
International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

25

A Review on Adaptive Web Caching Technique

Pranay Nanda
Research Scholar

Department of Computer
Science and Engineering,

Amity School of Engineering
and Technology,

Amity University, Rajasthan
India

Shamsher Singh, PhD
Asst professor

Department of Computer
Science,

AB CollegePathankot,India

G. L. Saini
Asst Professor

Department of Computer
Science and Engineering,

Amity School of Engineering
and Technology,

Amity University, Rajasthan
India

ABSTRACT
Traditional caches see a fixed-size page; a Web cache, on the

other hand, sees complete objects (text files, images, or video

clips), which vary considerably in size. In addition, a

traditional cache deals with addresses, while a Web cache can

potentially deduce more contextual information from its

objects. Web objects are predominantly read-only, taking

implementation of cache coherence easier. The response times

of Web accesses are in the order of seconds (versus

milliseconds for system access), which allows for more

elaborate caching algorithms. Finally, a Web cache

encounters more dimensions of dependence than are taken

into account by traditional methods. Primary cache

replacement algorithms consider arrival time as the only one

factor as the basis of their functionality. They disregard

parameters such as page size, fetching delay, reference rate,

and invalidation cost and invalidation frequency of a web

object. Considering these parameters produces better and

more apt results with greater efficiency, thereby surpassing

traditional and conventional algorithms such as LRU, LIFO

and LFU in performance and accuracy. Most of them are

favorable to objects with homogenous sizes. Also, many of

these algorithms depend on manual interference to find quick

cures for symptoms instead of understanding the core issues.

Because the cache space is limited and no technology can be

as suitable to cater to each user’s request separately, we need

caching algorithms that are intelligent and adapt to the

available resources and utilize them optimally. Systems must

evolve towards more scalable, adaptive, efficient and self-

configuring web caching systems to effectively support the

phenomenal growth in demand for web content on the

internet. Adaptive caching views caching problems as a way

of optimizing global data dissemination. Studies have shown

that adaptive algorithms yield better results than conventional

caching algorithms.

Keywords

Web Caching, Caching Cache Algorithm.

1. INTRODUCTION
Primary and significant cache alternative algorithms consider

landing time period as the only one factor as the basis of their

functionality. They disregard the parameters such as page

size, fetching delay; reference rate, invalidation cost and

invalidation rate of recurrence of a web object [2]. Thinking

About these parameters generates much better and more apt

results with greater efficiency, thereby exceeding

conventional as well as conventional algorithms such as LRU,

FIFO, LIFO and LFU in performance and accuracy [11]. Most

of them are favourable to CPU caches instead of web caches
[13]. Also, many of these algorithms are dependent on manual

intervention to find rapid treats for symptoms instead of

understanding the fundamental issues. Because the cache

space is limited and no technologies can be as suitable to cater

to each user’s inquire individually, we need caching

algorithms that are well-informed as well as adjust to the

available resources and utilize those optimized [12]. Systems

must progress towards more scalable, adaptive, efficient and

self-configuring web caching systems to effectively support

the phenomenal growth in demand for web content on the

internet [1]. Adaptive caching views caching difficulties as a

way of perfecting global data dissemination [14]. Studies have

shown [9] [12] [6] [11] that adaptive algorithms yield much better

results than traditional caching algorithms

2. FUZZY INFERENCE SYSTEM
As artificial intelligence is choosing their way in practically

every single thing as well as really stands as foundation stone

for many technologies, here a Sugeno type Fuzzy Inference

System [2] is implemented. The mechanism utilizes three

guidelines which are Frequency, Latency and Byte sent.

Frequency implies the number of cache hits of the web

objects in a time interval. Higher frequency specifically

implies higher chances of the object being re-accessed.

Therefore the object with greater rate of recurrence would be

granted greater priority against those with a lesser frequency.

Latency is the delay that was required to get the object from

the web server. An object with greater Latency would imply

prerequisite of greater priority. Setting Up the web object with

higher latency close to the client would lead to performance

improvements and lower latency. Byte sent means the size of

an object or the bytes sent from the server to the proxy server

for the requested for web objects. An object with large Byte

sent size would require greater bandwidth and subsequently it

could possibly, potentially reduce the performance of the web.

Therefore a larger object would be expected to be placed

close to the client to cut down on utilization of bandwidth.

The architecture proposes:

1. All objects are initially placed in the cache of the proxy

server. The information regarding the latency and byte

sent is recorded and saved at proxy server cache. The

proxy server records the frequency of hits for each

object. When the cache memory has no more space for

new objects than the replacement algorithm comes into

play.

2. The Sugeno type Fuzzy Inference System assigns ranks

to objects based on the three parameters of Frequency,

Latency and Byte sent. The object with lower rank is

removed from the cache and the object with higher rank

is kept in the cache. In case, all objects arbitrarily have

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

26

high ranks, then any web object can be removed for the

new objects coming into cache

3. LOGISTIC REGRESSION OPTIMAL

CACHE ALGORITHM
We embrace logistic simple regression model to anticipate our

future accesses based on our access history [3]. By using this

model, a web caching agent can acquire knowledge about the

elements, it encounters and deduce to an excellent strategy for

better web experience and diminished network congestion [10].

A logistic regression model is a simple and easily repeatable

method of analysis. Our expectation is the fact that Web

access patterns over the short term are not altogether random,

nor chaotic (self-similar). Web pages deemed most likely to

be re-accessed in the near future will be acknowledged and

kept in cache. We pose this as a "learning from example"

problem in machine learning theory: the predicate to be

learned is Web object re-access; the examples are traces of

past Web accesses; and a logistic regression model

accomplishes the discovering.

Regression models have been widely used by bio-statisticians

to model the risk (or probability) of disease development (the

event) as a function of factors suspected to affect the disease.

These factors are also referred to as predictors or covariates of

the model. Our goal is to express the outcome of the

dependent variable Y (of some value g), in terms of its

predictors (1, X1, …, Xk) and their respective coefficient (βo,

β1,……… βk).

P(Y=gI1, X1, …, Xk) = f(z)……………………………………

Where z = βo+ β1x1 +……………………………… + βkxk

Given a set of observed data, the coefficients can be estimated

by a suitable method (learning phase). Once the coefficients

are determined, we can use the function to predict the

outcome of an event when the predictors are known

(prediction phase)

The event of interest is whether an object is re-accessed at

least once in the next WF accesses. Predictors include

 Size and type of object,

 Number of times it has been accessed

 Time since last access

We want to ascertain whether such factors are predictive of

Web re-accesses.

Let (Y = 1IX) be the probability of the event Y = 1, given the

predictor vector X. This is modelled as a function of linear

predictor z, P (Y = 1IX) = f (z). Since P (Y = 1IX) is a

probability, the function f (z) must map the real line between

0 and 1. Several so-called link functions are commonly used

for this purpose, the most popular being the logistic function

taking the form

P (Y=1IX) = - ∞ < z < + ∞ ……………………..

The logistic function has several favourable properties:

 It maps probability to 0 and 1

 It lends itself to biologically meaningful

interpretation

 Its "S" shape indicates that the effect of z is minimal

for low 'zs' until some threshold is reached.

When enough predictors are present, the function rises rapidly

and remains relatively constant once z gets large. Part of our

investigation is to determine whether such a function can be

applied to the Web. This specific model is referred to as the

logistic regression model. A non-event is simply modelled as

the complement of an event, or

 P (Y=0IX) 1- P

(Y=1IX)………………………………..

Since Yi is the binary outcome (1 for an event, 0 for a non-

event) observed on the access. Let Xi be the associated vector

of predictors. Assuming Y1, Y2, ………. Ym are independent,

the joint probability of the sequence Y1, Y2, …………… Ym

is proportional to the

Product П P (Y = Yi I Xi)…………………………………..

This is the likelihood equation. The coefficient of a predictor

variable indicates show it influences the probability of an

event. If β = 0, the variable has no influence. If β > 0, then the

value of variable increases the probability of the event and if

β < 0, then the value of variable decreases the probability of

the event. However, it must be noted that the value of β

coefficients is obtained. The p-value is commonly used to

measure the strength of evidence that the estimates of β are

statistically significantly different from zero. For our

purposes, we consider any predictors with p-value ≤ 0.1 to be

significant.

Our caching algorithm can theoretically be implemented as

two background process: continuous learning and predicting. .

For simplicity, we performed only one pass of learning and

prediction. Because we based our learning on the number of

accesses, or events, instead of time, we were able to

circumvent the possibility of down-time on the servers.

The ultimate goal of a cache system is to reduce the access

times for the end user. The classical textbook formula of

average access time of an object in system cache is as

follows:

Average access time + tcache + (1-4)*t

noncache………………………..

Cache = Time needed to transfer objects from cache

Tnoncache = Time needed to transfer objects from non-cache

location,

h= Object hit ratio

This formula assumes that transfer times are independent of

object size, network conditions (that is, the availability of

bandwidth), and object location. These assumptions are valid

for system caches since they deal with fixed-size pages; stable

memory/disk connection; and objects residing at similar

distances from point of processing.

We introduce an object replacement ratio. Reducing the

replacement ratio reduces disk fragmentation and the need for

constant cache maintenance. One-time referring behaviour

can result in the clattering of one-third of a server cache with

useless files. A low replacement ratio, therefore, also

indicates the caching efficiency. Other estimates of cache

performance use similar metrics since they can be easily

computed with an off line simulator.

4. ACASH
ACASH [16] takes care of a cache scope by dividing it

dependent on the heterogeneity of web objects. It adaptively

contemplates modifications on the reference point

characteristics of the object based the time elapsed. Large

heterogeneity of the web object stimulates more frequent

cache substitution and helps to create large variations in

object size. ACASH divides the storage scope of web cache

into two kinds of domain in accordance to object size.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

27

 Some considerations recommended would be to

store as many web objects as possible in web cache

and not to save small sized web objects in the cache

with this perspective.

 Also, the replacement of a large object eliminates

many small sized objects at a time.

The absence of cache for a large object highly boosts network

traffic and decreases the performance of the web system. With

this belief, saving a large object in a cache is better to

appreciate to network. Based on prior research, we can

determine a large number of dissimilarities between your total

transmission high quality and the number of rate of recurrence

references based on a 10K size object. ACASH takes care of

web objects by dividing them in accordance to their size.

Objects are classified as LARGE (over 10K in size) and

SMALL (below 10K in size) based on their size for easy

administration.

ACASH gets flexibility with reference characteristics of web

objects in accordance to time changes by controlling the

division rate of each presented cache domain. A cache

management checks for the existence of the object in the

division's scope constituted by the object size when an object

is requested by a client. In case of a cache hit, the cache

management provides the service object for the client request

and enhancements the time used record, which receives high

priority in a LRUMIN substitution. In case of a cache miss,

the cache manager receives the transmission of the object by

requesting service from the URL internet server. Then the

transmissible objects are divided to LARGE or SMALL basis

of object size. The cache manager then checks the storage

scope to save these objects in the cache domain in the proper

object level. If there are spaces to save it, the objects are

stored in cache scope and if there are no spaces to save it, the

objects are allocated to free spaces by LRUMIN and are saved

in the cache. The objects can be replaced between same scope

level objects and high priority is allocated by saving the time

record of the newly stored object. ACASH has a relatively

small variation of web object size compared with LRU,

LRUMIN and SIZE because it manages the storage scope of

the cache by dividing the object's size into LARGE and

SMALL

ACASH ADAPTOR is used to get the adaptability of division

rate of the cache scope. Each domain is divided into lightly

loaded, lightly overloaded and overloaded stated based on

load state. The workflow is as follows:

 Initially and the ratio of load state is 5:5 which

changes according to object reference on each

division domain.

 Periodically, as the load state of a domain changes,

if a load state of a domain reaches the overloaded

state, the ACASH ADAPTOR checks the load state

of the different domain.

 If the load state of other domain is lesser than the

overloaded state, then the division rate of

overloaded state is increased by 5% on the total

cache division scale. Else, if the load state of other

domain is slightly overloaded, the cache division

operates without adjustment.

 The rate of a domain cannot be over 70% on a

division rate adjustment.

 Periodically, as the load state of a domain changes,

if a load state of a domain reaches the overloaded

state, the ACASH ADAPTOR checks the load state

of the different domain.

 If the load state of other domain is lesser than the

overloaded state, then the division rate of

overloaded state is increased by 5% on the total

cache division scale. Else, if the load state of other

domain is slightly overloaded, the cache division

operates without adjustment.

 The rate of a domain cannot be over 70% on a division rate

adjustment

Fig 1: ACASH Algorithm

5. ACME
ACME (Adaptive Caching using Multiple Experts) [9] is

inspired by problems existing in existing static caching

algorithms such as data access latency due to disparity in

between processor and storage I/O speeds, locality, lack of

adaption to network topologies, changing workloads and

increasing dynamic content. ACME treats existing cache

replacements algorithms (such as LRU, RAND, MRU, FIFO,

LIFO, LFU, SIZE, GDS, GDSF) as experts and registers them

to a pool which has equal weights initially. In case of

invention of new algorithms, they are added to the pool to test

their proficiency. ACME does not propose new algorithms

but uses existing algorithms more successfully. When the

requests are manufactured by clients and the intensity

improves, the weights are transformed by computationally

simple but strong machine learning algorithms based on their

achievements on hit rate or byte hit rate. Each node is an

independent transformative organization. Because cache

content information or synchronization messages are not

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

28

shared within peer caches, the clusters of these cache nodes

will be scalable and easy to manage. This technique increases

machine learning algorithms to improve caching algorithms in

resolving insignificant problems [8]. It uses a pool of static

cache replacement algorithms to join their relatively weak

predictions into one highly-accurate prediction that aims to

decide what objects remain in cache. Similar mechanics have

been earlier used in resolving non-trivial complications with

operating system.

The mechanism identifies a pool of virtual caches each of

which simulates a single static cache substitution policy by

sustaining an object ordering as if it possessed the complete

physical cache. Each virtual cache uses keeps only the object

metadata and not the actual object data with a purpose to save

space. On each request, each virtual cache reports whether it

would have got a hit (scored as 1) or a miss (scored as 0) as if

it were real cache. This ranking is used to adjust the weights

of the policies by increasing the weight of the objects that

would have kept the object and lowering for people who

would have dumped the object. Both caching and replacement

are done based on votes. Each virtual cache votes on the

objects it wishes to keep and assigning higher values to

objects that it believes are most worth keeping. The objects

with the highest weighted total vote stay in the cache. Over a

period, the real cache ordering will probably appear like the

ordering of virtual caches with highest weights, but will still

be a mixture of a number of policies

One potential restriction that can be anticipated because of

this approach is that virtual caches only keep as many objects

that fit in the physical cache. In this case, a virtual cache with

space for n objects will not contain an object that rank n+1 or

n+100, where n is an object with rank of 1, which implies n is

the most worthwhile object in the virtual cache. Therefore, it

would be advisable to reward caches rather than rank reused

objects and use virtual caches larger than the physical cache.

By doing so, an object ranked n+1 in all virtual caches might

be chosen over an object that is ranked n-1 in one cache and

unranked in every other cache. If virtual caches were the same

size as physical caches, the object with rank n+1 would be

totally unknown and thereby, it will be ineligible for ranking.

However, in a most likely scenario, the object with rank n+1

is more appealing and much more likely to be placed in cache
than one with n-1 since so many policies rank it relatively

extreme.

 Fig 2 ACME Framework

Figure 3 Virtual Caches and Physical Caches

6. NEURO-FUZZY SYSTEM IN

PARTITIONED CLIENT SIDE WEB

CACHE (ICWCS)
This procedure suggests that client-side caching is more

affordable as well as efficient way to improve web overall

performance of the web [14] due to the nature of browser

cache that is closer to the user. A neuro-fuzzy system is a

neural network that is functionally equal to a fuzzy inference

model. A prevalent perspective in neuro-fuzzy development is

adaptive neuro-fuzzy inference system (ANFIS) which is

more compelling when compared with synthetic neural-

networks (ANNs) and fuzzy systems. An intelligent client-

side web caching scheme (ICWCS) is proposed to enhance

the performance of the client side caching by splitting the

client side cache into two caches, short-term cache and long-

term cache. The splitting mechanism is implemented for

storing the ideal web objects and eliminating undesirable

objects in the cache for more effective storage. Also, ANFIS

is employed to ascertain which objects in the long-term cache

should be removed when the long-term cache runs out of

capacity.

Neuro-fuzzy systems incorporate the parallel computation and

learning abilities of ANNs with human-like knowledge

representation and explanation abilities of fuzzy systems. A

common technique in neuro-fuzzy development is ANFIS

which has shown colossal functionality at binary

classification tasks, being comparatively more profitable than

other classification methods

The web cache is separated into short-term cache that receives

objects immediately from the web and long term cache that

receives objects from the short-term cache. In ICWCS, when

a web page is viewed by the user, the objects relating to the

page are stored in short-term cache originally. If the objects

are accessed again, then the objects are transmitted to the

long-term cache. This implies that if a web object is reused, it

would be transferred to the long-term cache. Other objects

will be managed by LRU algorithm. This ensures that objects

that are used more often will be cached for a longer duration

while lesser preferred objects would be removed to eliminate

cache pollution and maximize hit ratio. ANFIS has a Sugeno-

type fuzzy model. ANFIS is trained using a hybrid algorithm

that uses least-squares estimator and the gradient ancestry

method. In case, the long-term cache runs out of capacity, the

ANFIS is employed in replacement process that classifies

each object each object in long-term cache as cacheable or

non-cacheable object. The old non-cacheable objects are

removed first form the long term cache to make space for the

incoming objects. If all objects are considered as cacheable,

then the scheme will work like LRU policy. ICWCS can be

converted from client cache to a proxy cache using minimum

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

29

effort. The distinction lies mainly in data size which is

humongous at server end.

Figure 4 Framework of ICWCS

Some other intelligent web cache replacement policies are:

 Neural Network Proxy Cache Replacement: In

NNPCR, artificial neural network has been used to

make cache substitution decision. And object is

selected for caching based on the rating given to it

by the ANN. The restriction with this particular

policy is that the objects with the same class are

removed without any precedence anywhere between

those objects.

 Web cache optimization with non-linear model

using object feature: Artificial neural network has

been used depending on syntactical features from

HTML structure of the piece of content and the

HTTP responses of the server as inputs. The

constraints include that the rate of recurrence factor

is ignored in web cache replacement decision. Also,

this policy takes in some factors that do not

manipulate web caching.

 Adaptive Web cache access predictor using

neural network: The approach exhibits design of

an intelligent predicator that used back propagation

neural network to augment the performance of web

caching by forecasting the most likely re-accessed

objects established on history of accesses from the

origin server and then keep them in cache.

However, it disregards appearance period of the

object.

7. SUMMARY OF ADAPTIVE

CACHING ALGORITHMS.
Adaptive caching is a remedy to efficiency issues in the

dynamic and complex web [4]. Each algorithm optimizes a

different parameter to achieve greater efficiency in designated

environment [7]. Because most of the results manufactured

for caching algorithms are imitative, they may differ at some

levels in real implementations due to lack of external

limitations during simulation. Real implementations may

require to minimize space and computational overheads and

make performance trade-offs. Table 2 discusses few caching

algorithms, their guidelines, brief and disadvantages

 Table 1:Summery of Caching Algorithim

Caching

Algorithm
Brief Description Disadvantage

Fuzzy

Inference

System

Replacement policy based on

Sugeno-type fuzzy inference

system is employed that

ranks objects using three

parameters: Byte sent,

Frequency and latency

Extra

computation

overhead,

Implementation

can be complex

[2]

Logistic

Regression

Optimal

cache

algorithm

Logistic Regression function

is used to statistically predict

future accesses by learning

access patterns from

previous accesses

The objects with

the lowest re-

access

probability

value are

replaced first

regardless of

cost and size of

the predicted

object [5] [20][3]

ACASH

Adaptively caches objects by

dividing cache scope based

on heterogeneity of web

objects and adaptively

reflects changes based in the

reference characteristics of

the objects according to the

time elapsed

Does not take

factors such as

arrival time in

account

ACME

Machine learning algorithms

rate and select current best

policies or mixture of

policies via weight updates

based on their recent

success, allowing each

adaptive cache node to tune

itself based on the workload

it observes

Virtual caches

may only keep

objects as

much fit in

physical

caches

making

eligible

caching

candidates

invalid when

the cache fills

[9]

Intelligent

client side

web caching

system

Client-side approach that

divides cache into two

caches: short term and long

term; The objects in short

term cache are replaced

using LRU and if the objects

are re-accessed, they are

relocated to long term cache

where a neuro-fuzzy system

is employed in case the long-

term cache saturates

Training process

requires long-

time and extra

computation;

implemented at

client-side [14] [6]

[15]

8. CONCLUSION
Due to heterogeneous characteristics of the web, the

algorithms suited for CPU cache (Such as LRU, LFU) are not

conditioned to support web objects. Algorithms for CPU

caches are more familiar to static and consistent objects.

However, the web has an ever-changing dynamic and

complicated structure and more dynamic algorithms are

required. Adaptive web caching techniques need to be built

that use machine learning to adapt to the important changes in

usage behaviors as well as store appropriate objects in cache

while utilizing the cache space thoroughly. In this particular

document, we survey various adaptive caching techniques and

Frequently Requested

Object(Cache)

Browser Internet

Long

Term

Cache

Long

Term

Cache

Removing Objects

Based on ANFIS

Removing Infrequently

Requested Object Using

LRU

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.12, January 2016

30

algorithms while discussing their pros and cons that may help

to reduce the bottleneck in data transmission through web

9. ACKNOWLEDGMENTS
Especially, please allow me to dedicate my acknowledgment

of gratitude toward the significant advisors and contributors; I

would like to thank Dr. Shamsher Singh for his most support

and encouragement. He kindly read my paper and offered

invaluable detailed advices on grammar, organization, and the

theme of the paper. Second, I would like to thank GL Saini to

reproof the paper, Finally, I sincerely thank to my parents,

family, Department of Computer Science and Engineering,

Amity School of Engineering and Technology, Amity

University, Rajasthan India and friends, who provide the

advice and financial support. The product of this research

paper would not be possible without all of them.

10. REFERENCES
[1] Achuthsankar S. Nair, J.S. Jayasudha, “Improving

Performance by World Wide Web by Adaptive Web

Traffic Reduction”, Proceedings of World Academy of

Science, Engineering and Technology, Volume 17,

December 2006

[2] Anish Kumar Saha, Partha Pratim Deb, Moutishi Kar, D.

Rudrapal, “An optimization technique of web caching

using Fuzzy Inference System”, International Journal of

Computer Applications, Volume 43-No.17, April, 2012

[3] Annie P. Foong, Yu-Hen Hu and Dennis M. Heisey,

“Adaptive web caching using logistic regression”, IEEE,

1999

[4] Athena Vakali, George Pallis, “A study on web caching

architectures and performance”

[5] Dhawaleswar Rao. CH, “Study of the web caching

Algorithms for Performance Improvement of the

response speed”, Indian Journal of Computer Science

and Engineering”, Volume 3 – No. 2, April-March, 2012

[6] Farhan Mohamed, Abdul Samad Ismail, Siti Mariyam

Shamsuddin, “Web caching and prefetching: Techniques

and analysis in World Wide Web”, Proceedings of the

Postgraduate Annual Research Seminar, 2005

[7] Hossam Hassanein, Zhengang Liang and Patrick Martin,

“Performance comparison of Alternative Web Caching

Techniques”, Proceedings of the Seventh International

Symposium on Computers and Communications, 2002

[8] https://en.wikipedia.org/wiki/Bloom_filter

[9] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan

L.Miller, Scott A. Brandt, Darrell D.E. Long, “ACME:

Adaptive Caching using Multiple Experts”

[10] Lixia Zhang, Sally Floyd and Van Jacobson, “Adaptive

Web Caching”, April 25, 1997

[11] S.Sulaiman, Siti Mariyam Shamsuddin and A.Abraham,

“Intelligent web caching using Adaptive Regression

Trees, Splines, Random Forests and Tree Net”

[12] Scott Michel, Lixia Zhang, Sally Floyd, “Adaptive web

caching: Towards a new global caching architecture”,

Computer Networks and ISDN Networks, November

1998

[13] Sean C. Rhea, Kevin Liang, Eric Brewer, “Value based

web Caching”, May 20-24, 2003

[14] Waleed Ali, Siti Mariyam Shamsuddin, “Neuro-fuzzy

system in partitioned client-side web cache”, Expert

systems with applications, November 2011

[15] Waleed Ali, Siti Mariyam, Shamsuddin, Abdul Samad

Ismail, “A Survey of Web caching and Prefetching”,

International Journal of Advanced Soft Computing

Applications, Volume 3- No. 1, March 2011

[16] Yun Ji Na, Choon Seong Leem, Il Seok Ko, “ACASH:

an adaptive web caching method based on the

heterogeneity of web object and reference

characteristics”, Information Sciences, May 20, 2005

IJCATM : www.ijcaonline.org

