
International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

28

A Modified Policy Iteration Algorithm for Discounted

Reward Markov Decision Processes

Sanaa Chafik

Laboratory of Information Processing and Decision
Support. Sultan Moulay Slimane University,

BeniMellal, Morocco.

Cherki Daoui
Laboratory of Information Processing and Decision

Support. Sultan Moulay Slimane University,
BeniMellal, Morocco.

ABSTRACT

The running time of the classical algorithms of the Markov

Decision Process (MDP) typically grows linearly with the

state space size, which makes them frequently intractable.

This paper presents a Modified Policy Iteration algorithm to

compute an optimal policy for large Markov decision

processes in the discounted reward criteria and under infinite

horizon. The idea of this algorithm is based on the topology of

the problem; moreover, an Open Multi-Processing (Open-MP)

programming model is applied to attain efficient parallel

performance in solving the Modified algorithm.

General Terms
Theoretical Informatics, Parallelizing …

Keywords

Markov Decision Processe; Discounted reward criterion;

Policy Iteration algorithm; Open Multi-Processing; shared

memory; Parallelizing.

1. INTRODUCTION
Markov Decision Process (MDP) is a mathematical

framework for modeling sequential decision problems under

uncertainty; the applications of this model are numerous. To

mention some of them, MDP models have been applied to

Inventory Control [4], Queuing Systems [10], Maintenance

Management [13], Health Care Management [2] and

Transportation Systems [9]. Considering a discrete time MDP

with finite state and action spaces under discounted reward

optimality criterion. There is a large literature on methods for

finding optimal policies for discounted MDP, the classical

methods [16;14] when the environment is considered known

such as value iteration algorithm (VI), policy iteration (PI)

algorithm and linear programming, which find optimal

policies in polynomial time.

Our goal is to solve very large MDPs, there are some inherent

limitations of this type of statistical model then much research

has been devoted to deal with large state problem, the

decomposition method is the most widely used for tackling

large MDP [6;7]. To this end, a modified Policy Iteration

algorithm is introduced that based on the topology of each

state in the associated graph.

The role of parallelism in accelerating computing speeds has

been recognized for several decades. In this work, this

concept is used in our modified algorithm. In general, there

are three main models for parallel programming multicore

architectures; this paper focuses on one of the main models:

the shared memory programming model. In this direction, the

Open_MP is employed which is targeted toward use on shared

memory systems, it is an Application Program Interface

(API), jointly defined by a group of major computer hardware

and software vendors.

is devoted to

This paper is organized into 4 sections. After the introduction,

some generalities about MDPs is presents by defining the

ingredients or input data of the model in mathematical terms,

we also define the Policy Iteration algorithm one of the most

useful method of resolution of the MDP with a specific

technique in the evaluation phase. Section 2, presents a

Modified Policy Iteration algorithm to compute an optimal

solution based on the topology of the problem, limiting our

calculation for each state at the set of her successors. The next

section, present in detail our parallel algorithm based on the

Open_MP. Section 4 is devoted to discussing the results

obtained in terms of execution time.

2. MARKOV DECISION PROCESSES

2.1 Markov chains and stochastic processes
A stochastic process is simply a collection of random

variables
tS indexed by time t. It will be useful to consider

separately the cases of discrete time and continuous time. a

discrete time is considered, which the state changes are

preordained to occur only at the integer points 0, 1, 2, …, n. A

stochastic process {
tS } (t = 0, 1, …) is a Markov Chain [1]

if it has the Markovian property :

1 1 0 0 1 1(| ,...,) (|)t t t t t t t tP S s S s S s P S s S s         (1)

That is, the conditional probability of any future event t+1

depends only upon the present state t.

2.2 Formalism
MDP are an extension of Markov chains, considering a

stochastic dynamic system which is observed at discrete time

points t = 1, 2,... . An MDP [16 ;3] is defined by

(, , ,)S R   , where:

 S={1, 2, ..., M} is the set of states of the environment

(the state space), let tS is a random variable which

represent the state of the system at time t whose values

are in the state space S;

 A is the set of actions (the action space);

 T is the transition function (the probability of

transitioning to state s’ when action a is executed in state

s), where:

: [0,1]T S A S  

 1(' | ,) (' | ,)t tT p S s S s a p s s a    (2)

https://en.wikipedia.org/wiki/Markov_chain

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

29

Where
1(' | ,)t tp S s S s a  represents the transition

probability from state s to s’ that results from taking action
a.

 (,)R s a is the reward function (the immediate utility of

executing the action a in state s), where :

 :R S A   (3)

A strategy  is defined by a sequence 1 2(, , ...)  

where
t is a decision rule, that is a function :t

tH 

where 1()t

tH S A S   the set of all histories up to time t,

and 1 2 1
{(, ,...,) : 1, 0,1 }

AA

i iA i
q q q R q q i A


      

the set of probability distributions over ()i SA A i . A

Markov strategy is a strategy  in which t depends only

on the current state at time t, a stationary strategy is a Markov

strategy with identical decision rules, and a deterministic or

pure strategy is a stationary strategy whose single decision

rule is nonrandomized. That the stationary process is assumed

in the following. For there to exist an optimal policy, there

must exist an optimality criterion that places some kind of

ordering on different policies. The most studied criteria in the

theory of MDP :

 The finite reward MDP: the total expected reward is used

over the planning horizon n, the feature of this criteria is

using a fixed finite number of stages:

 0 1 2 1 0... |nE r r r r s    (4)

 The discounted reward MDP: In this criterion, an infinite

planning horizon is considered, i.e an infinite trajectory:

2

0 1 2 0... ... |t

tE r r r r s         (5)

Where  0,1  is the discount factor. When there is no

discounting, i.e. the discount factor equals 1.

 The total reward MDP : also it is working in an infinite

horizon:

 0 1 2 0... ... |tE r r r r s     (6)

 The average reward MDP:

  0 1 2 1 0

1
lim ... |n nE r r r r s

n
     (7)

The usual goal in MDPs is to find a policy that yields the

maximum expected return over time. In this paper, we

consider the discounted reward MDP. We define V 

 the

value function which, for each policy  associate and each

initial state s  S:

2

0 1 2 0() [... ... |]t

tV s E r r r r s s 

         

 0

0

()= |t

t

t

V s E r s s

  




 
 

 
 (8)

The coefficient  is named the discount factor wich 0, 1

smaller than 1 in order to ensures convergence of the sum.

And the optimal policies
* verifies the condition :

* * , s S V (s) V (s) or argmax V  

  


      (9)

3. POLICY ITERATION ALGORITHM
The PI algorithm is another approach to solve discounted

reward MDPs such as the Value Iteration algorithm, it aims to

calculate successively policies increasingly well-behaved for

MDPs :

 Starting with a random policy ;

 Calculate its value ;

 Build a better policy than the previous one ;

 Return to step, as far as we can produce a policy strictly

better off under the last policy.

The algorithm starts with an arbitrary stationary policy and

iteratively improves until there is no changes are made to the

policy value. In general, the PI algorithm consisting of two

interleaved steps (let k=0, 1, 2…):

 Evaluation of the policy
k : calculate the kV 

 Improvement of the policy: calculate the
1k 

better than

k , deduced from kV 

1
() '

() argmax[(,) (' | ,) (')],k

k i
a A s s S

s R s a p s s a V s s S 
 

   (10)

Concerning the evaluation step, they exist several methods of

resolution:

 The first method aims to solve a set of linear equations

with |S| unknown and |S| equations :

1 1 1

1

V () () () [()] ()t t

k k k

t

P r I P r       


  



  

Then:

'[[()]]V (') [()] ,

kk ss k sI P s r s S

     (11)

The ()kP  (which is marked in Eq.11) is the stochastic

transition matrix, following the stationary policy
k :

 , '

()

() (,) (' | ,)s s k k

a A s

P a s p s s a 


  (12)

And the vector ()kr  represent the gain vector, following the

policy
k :

()

[()] (,) (,)k s k

a A s

r a s r s a 


  (13)

The term I stands for the M  M identity matrix and the

exponent denotes a full matrix inversion.

Algorithm .1: PI algorithm (version 1)

0k 

Randomly initialize the policy k

Repeat

' k k 

 For s doS

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

30

 calculate V (s) by solving a set of linear equations
k

 End for

 For each s doS

 If a A(s) such as:  

'

 (,) (' | ,) (') ()
k k

s S

R s a p s s a V s V s 


 

 Then

' ()k s a 

 Else if

' () ()k ks s 

 End for

 k k+1

'While =k k 

Return V ,k k

The number of operations required to solve the system of

equations (Eq.11), for example, by Gaussian elimination is on

the order of 3(| |)O S [8].

 The second method is based on the iteration of values for

a fixed policy [11;15]. The basic idea is to iteratively

update the value functions 1V k

i



 (Eq. 14) of every state s

using the value functions V k

i


of the others state s’ and

according to the strategy k until the value function

calculated on two successive steps are close enough. The

number of operations (Eq. 14) required is on the order of
2(| |)O S .

Algorithm .2: PI algorithm (version 2)

 Specified a threshold 

 0k 

 Randomly initialize the policy k

 Repeat

 i 0

 For all s S

 V () 0k

i s 

 Repeat

 For all s doS

1

'

 V () (, ()) (, (), ') (')k k

i k k i

s S

s R s s P s s s V s   



   (14)

 End for

 i i+1

1 While () ()k k

i iV s V s   

 For all s doS

1
() '

 () argmax[(,) (, , ') (')]k

k i
a A s s S

s R s a p s a s V s 
 

   (15)

 End for

 k k+1

1While k k  

Remark: For each iteration, the equation (Eq. 15) requires

approximately 2A|S| [12] multiplications and divisions.

Thereafter, the segond version is best appropriate, but it is

always computationally impractical in the case of very large

MDP. Therefore, in the next section, a Modified Policy

Iteration algorithm to alleviate the burden of dimentionality.

4. THE MODIFIED POLICY

ITERATION ALGORITHM
We introduce in this section a Modified PI algorithm

(Algorithm 2). Let sS, the state space S should be seen as a

union of two sets: (s) a set of successors according to the

state s and the rest of states {S \ (s)}:

 S= {(s)  {S \ (s)} (16)

 Where a set (s) ={s’S /  a  A(s); (' | ,)p s s a > 0}.

For example in Figure 1, the state space

1 2 3 4 5 6 7 8{ , , , , , , , }S s s s s s s s s .

Figure 1: example of state space with 8 states

Then the state space 3 3{ () (| ())}S s S s    (Figure 2), such

as 3 2 3 4 6 8() { , , , , }s s s s s s  and 3 1 5 7| () { , , }S s s s s 

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

31

Figure 2: The decomposition of the state space S

according to the successors of state s3

Therefore, we can rephrase respectively the equations (Eq. 14)

and (Eq. 15) as follows:

1

'

V () (, ()) (' | , ()) (')k k

i k k i

s S

s R s s p s s s V s   



  

' ()

1

' { | ()}

(' | , ()) (')

V () (, ())
(' | , ()) (')

k

k

k

k i

s s

i k

k i

s S s

p s s s V s

s R s s
p s s s V s









 






 

 
 

   
 
 





 1

' ()

V () (, ()) (' | , ()) (')k k

i k k i

s s

s R s s p s s s V s   



   (17)

1
() '

() argmax[(,) (' | ,) (')]k

k i
a A s s S

s R s a p s s a V s 
 

  

' ()

1
()

' { | ()}

(' | ,) (')

() argmax[(,)]
(' | ,) (')

k

k

i

s s

k
a A s

i

s S s

p s s a V s

s R s a
p s s a V s




 






 

 
 

   
 
 





1
() ' ()

() argmax[(,) (' | ,) (')]k

k i
a A s s s

s R s a p s s a V s 
 

   (18)

Next, we present the proposed Modified PI algorithm.

Algorithm .3: Modified PI algorithm

Specified a threshold 

0k 

Randomly initialize the policy k

Repeat

 i 0

 For all s S

 V () 0k

i s 

 Repeat

 For all s doS

1

' ()

 V () (, ()) (' | , ()) (')k k

i k k i

s s

s R s s p s s s V s   



   (19)

 End for

 i i+1

1 While () ()k k

i iV s V s   

 For all s doS

1
() ' ()

 () argmax[(,) (' | ,) (')]k

k i
a A s s s

s R s a p s s a V s 
 

   (20)

 End for

 k k+1

1While k k  

Remark:

 It is easy to establish the convergence and correctness of

Algorithm.3.

 There is a transition from state s to state s’ if the

transition probability
'ssa is greater than zero. In general,

in each system (Eq. 21) they are | |K S transitions

where K is the average number of successors to a state.

'

| | | |

1 s' 1
0

1 | |

ss

S S

s
a

K S
 



  (21)

Then the modified PI algorithm [5] takes, for each iteration, in

the order of | |K S computations in Eq. 19 and A |S|K 

computations in Eq. 20, which represents a reduction in the

complexity of the Version 2 of the PI algorithm

(Algorithm.2).

5. PARALLELIZING CONCEPTS
Defining the dynamic programming table

1,2,...,

1,2,...{ }s M

ts th 

  ,

which hts
(Table 1) represents the elements of the table and

the index t and j the
ths entry of the

tht row respectively.

Table 1: Dynamic programming table

1, 1t sh   1, 2t sh   …
1,t s Mh  

2, 1t sh   2, 2t sh   …
2,t s Mh  

… … … …

This table is used to store the value of the value function (Eq.

22 and Table 2)

1, 1

' ()

h V () (, ()) (' | , ()) (')k k

t i s i k k i

s s

s R s s p s s s V s     



   

 1,

' ()

h (, ()) (' | , ()) (')k

t i s k k i

s s

R s s p s s s V s   



   (22)

Table 2: Value function

1, 1 1V (1)k

t sh 

   …
1, 1V ()k

t s Mh M

  

2, 1 2V (1)k

t sh 

   …
2, 2V ()k

t s Mh M

  

… … …

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

32

Afterward, to calculate an optimal strategy (Eq. 23 and Table

3)

1, 1h ()t k s k s  

1,

() ' ()

h argmax[(,) (' | ,) (')]k

t k s i
a A s s s

R s a p s s a V s 
 

   (23)

Table 3: Optimal strategy

1, 1 1(1)t sh    …
1, 1()t s Mh M  

Noting that the entries of each row in H depend only on the

entries in the previous row, which implies that each entry in

the
tht row of H can be computed in parallel (Table 2 and

Table 3).

Figure 3: Parallel computing for the value function

Figure 4: Parallel computing for the optimal policy
The Open Multi-Processing (OpenMP) is an Application

Program Interface (API). In comparison to other types of

parallelism, the OpenMP can be used to specify shared

memory (Figure 5) parallelism in Fortran, C and C++ on most

processor architectures and operating systems, Linux,

Windows… .

Figure 5: Shared memory

The OpenMP [17] is not a language but it consists of a set of

compiler directives which are based on the #pragma compiler

directives in C languge. In this programming model, tasks

share a common address space, which they read and write

asynchronously.

 The parallel program begins with a single thread exists called

the master thread that will continue to process serially until it

encounters a parallel region which is a block of code that must

be executed by a team of threads in parallel.

Figure 6: The parallel concept

Thereby, an implementation of the parallel modfied PI

algorithm based on OpenMP is proposed, the main idea in this

algorithm is to specify a value function and the policy defined

as (Eq. 19 Eq. 20) of each state of the problem:

 Input: shared date N = {the set of state S, the set of action

A, the transition function T, the reward function R}, the

factor  , .

 Output:

o The threads create the private variables and coordinate

betwen us for access on the shared memory;

o Calculate the value function and the value of policy in

parallel;

o Repeat the previous step until the stabilization of the

strategies.

The Fig. 7 shows the performance results by using the

parallelization technique on the Modified PI algorithm.

Therefore, noting that the Modified PI algorithm

(Algorithm.3), accomplish in high speed up when the

number of states is increased in comparison to the classical

version (Algorithm.2), and the same effect when the

parallelization technique is used on the Modified PI algorithm

which is shown in the 4th column.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.10, January 2016

33

Figure 7: Running time a function of number of state

6. CONCLUSION
The PI algorithm is one of the several standard methods for

finding the optimal policies, but it remains intractable for

solving large MDP. The research presented in this work is an

effort toward developing some modified approaches to solve

this class of MDPs. We based on the topology of each state in

the associated graph and the parallelization technique with an

application program interface named Open-MP.

Moreover, we will hope later on to merge the decomposition

method with the techniques of parallelism for more efficiency.

7. ACKNOWLEDGEMENT
In conclusion we are very grateful to my professor Mister

DAOUI Cherki for their encouragement, their cooperation,

their advices and their guidance in the realization of this work.

8. REFERENCES
[1] Aurélie, B. 2006. Une contribution à la résolution des

processus décisionnels de Markov décentralisés avec

contraintes temporelles. Caen university. French. <tel-

00112014>

[2] Alagoz, O., Maillart, L. M., Schaefer, A. J., & Roberts,

M. S. 2007. Determining the acceptance of cadaveric

livers using an implicit model of the waiting

list. Operations Research, 55(1), 24-36.

[3] Bellman, R. 1957. Dynamic Programming. Princeton

University Press.

[4] Benjaafar, S., & ElHafsi, M. 2006. Production and

inventory control of a single product assemble-to-order

system with multiple customer classes.Management

Science, 52(12), 1896-1912.

[5] Chafik, S., & Daoui, C. 2015. A Modified Value

Iteration Algorithm for Discounted Markov Decision

Processes. Journal of Electronic Commerce in

Organizations (JECO), 13(3), 47-57.

[6] Daoui, C., Abbad, M., & Tkiouat, M. 2010. Exact

decomposition approaches for Markov decision

processes: A survey. Advances in Operations

Research,2010.

[7] Dean, T., & Lin, S. H. 1995. Decomposition techniques

for planning in stochastic domains. In IJCAI (Vol. 2, p.

3).

[8] Galoppo, N., Govindaraju, N. K., Henson, M., &

Manocha, D. 2005. LU-GPU: Efficient algorithms for

solving dense linear systems on graphics hardware.

In Proceedings of the 2005 ACM/IEEE conference on

Supercomputing (p. 3). IEEE Computer Society.

[9] Goto, J. H. 1999. A Markov decision process model for

airline meal provisioning (Doctoral dissertation,

University of British Columbia).

[10] Lewis, M. E., Ayhan, H., & Foley, R. D. 2002. Bias

optimal admission control policies for a multiclass

nonstationary queueing system. Journal of Applied

Probability, 20-37.

[11] Munos, R. Introduction à l’apprentissage par

renforcement, from http://researchers.lille.inria.fr/ ∼

munos/master-mva/.

[12] Papadimitriou, C. H., & Tsitsiklis, J. N. 1987. The

complexity of Markov decision processes. Mathematics

of operations research, 12(3), 441-450.

[13] Pavitsos, A., & Kyriakidis, E. G. 2009. Markov decision

models for the optimal maintenance of a production unit

with an upstream buffer. Computers & Operations

Research, 36(6), 1993-2006.

[14] PDMIA, G. (2008). Processus décisionnels de Markov en

intelligence artificielle. Edité par Olivier Buffet et

Olivier Sigaud, 1.

[15] Preux, P. (2008). Apprentissage par renforcement,

GRAPA.

[16] Puterman, M. L. (2014). Markov decision processes:

discrete stochastic dynamic programming. John Wiley &

Sons.

[17] Sato, M. (2002, October). OpenMP: parallel

programming API for shared memory multiprocessors

and on-chip multiprocessors. In Proceedings of the 15th

international symposium on System Synthesis (pp. 109-

111). ACM.

IJCATM : www.ijcaonline.org

