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ABSTRACT 

The running time of the classical algorithms of the Markov 

Decision Process (MDP) typically grows linearly with the 

state space size, which makes them frequently intractable. 

This paper presents a Modified Policy Iteration algorithm to 

compute an optimal policy for large Markov decision 

processes in the discounted reward criteria and under infinite 

horizon. The idea of this algorithm is based on the topology of 

the problem; moreover, an Open Multi-Processing (Open-MP) 

programming model is applied to attain efficient parallel 

performance in solving the Modified algorithm.  
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1. INTRODUCTION 
Markov Decision Process (MDP) is a mathematical 

framework for modeling sequential decision problems under 

uncertainty; the applications of this model are numerous. To 

mention some of them, MDP models have been applied to 

Inventory Control [4], Queuing Systems [10], Maintenance 

Management [13], Health Care Management [2] and 

Transportation Systems [9]. Considering a discrete time MDP 

with finite state and action spaces under discounted reward 

optimality criterion. There is a large literature on methods for 

finding optimal policies for discounted MDP, the classical 

methods [16;14] when the environment is considered known 

such as value iteration algorithm (VI), policy iteration (PI) 

algorithm and linear programming, which find optimal 

policies in polynomial time. 

Our goal is to solve very large MDPs, there are some inherent 

limitations of this type of statistical model then much research 

has been devoted to deal with large state problem, the 

decomposition method is the most widely used for tackling 

large MDP [6;7]. To this end, a modified Policy Iteration 

algorithm is introduced that based on the topology of each 

state in the associated graph. 

The role of parallelism in accelerating computing speeds has 

been recognized for several decades. In this work, this 

concept is used in our modified algorithm. In general, there 

are three main models for parallel programming multicore 

architectures; this paper focuses on one of the main models: 

the shared memory programming model. In this direction, the 

Open_MP is employed which is targeted toward use on shared 

memory systems, it is an Application Program Interface 

(API), jointly defined by a group of major computer hardware 

and software vendors. 

is devoted to 

This paper is organized into 4 sections. After the introduction, 

some generalities  about MDPs is presents by defining the 

ingredients or input data of the model in mathematical terms, 

we also define the Policy Iteration algorithm one of the most 

useful method of resolution of the MDP with a specific 

technique in the evaluation phase. Section 2, presents a 

Modified Policy Iteration algorithm to compute an optimal 

solution based on the topology of the problem, limiting our 

calculation for each state at the set of her successors. The next 

section, present in detail our parallel algorithm based on the 

Open_MP. Section 4 is devoted to discussing the results 

obtained in terms of execution time. 

2. MARKOV DECISION PROCESSES  

2.1 Markov chains and stochastic processes 
A stochastic process is simply a collection of random 

variables 
tS  indexed by time t. It will be useful to consider 

separately the cases of discrete time and continuous time. a 

discrete time is considered, which the state changes are 

preordained to occur only at the integer points 0, 1, 2, …, n. A 

stochastic process { 
tS } (t = 0, 1, …) is a Markov Chain [1] 

if it has the Markovian property :              

1 1 0 0 1 1( | ,..., ) ( | )t t t t t t t tP S s S s S s P S s S s             (1) 

That is, the conditional probability of any future event t+1 

depends only upon the present state t. 

2.2 Formalism 
MDP are an extension of Markov chains, considering a 

stochastic dynamic system which is observed at discrete time 

points t = 1, 2,... . An MDP [16 ;3] is defined by 

( , , , )S R   , where: 

 S={1, 2, ..., M} is the set of states of the environment 

(the state space), let tS  is a random variable which 

represent the state of the system at time t whose values 

are in the state space S; 

 A is the set of actions (the action space); 

 T is the transition function (the probability of 

transitioning to state s’ when action a is executed in state 

s), where: 

: [0,1]T S A S    

                1( ' | , ) ( ' | , )t tT p S s S s a p s s a                    (2) 

https://en.wikipedia.org/wiki/Markov_chain
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Where 
1( ' | , )t tp S s S s a   represents the transition 

probability from state s to s’ that results from taking action 
a. 

 ( , )R s a is the reward function (the immediate utility of 

executing the action a in state s), where : 

                   :R S A                                         (3) 

A strategy   is defined by a sequence 1 2( ,  ,  ...)    

where 
t  is a decision rule, that is a function :t

tH   

where 1( )t

tH S A S    the set of all histories up to time t, 

and  1 2 1
{( , ,..., ) : 1, 0,1 }

AA

i iA i
q q q R q q i A


        

the set of probability distributions over ( )i SA A i . A 

Markov strategy is a strategy   in which t  depends only 

on the current state at time t, a stationary strategy is a Markov 

strategy with identical decision rules, and a deterministic or 

pure strategy is a stationary strategy whose single decision 

rule is nonrandomized.  That the stationary process is assumed 

in the following.  For there to exist an optimal policy, there 

must exist an optimality criterion that places some kind of 

ordering on different policies. The most studied criteria in the 

theory of MDP : 

 The finite reward MDP: the total expected reward is used 

over the planning horizon n, the feature of this criteria is 

using a fixed finite number of stages:     

 0 1 2 1 0... |nE r r r r s                          (4)                             

 The discounted reward MDP:  In this criterion, an infinite 

planning horizon is considered, i.e an infinite trajectory: 

    
2

0 1 2 0... ... |t

tE r r r r s                       (5) 

Where  0,1   is the discount factor. When there is no 

discounting, i.e. the discount factor equals 1. 

 The total reward MDP : also it is working in an infinite 

horizon:                        

 0 1 2 0... ... |tE r r r r s                        (6)                            

 The average reward MDP:   

   0 1 2 1 0

1
lim ... |n nE r r r r s

n
                 (7)                 

The usual goal in MDPs is to find a policy that yields the 

maximum expected return over time. In this paper, we 

consider the discounted reward MDP. We define V 

 the 

value function which, for each policy   associate and each 

initial state s  S: 

2

0 1 2 0( ) [ ... ... | ]t

tV s E r r r r s s 

           

                          0

0

( )= |t

t

t

V s E r s s

  




 
 

 
                         (8) 

The coefficient  is named the discount factor wich 0, 1  

smaller than 1 in order to ensures convergence of the sum. 

And the optimal policies 
*  verifies the condition : 

                 
* * , s S V (s) V (s) or argmax V  

  


           (9) 

3. POLICY ITERATION ALGORITHM 
The PI algorithm is another approach to solve discounted 

reward MDPs such as the Value Iteration algorithm, it aims to 

calculate successively policies increasingly well-behaved for 

MDPs : 

 Starting with a random policy ; 

 Calculate its value ; 

 Build a better policy than the previous one ; 

 Return to step, as far as we can produce a policy strictly 

better off under the last policy. 

The algorithm starts with an arbitrary stationary policy and 

iteratively improves until there is no changes are made to the 

policy value. In general, the PI algorithm consisting of two 

interleaved steps (let k=0, 1, 2…): 

 Evaluation of the policy 
k : calculate the kV 

 

 Improvement of the policy: calculate the 
1k 

better than

k , deduced from kV 
 

1
( ) '

( ) argmax[ ( , ) ( ' | , ) ( ')],k

k i
a A s s S

s R s a p s s a V s s S 
 

   (10) 

Concerning the evaluation step, they exist several methods of 

resolution:  

 The first method aims to solve a set of linear equations 

with |S| unknown and |S| equations : 

1 1 1

1

V ( ) ( ) ( ) [ ( )] ( )t t

k k k

t

P r I P r       


  



    

Then:                                                                                            

           
'[ [ ( )] ]V ( ') [ ( )] ,

kk ss k sI P s r s S

        (11) 

The ( )kP  (which is marked in Eq.11) is the stochastic 

transition matrix, following the stationary policy 
k :                                                             

                        , '

( )

( ) ( , ) ( ' | , )s s k k

a A s

P a s p s s a 


               (12) 

And the vector ( )kr   represent the gain vector, following the 

policy
k :                                                             

                      
( )

[ ( )] ( , ) ( , )k s k

a A s

r a s r s a 


               (13) 

The term I stands for the M  M identity matrix and the 

exponent denotes a full matrix inversion.      

Algorithm .1: PI algorithm (version 1) 

0k   

Randomly initialize the policy k  

Repeat  

'    k k   

    For s  doS  
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        calculate V (s)  by solving a set of linear equations
k

              

    End for  

    For each s  doS  

         If   a A(s) such as:    

'

        ( , ) ( ' | , ) ( ') ( )
k k

s S

R s a p s s a V s V s 


                                                                                   

        Then  

'            ( )k s a   

        Else if  

'            ( ) ( )k ks s   

    End for  

    k k+1  

'While  =k k   

Return V ,k k  

The number of operations required to solve the system of 

equations (Eq.11), for example, by Gaussian elimination is on 

the order of 3(| | )O S  [8]. 

 The second method is based on the iteration of values for 

a fixed policy [11;15]. The basic idea is to iteratively 

update the value functions 1V k

i



  (Eq. 14 ) of every state s 

using the value functions V k

i


of the others state s’ and 

according to the strategy k until the value function 

calculated on two successive steps are close enough. The 

number of operations (Eq. 14 ) required is on the order of 
2(| | )O S . 

Algorithm .2: PI algorithm (version 2) 

 Specified a threshold   

 0k   

 Randomly initialize the policy k  

 Repeat  

     i 0  

     For all s S  

         V ( ) 0k

i s   

    Repeat  

        For all s  doS  

1

'

            V ( ) ( , ( )) ( , ( ), ') ( ')k k

i k k i

s S

s R s s P s s s V s   



   (14) 

        End for                 

        i i+1  

1    While ( ) ( )k k

i iV s V s     

    For all s  doS  

1
( ) '

        ( ) argmax[ ( , ) ( , , ') ( ')]k

k i
a A s s S

s R s a p s a s V s 
 

     (15) 

    End for  

    k k+1  

1While k k    

Remark: For each iteration, the equation (Eq. 15) requires 

approximately 2A|S|  [12] multiplications and divisions. 

Thereafter, the segond version is best appropriate, but it is 

always computationally impractical in the case of very large 

MDP. Therefore, in the next section, a Modified Policy 

Iteration algorithm to alleviate the burden of dimentionality. 

4. THE MODIFIED POLICY 

ITERATION ALGORITHM 
We introduce in this section a Modified PI algorithm 

(Algorithm 2). Let sS, the state space S should be seen as a 

union of two sets:  (s) a set of successors according to the 

state s and the rest of states {S \ (s)}: 

                               S= {(s)  {S \ (s)}                           (16) 

 Where a set (s) ={s’S /  a  A(s); ( ' | , )p s s a  > 0}. 

For example in Figure 1, the state space 

1 2 3 4 5 6 7 8{ , , , , , , , }S s s s s s s s s . 

 

Figure 1: example of state space with 8 states  

Then the state space 3 3{ ( ) ( | ( ))}S s S s    (Figure 2), such 

as 3 2 3 4 6 8( ) { , , , , }s s s s s s   and 3 1 5 7| ( ) { , , }S s s s s   
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Figure 2: The decomposition of the state space S 

according to the successors of state s3  

Therefore, we can rephrase respectively the equations (Eq. 14) 

and (Eq. 15) as follows: 

1

'

V ( ) ( , ( )) ( ' | , ( )) ( ')k k

i k k i

s S

s R s s p s s s V s   



    

' ( )

1

' { | ( )}

( ' | , ( )) ( ')

V ( ) ( , ( ))
( ' | , ( )) ( ')

k

k

k

k i

s s

i k

k i

s S s

p s s s V s

s R s s
p s s s V s









 






 

 
 

   
 
 




 

 1

' ( )

V ( ) ( , ( )) ( ' | , ( )) ( ')k k

i k k i

s s

s R s s p s s s V s   



        (17) 

1
( ) '

( ) argmax[ ( , ) ( ' | , ) ( ')]k

k i
a A s s S

s R s a p s s a V s 
 

    

' ( )

1
( )

' { | ( )}

( ' | , ) ( ')

( ) argmax[ ( , ) ]
( ' | , ) ( ')

k

k

i

s s

k
a A s

i

s S s

p s s a V s

s R s a
p s s a V s




 






 

 
 

   
 
 




 

1
( ) ' ( )

( ) argmax[ ( , ) ( ' | , ) ( ')]k

k i
a A s s s

s R s a p s s a V s 
 

       (18) 

Next, we present the proposed Modified PI algorithm.  

Algorithm .3: Modified PI algorithm 

Specified a threshold   

0k   

Randomly initialize the policy k  

Repeat  

    i 0  

    For all s S  

        V ( ) 0k

i s   

    Repeat  

       For all s  doS  

1

' ( )

        V ( ) ( , ( )) ( ' | , ( )) ( ')k k

i k k i

s s

s R s s p s s s V s   



   (19) 

       End for  

        i i+1  

1    While ( ) ( )k k

i iV s V s     

    For all s  doS  

1
( ) ' ( )

      ( ) argmax[ ( , ) ( ' | , ) ( ')]k

k i
a A s s s

s R s a p s s a V s 
 

   (20) 

    End for  

    k k+1  

1While k k    

Remark:  

 It is easy to establish the convergence and correctness of 

Algorithm.3.  

 There is a transition from state s to state s’ if the 

transition probability 
'ssa  is greater than zero. In general, 

in each system (Eq. 21) they are | |K S  transitions 

where K is the average number of successors to a state. 

                       

'

| | | |

1   s' 1
0

1 | |

ss

S S

s
a

K S
 



                      (21) 

Then the modified PI algorithm [5] takes, for each iteration, in 

the order of | |K S computations in Eq. 19 and A |S|K   

computations in Eq. 20, which represents a reduction in the 

complexity of the Version 2 of the PI algorithm 

(Algorithm.2). 

5. PARALLELIZING CONCEPTS 
Defining the dynamic programming table

1,2,...,

1,2,...{ }s M

ts th 

  , 

which hts
(Table 1) represents the elements of the table and 

the index t and j the 
ths  entry of the 

tht  row respectively. 

Table 1: Dynamic programming table 

1, 1t sh    1, 2t sh    … 
1,t s Mh    

2, 1t sh    2, 2t sh    … 
2,t s Mh    

… … … … 

This table is used to store the value of the value function (Eq. 

22 and Table 2)  

1, 1

' ( )

h V ( ) ( , ( )) ( ' | , ( )) ( ')k k

t i s i k k i

s s

s R s s p s s s V s     



   

 1,

' ( )

h ( , ( )) ( ' | , ( )) ( ')k

t i s k k i

s s

R s s p s s s V s   



          (22) 

Table 2: Value function 

1, 1 1V (1)k

t sh 

    … 
1, 1V ( )k

t s Mh M

  

 

2, 1 2V (1)k

t sh 

    … 
2, 2V ( )k

t s Mh M

  

 

… … … 
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Afterward, to calculate an optimal strategy (Eq. 23 and Table 

3)                            

1, 1h ( )t k s k s    

  
1,

( ) ' ( )

h argmax[ ( , ) ( ' | , ) ( ')]k

t k s i
a A s s s

R s a p s s a V s 
 

        (23) 

Table 3: Optimal strategy 

1, 1 1(1)t sh     … 
1, 1( )t s Mh M    

Noting that the entries of each row in H depend only on the 

entries in the previous row, which implies that each entry in 

the 
tht row of H can be computed in parallel (Table 2 and 

Table 3).  

 

Figure 3: Parallel computing for the value function 

 

Figure 4: Parallel computing for the optimal policy 
The Open Multi-Processing (OpenMP) is an Application 

Program Interface (API). In comparison to other types of 

parallelism, the OpenMP can be used to specify shared 

memory (Figure 5) parallelism in Fortran, C and C++ on most 

processor architectures and operating systems, Linux, 

Windows… .  

 

Figure 5: Shared memory 

The OpenMP [17] is not a language but it consists of a set of 

compiler directives which are based on the #pragma compiler 

directives in C languge. In this programming model, tasks 

share a common address space, which they read and write 

asynchronously. 

 The parallel program begins with a single thread exists called 

the master thread that will continue to process serially until it 

encounters a parallel region which is a block of code that must 

be executed by a team of threads in parallel. 

Figure 6: The parallel concept 

Thereby, an implementation of the parallel modfied PI 

algorithm based on OpenMP is proposed, the main idea in this 

algorithm is to specify a value function and the policy defined 

as (Eq. 19 Eq. 20) of each state of the problem: 

 Input: shared date N = {the set of state S, the set of action 

A, the transition function T, the reward function R}, the 

factor   , . 

 Output: 

o The threads create the private variables and coordinate 

betwen us for access on the shared memory; 

o Calculate the value function and the value of policy in 

parallel;  

o Repeat the previous step until the stabilization of the 

strategies. 

The Fig. 7 shows the performance results by using the 

parallelization technique on the Modified PI algorithm. 

Therefore, noting that the Modified PI algorithm 

(Algorithm.3),  accomplish in high speed up when  the 

number of states is increased  in comparison to the classical 

version (Algorithm.2), and the same effect when  the 

parallelization technique is used on the Modified PI algorithm 

which is shown in the 4th column.
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Figure 7: Running time a function of number of state 

6. CONCLUSION 
The PI algorithm is one of the several standard methods for 

finding the optimal policies, but it remains intractable for 

solving large MDP. The research presented in this work is an 

effort toward developing some modified approaches to solve 

this class of MDPs. We based on the topology of each state in 

the associated graph and the parallelization technique with an 

application program interface named Open-MP. 

Moreover, we will hope later on to merge the decomposition 

method with the techniques of parallelism for more efficiency. 
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