standard deviation of the noise 

σ. 

2.       Parameters: 

 The iteration times for the dictionary learning 

process P; 

 The patch size of the wavelet coefficients M = m × 

m; 

 The type of the wavelet transform; 

 The number of dictionary atoms per dictionary for 

each Decomposition level 𝑟𝑙  ; 

 The K for k-means clustering 

 The initial γ for the𝑙1 regularization and the initial θ 

         

 
                Fig.  2. Flowchart of   proposed method. 

3. Initialization: The primary dictionaries can be learned from 

the online process or fixed basis transform matrices like 

Discrete Cosine Transform (DCT). It seems that, the pre 

learned dictionary (learned from the clean images) is a good 

initial dictionary for the denoising process [3]. However, in 

this method use DCT as the initial dictionary. 
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4. Wavelet decomposition: The 2-D wavelet transform is 

Applied to the noisy input image B: 

             Bw  =  wB =  Aw  +  ɳw                                           (6) 

For each decomposed level q, (q = 1, 2,….J ), patches with the 

size m × m are extracted from  with 𝐵𝑤  maximum 

overlapping. 

5. Dictionary Learning: In this process, for each wavelet 

decomposition level, repeat P times: 

• K-means clustering: The wavelet coefficients patch matrix 

𝐵𝑞
𝑤 will be clustered by k-means clustering into K clusters                      

Bqj
w , (q = 1,2, … . . k) 

arg minHm     mj ,i=1,2….N j
    |H Bqji

w  − μ
j
|2 k

j=1H(Bq ji
w )∈H   (7) 

 Where Bqji

w represents a noisy patch i belonging to cluster j 

decomposition level q, and mj  is the mean vector for the jth  

cluster Hmj  Then, it can obtain K clusters 

Hm1, Hm2 , Hmj  , . . . , Hmk  . Each cluster Hmj  is composed of 

Njvectors. 

• Sub-dictionary training: Within each cluster 𝐻𝑚𝑗 , ( j = 1, 2, 

..., K), the optimization of the dictionary is between the 

dictionary and the sparse codes alternatively: 

– Initialization: the sub-dictionary is initialized with DCT 

coefficients. 

– repeat P times: 

* Sparse Coding Stage - fix the dictionary, update the sparse 

codes: use the reweighted least angle   regression (LARS) [7] 

to compute the sparse codes for the patches in each cluster. 

∗ Dictionary Update Stage - fix the sparse codes, update the 

dictionary: compute dictionary 𝐷𝑞𝑗
𝑤(𝑡)

 using 𝐷𝑞𝑗
𝑤(𝑡−1)

 as the 

initial value. The learning process is the same as algorithm 2 

in [8] 

 Dqj
w(t)

= arg  minDqj
w  

1

2
||Aqj

w t − Dqj
w Sqj

w t ||2
2 +t

t=1

γ||θ(i)Sqj
w(i)

||2(8) 

– Return the learned dictionary 

Within each cluster r𝐻𝑚𝑗 , ( j = 1, 2, ..., K), the sub-dictionary   

Dqj
w ∈ Rm×rq  is trained by the iterative method.Afterwards, 

all the sub-dictionaries will be concatenated at each 

decomposition level. Now, there are over-completed 

dictionaries with different sizes for different decomposition 

levels𝐷𝑞
𝑤 ∈ 𝑅𝑀×𝑟𝑙 . 

6. Image reconstruction: 

Sparse coding: For the restoration stage, the dictionary for 

each decomposition level is known. The aim is to find the 

sparse representation 𝑠 𝑖𝑗  for each location and the overall 

output wavelet coefficients. The Orthogonal Matching 

Pursuit (OMP) [9] is used for obtaining sparse codes: 

 s ij
w  = arg

min
Sij

w ||sij
w ||0    s. t. ||Dq

w sij
w − Rij Aq

w ||2
2 ≤ Cσ         (9) 

Where 𝑠𝑖𝑗
𝑤   indicates the sparse codes of wavelet coefficient 

located at (i, j) C is a constant, σ is the standard deviation of 

the noise, 𝑅𝑖𝑗  is the binary matrix that extracts the (i, j) patch 

from the wavelet coefficient matrix, and 𝐷𝑞
𝑤 is the combined 

dictionary for decomposition level q.  

• Reconstruction in the wavelet domain:  

The final reconstructed wavelet coefficients matrix 𝐴 𝑞
𝑤can be 

estimated by: 

A q
w = argminAq

w λ1||Aq
w −  Bq

w ||2
2 +  ||Dq

w s ij
w − Rij Aq

w ||2
2

ij            

Where q = 1, 2,..., J .                                                           (10) 

• Image reconstruction: 

                      𝐴 = 𝑊𝑠𝐴 
𝑤   ;                                                        

 Where 𝑊𝑠 is the inverse wavelet transform. After obtain the 

denoised patches in spatial domain 𝐴  , then average the 

estimates of each pixel to reconstruct the last image. 

2.4 The Texture Enhanced Image 

Denoising Framework    
The noisy observation B of an unknown clean image A is 

usually modeled as 

                                     𝐵 =  𝐴 +  𝑣                                 (11)                    

Where 𝑣  is the additive white Gaussian noise with zero mean 

and standard deviation σ. The aim of image denoising is to 

estimate the required image A from B. One popular method of 

image denoising is the variational method, in which the 

denoised image is procured by 

A  =  arg minA{
1

2ς2
|| B − A||2  +  λ. R(A)}              (12) 

Where R(A) denotes some regularization term and λ is a 

positive constant. The specific form of R(A) depends on the 

previous image. The common problem of image denoising 

methods is that the image fine scale details such as texture 

structures will be over-smoothed. An over-smoothed image 

will have much weaker gradients than the original image. 

Naturally, a good inference of A without smoothing too much 

the texture should have a similar gradient distribution to that 

of A. So in gradient histogram preservation (GHP) model for 

texture enhanced image denoising, whose construction is 

shown in Fig. 3.Assume that an estimation of the gradient 

histogram of A, denote by ℎ𝑟 . In order to make the gradient 

histogram of denoised image 𝐴  nearly the same as the 

reference histogram ℎ𝑟 ,the following GHP based image 

denoising model: 

  A = argminAF  
1

2ς2
 B − A 2 + λR A + μ F ∇A −

F∇A 2 , s. t. hF =  hr  (13)                                        

Where F indicate an odd function which is monotonically 

non- cadent, . hF  indicate the histogram of the transformed 

gradient image |F (∇ A)|, ∇  denotes the gradient operator, and 

μ is a positive constant.GHP algorithm use the alternating 

optimization approach. 
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Fig. 3: Flowchart of the proposed texture enhanced image 

denoising framework. 

Given A, it can revise F by the histogram specification based 

shrinkage operator. Thus, by insert F, it can easily include the 

gradient histogram constraint with any existing image 

Regularizer 𝑅(𝐴) One more issue in the GHP model is how to 

find the reference histogram  hr  of unknown image A. In 

carry out, approximate hr  based on the noisy observation B. 

Once the reference histogram hr  is established, then the GHP 

algorithm is used for texture enhanced image denoising. 

2.5 Denoising With Gradient Histogram 

Preservation 
1. The Denoising Model 

This denoising model is a patch based method. Let 𝐴𝑖  =  𝑅𝑖  𝐴 

be a patch extracted at position  𝑖 , 𝑖 = 1,2, … … , 𝑁 where 

𝑅𝑖  the patch extraction operator and N are is the number of 

pixels in the image. Given a dictionary D, it meagerly encodes 

the patch 𝐴𝑖  over D, resulting in a thin coding vector αi. Once 

the coding vectors of all image patches are obtained, the 

whole image A can be reconstructed by [9]:  

A =  D o α ≜    Ri
TN

i=1 Ri 
−1

   Ri
TN

i=1 Dαi    (14)             

Where α is the concatenation of all αi. A proper integration of 

different priors could further get better the denoising 

performance. For example, the methods in [10], [11], and [12] 

integrate image local sparsity prior with nonlocal NSS prior, 

and they have shown promising denoising results. In the 

proposed GHP model, the following sparse nonlocal 

regularization term used in the non -locally centralized sparse 

representation (NCSR) model [11]: 

             R(A) =  ||i  αi − βi||1     , s.t. A = D o α          (15)  

Where βi  is defined as the weighted average of  αi
q
: 

βi  =  wi
q

q αi
q
,                  (16) 

And  αi
q
 is the coding vector of the qth  adjacent patch 

(denoted by Ai
q
) to xi. The weight is      defined as      

wi
q
 =  

1

w
exp⁡ −

1

h
||A i −  A i

q
||2                

(A i   And. 𝐴 𝑖
𝑞
 denoted the current estimated of 𝐴𝑖  and Ai

q
, 

respectively), where h is a predefined constant and W is the 

normalization factor. By using the above 𝑅(𝐴) into Eq. (13), 

then the GHP model can be formulated as: 

A    = arg minA , F{
1

2ς2
|| B − A||2  +  λ  ||i  αi  –  βi||1 +

 µ||F(∇A  )  −   ∇A  ||2} 

s. t. A =  D ס α, hF =  hr                                                     (17) 

In the GHP model with sparse nonlocal regularization, if the 

histogram regularization parameter μ is high, the function F 

(∇A) will be close to ∇A  Since the histogram hF  of |F∇A  | is 

required to be the same as hr  the histogram of ∇A  will be 

comparable to hr  leading to the preferred gradient histogram 

preserved image denoising.  

2. Region-based GHP 

The histogram constraint in Eq. (17) is universal. If the image 

consists of different region with different textures, GHP may 

produce some false textures in the less textured areas. To 

address this problem, split the noisy image into different area 

and use the reference gradient histogram of each area, and 

then apply GHP to each area for denoising. As shown in Fig. 

3, using the two method to partition the first method (Fig. 

3(a)), namely S-GHP, is to use k-means clustering method to 

nearly partition the image into K homogeneous regions, while 

the second method (Fig. 3(b)), namely B-GHP, simply 

partitions the noisy image into    k =  k ×  k  blocks with 

equal size. indicate by {𝛺𝐾 , … 𝛺𝐾 , . . 𝛺𝐾  } the partitioned 

regions. Each region 𝛺𝐾  has the equivalent reference gradient 

histogram hr,k  and have a function Fk  to process the pixels 

within region Ωk : 

  minFk  
 (Fk i,j ϵΩk

(∇A )ij)2                              

                                           s. t. hFk = hr,k                            (18)  

 Define an indicator function 

1Ωc
(i, j) =   

1 , if (i, j) ∈ Ωk

0 ,        else       
                                                 (19) 

The F (∇A) for S-GHP/B-GHP can then be defined as 

F (∇A)  =   Fkk (∇A)1Ωk                                                                             (20) 

 
 

Fig. 3: Two image partition method. (a) The noisy image is 

partitioned into K homogeneous regions by k-means 

clustering. (b) The noisy image is partitioned into  𝐤 ×  𝐤  

blocks. 

2.6 Reference Gradient Histogram 

Estimation 
To use this system in Eq. (17), First of all know the reference 

gradient histogram hr of original image A. In this part, use a 

regularized deconvolution method to estimate the histogram 

hr .Let the pixels in gradient image ∇A are independent and 

identically distributed (i.i.d.) Analysis them as the samples of 

a scalar variable, denoted by A. The normalized histogram of  

∇𝐴  can be regarded as a discrete approximation of the 

probability density function (PDF) of A. For the AWGN v, its 

elements as the samples of an i.i.d. variable, denoted by  

V, since 𝑣 ∼  𝑁 (0, 𝜎2) and let   𝜀 =  𝛻𝑣, can then be well 

approximated by the i.i.d. Gaussian with PDF [16] 

ρε  =  
1

2 πς
 exp( −

 ε2

4ς2
 )                                                  (21) 

 Since B = A + v, and∇B=  ∇A + ∇v . It is ready to model ∇B  

as an i.i.d. variable, denoted by B, and we have                      

B =  A +  ε .Let pAbe the PDF of A, and pB   are the PDF of 

B. Since A and ε are independent, the joint PDF p (A;  ε) is     

          P A, ε  =   pA  ×  pε    (22)                                                                       

Then the PDF pB  is 

pB B = t =  ʃ
a
( A = a)  × pε(  ε =  ( t −  a))da          (23) 

GHE (Gradient Histogram Estimation) 

 

 

 

) 

HIS (Iterative Histogram Specification) 

 

 

 

 

GHP (Gradient Histogram Preserving) 

Input image 

OUTPUT image 
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 use the normalized histogram hA  and hB  to approximate 

pAand  pB  ,modify Eq. (23) in the discrete domain 

as: 

hB  =  hA  ⊗  hε        (24) 

Where ⊗ denotes the convolution operator. Clearly, the 

estimation of  hA  can be commonly modeled as a 

deconvolution problem: 

      hr = arg minhr
{||hB −  hA ⊗ hε||2 +  c . R (hA )}      (25)           

Where c is a constant and R(hA) is some regularization term 

based on the previous information of natural image’s gradient 

histogram. Consider two kinds of constraints on hA . First, it 

has been shown that pA  (i.e., the continuous counterpart 

of hA) can be approximated by hyper-Laplacian distribution 

[15],[16],[17]. Considering that the real hA  strength turn from 

the hyper-Laplacian provides to some extent, it only need 

that hAshould be close to the hyper-Laplacian distribution: 

pA  ≈  C. exp(−k|A|γ )                              (26) 

 

Where C is the normalization factor γ  and k are the two 

parameters of the hyper-Laplacian distribution. More 

specifically, let k ∈ [0:001; 3] and γ ∈ [0.02, 1.5]. Second, 

each element of hA  should be nonnegative. Based on these 

two constraints, gradient histogram guess can be formulated 

as the following regularized deconvolution problem:                                           

hr =
 argminhA

, c, k, γ||hB −  hA  ⊗  hε||2  +

c||hA  – C. exp(−k|A|γ  )||2
                           

                                   s. t. hA  ≥  0,                                                  

(27) 

which can be re- written as: 

hr =  argminhA , hA
′ c, k, γ  +

||hB −  hA  ⊗  hε||2 

c||hA  – C. exp(−k|A|γ  )||2 

+ɳ||hA − hA
′ ||2 

         

(28) 

s. t. hA
′ ≥ 0 

By iteratively update   hA ,hA
′ , C, γand k alternatively. Let 

h0 = C · exp(−k|A |γ), hA  is updated by  

  hA =
FFT  hϵ •FFT  hB  +cFFT  h0 +ɳFF T(hA

, )

FFT  hε  •FFT  hε  +c+ɳ
                           (29) 

Where “•” denotes the element-wise multiplication, “ ∗

∗
 ” 

denotes the element-wise division, and “∗” denotes the 

complex conjugate operator. hA
′  is simplified by 

 hA
′  i =  max (hA  (i),0).                                                 (30) 

 C is simplified by  

                                       C =   
 expi (−k|i|γ

 hA (i)i
                        (31)              

   γ And k updated based on gradient decent 

   

K(t+1) =

k(t) +  τ  Ci |i|γ exp −k t  i|γ (C . exp⁡(−k t |i|γ − hA (i) 

(32) 

γ(t+1)
= γ

(t) + ρ   
 ck t |i|γ  in |i|)exp⁡(−k t |i|γ

. (C. exp⁡(−k −t |i|γ − hA(i))
 |i≠0|           (33)                          

In region based B-GHP and S-GHP, the regularized 

deconvolution scheme can be directly applied to each area to 

estimate the corresponding reference gradient histogram. 

3. RESULT ANALYSIS AND 

DISCUSSION 
Experimental results of this section are obtained by applying 

the proposed method on real images. All test images of size 

512 × 512, were corrupted with the additive white Gaussian 

noise of various standard deviation σ .It compares the both the 

NHDLW and GHP method with the several  state-of-the-art 

methods. To verify the performance of the proposed NHDLW 

and GHP based image denoising method, apply it to natural 

images with various texture structures, whose scenes are 

shown in Fig.4 & 5.All the test images are gray-scale images 

with gray level ranging from 0 to 255. Finally, experiments 

are conducted to validate its performance in comparison with 

the state-of-the-art denoising algorithms. In the following 

experiments set the AWGN standard deviation i.e.  σ   from 

20 to 40 with step length.  Use the PSNR as the objective 

measure of the denoising quality, as it is widespread 

throughout the image processing community. As PSNR is 

proved to be inconsistent with the human eye perception, it 

also use more profound structural similarity index measure 

(SSIM) [13] to additionally validate the proposed method, in 

comparison to the baseline algorithms. The resulting images 

for the baseline algorithms were chosen so that the best PSNR 

is reached, as it is usually done in the text. Results presented 

show that the proposed method significantly outperforms all 

baseline methods in the means of both, the PSNR and the 

SSIM measure. It can be mention that in the actual 

exploitation the referent, i.e., original image is not available. 

Thus, one has to fix the number of iterations of the used 

diffusion algorithm. This possibly causes the stronger over 

smoothing effect on the target image. So the actual result 

would be even more in favor of the proposed method. In 

Figure 4.a original test images are presented, while the 

corresponding noisy images are presented in Figure 4b,c,d for 

σ = 25.   

 

 Fig.4. Denoising results for the image “Barbara” with σ = 

25 (Gaussian noise). 

(a) (b) 

(d) (c) 
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 Tested the proposed algorithm on “Barbara”, and “car -

scene” test Images, with three different values of Gaussian 

white noise standard deviation σ. 

 
Fig. 5: Car scene From left to right and from top to 

bottom: original image, the difference PSNR map. 

  Table 1 Comparison Of Nhdlw And Ghp Image 

Denoising Methods 

S.NO METHOD PSNR 

For σ=20 

PSNR 

For σ=25 

PSNR 

For σ=30 

1 NHDLW 31.12 30.71 29.32 

2 GHP 30.83 29.66 28.75 

4. CONCLUSION 
This paper compares NHDLW and GHP image denoising 

methods. The NHDLW method, takes advantages of the 

sparse coding framework, nonlocal grouping and wavelet 

transform, leading to the state of-the-art denoising 

performance. It builds a nonlocal hierarchical sparse 

dictionary on the wavelet coefficients of a noisy image. Once 

the dictionaries are trained, they are combined as a whole to 

represent the entire decomposition level. In GHP model, its 

associated algorithm was presented to estimate the reference 

gradient histogram from the noisy image, and an efficient 

iterative histogram specification algorithm was developed to 

implement the GHP model. One limitation of GHP is that it 

cannot be directly applied to non-additive noise removal, such 

as multiplicative Poisson noise and signal-dependent noise 

[14]. It would be interesting and valuable to study more 

general models and algorithms for non-additive noise removal 

with texture enhancement. Thus, the NHDLW method gives 

the better performance at different σ as compare to GHP 

method, so it conclude NHDLW method is more preferable 

over GHP method. The computation time can be the matter 

for future work. 
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