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ABSTRACT 
Traditional caches see a fixed-size page; a Web cache, on the 

other hand, sees complete objects (text files, images, or video 

clips), which vary considerably in size. In addition, a 

traditional cache deals with addresses, while a Web cache can 

potentially deduce more contextual information from its 

objects. Web objects are predominantly read-only, taking 

implementation of cache coherence easier. The response times 

of Web accesses are in the order of seconds (versus 

milliseconds for system access), which allows for more 

elaborate caching algorithms. Finally, a Web cache 

encounters more dimensions of dependence than are taken 

into account by traditional methods. Primary cache 

replacement algorithms consider arrival time as the only one 

factor as the basis of their functionality. They disregard 

parameters such as page size, fetching delay, reference rate, 

and invalidation cost and invalidation frequency of a web 

object. Considering these parameters produces better and 

more apt results with greater efficiency, thereby surpassing 

traditional and conventional algorithms such as LRU, LIFO 

and LFU in performance and accuracy. Most of them are 

favorable to objects with homogenous sizes. Also, many of 

these algorithms depend on manual interference to find quick 

cures for symptoms instead of understanding the core issues. 

Because the cache space is limited and no technology can be 

as suitable to cater to each user’s request separately, we need 

caching algorithms that are intelligent and adapt to the 

available resources and utilize them optimally. Systems must 

evolve towards more scalable, adaptive, efficient and self-

configuring web caching systems to effectively support the 

phenomenal growth in demand for web content on the 

internet. Adaptive caching views caching problems as a way 

of optimizing global data dissemination. Studies have shown 

that adaptive algorithms yield better results than conventional 

caching algorithms.   
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1. INTRODUCTION 
Primary and significant cache alternative algorithms consider 

landing time period as the only one factor as the basis of their 

functionality. They disregard the parameters such as page 

size, fetching delay; reference rate, invalidation cost and 

invalidation rate of recurrence of a web object [2]. Thinking 

About these parameters generates much better and more apt 

results with greater efficiency, thereby exceeding 

conventional as well as conventional algorithms such as LRU, 

FIFO, LIFO and LFU in performance and accuracy [11]. Most 

of them are favourable to CPU caches instead of web caches 
[13]. Also, many of these algorithms are dependent on manual 

intervention to find rapid treats for symptoms instead of 

understanding the fundamental issues. Because the cache 

space is limited and no technologies can be as suitable to cater 

to each user’s inquire individually, we need caching 

algorithms that are well-informed as well as adjust to the 

available resources and utilize those optimized [12]. Systems 

must progress towards more scalable, adaptive, efficient and 

self-configuring web caching systems to effectively support 

the phenomenal growth in demand for web content on the 

internet [1]. Adaptive caching views caching difficulties as a 

way of perfecting global data dissemination [14]. Studies have 

shown [9] [12] [6] [11] that adaptive algorithms yield much better 

results than traditional caching algorithms 

2. FUZZY INFERENCE SYSTEM  
As artificial intelligence is choosing their way in practically 

every single thing as well as really stands as foundation stone 

for many technologies, here a Sugeno type Fuzzy Inference 

System [2] is implemented. The mechanism utilizes three 

guidelines which are Frequency, Latency and Byte sent. 

Frequency implies the number of cache hits of the web 

objects in a time interval.  Higher frequency specifically 

implies higher chances of the object being re-accessed. 

Therefore the object with greater rate of recurrence would be 

granted greater priority against those with a lesser frequency. 

Latency is the delay that was required to get the object from 

the web server. An object with greater Latency would imply 

prerequisite of greater priority. Setting Up the web object with 

higher latency close to the client would lead to performance 

improvements and lower latency. Byte sent means the size of 

an object or the bytes sent from the server to the proxy server 

for the requested for web objects. An object with large Byte 

sent size would require greater bandwidth and subsequently it 

could possibly, potentially reduce the performance of the web. 

Therefore a larger object would be expected to be placed 

close to the client to cut down on utilization of bandwidth. 

The architecture proposes: 

1. All objects are initially placed in the cache of the proxy 

server. The information regarding the latency and byte 

sent is recorded and saved at proxy server cache. The 

proxy server records the frequency of hits for each 

object. When the cache memory has no more space for 

new objects than the replacement algorithm comes into 

play. 

2. The Sugeno type Fuzzy Inference System assigns ranks 

to objects based on the three parameters of Frequency, 

Latency and Byte sent. The object with lower rank is 

removed from the cache and the object with higher rank 

is kept in the cache. In case, all objects arbitrarily have 
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high ranks, then any web object can be removed for the 

new objects coming into cache 

3. LOGISTIC REGRESSION OPTIMAL 

CACHE ALGORITHM 
We embrace logistic simple regression model to anticipate our 

future accesses based on our access history [3]. By using this 

model, a web caching agent can acquire knowledge about the 

elements, it encounters and deduce to an excellent strategy for 

better web experience and diminished network congestion [10]. 

A logistic regression model is a simple and easily repeatable 

method of analysis. Our expectation is the fact that Web 

access patterns over the short term are not altogether random, 

nor chaotic (self-similar). Web pages deemed most likely to 

be re-accessed in the near future will be acknowledged and 

kept in cache. We pose this as a "learning from example" 

problem in machine learning theory: the predicate to be 

learned is Web object re-access; the examples are traces of 

past Web accesses; and a logistic regression model 

accomplishes the discovering. 

Regression models have been widely used by bio-statisticians 

to model the risk (or probability) of disease development (the 

event) as a function of factors suspected to affect the disease. 

These factors are also referred to as predictors or covariates of 

the model. Our goal is to express the outcome of the 

dependent variable Y (of some value g), in terms of its 

predictors (1, X1, …, Xk) and their respective coefficient (βo, 

β1,……… βk). 

P(Y=gI1, X1, …, Xk) = f(z)…………………………………… 

Where z = βo+ β1x1 +……………………………… + βkxk 

Given a set of observed data, the coefficients can be estimated 

by a suitable method (learning phase). Once the coefficients 

are determined, we can use the function to predict the 

outcome of an event when the predictors are known 

(prediction phase) 

The event of interest is whether an object is re-accessed at 

least once in the next WF accesses. Predictors include  

 Size and type of object, 

 Number of times it has been accessed 

 Time since last access 

We want to ascertain whether such factors are predictive of 

Web re-accesses.  

Let (Y = 1IX) be the probability of the event Y = 1, given the 

predictor vector X. This is modelled as a function of linear 

predictor z, P (Y = 1IX) = f (z). Since P (Y = 1IX) is a 

probability, the function f (z) must map the real line between 

0 and 1. Several so-called link functions are commonly used 

for this purpose, the most popular being the logistic function 

taking the form 

 

P (Y=1IX) =  - ∞ < z < + ∞ …………………….. 

 

The logistic function has several favourable properties: 

 It maps probability to 0 and 1 

 It lends itself to biologically meaningful 

interpretation 

 Its "S" shape indicates that the effect of z is minimal 

for low 'zs' until some threshold is reached. 

When enough predictors are present, the function rises rapidly 

and remains relatively constant once z gets large. Part of our 

investigation is to determine whether such a function can be 

applied to the Web. This specific model is referred to as the 

logistic regression model. A non-event is simply modelled as 

the complement of an event, or 

 P (Y=0IX) 1- P 

(Y=1IX)……………………………….. 

Since Yi is the binary outcome (1 for an event, 0 for a non-

event) observed on the access. Let Xi be the associated vector 

of predictors. Assuming Y1, Y2, ………. Ym are independent, 

the joint probability of the sequence Y1, Y2, …………… Ym 

is proportional to the  

Product П P (Y = Yi I Xi)…………………………………..  

This is the likelihood equation. The coefficient of a predictor 

variable indicates show it influences the probability of an 

event. If β = 0, the variable has no influence. If β > 0, then the 

value of variable increases the probability of the event and if 

β < 0, then the value of variable decreases the probability of 

the event. However, it must be noted that the value of β 

coefficients is obtained. The p-value is commonly used to 

measure the strength of evidence that the estimates of β are 

statistically significantly different from zero. For our 

purposes, we consider any predictors with p-value ≤ 0.1 to be 

significant. 

Our caching algorithm can theoretically be implemented as 

two background process: continuous learning and predicting. . 

For simplicity, we performed only one pass of learning and 

prediction. Because we based our learning on the number of 

accesses, or events, instead of time, we were able to 

circumvent the possibility of down-time on the servers. 

The ultimate goal of a cache system is to reduce the access 

times for the end user. The classical textbook formula of 

average access time of an object in system cache is as 

follows: 

Average access time + tcache + (1-4)*t 

noncache……………………….. 

Cache  = Time needed to transfer objects from cache 

Tnoncache = Time needed to transfer objects from non-cache 

location, 

h= Object hit ratio 

This formula assumes that transfer times are independent of 

object size, network conditions (that is, the availability of 

bandwidth), and object location. These assumptions are valid 

for system caches since they deal with fixed-size pages; stable 

memory/disk connection; and objects residing at similar 

distances from point of processing. 

We introduce an object replacement ratio. Reducing the 

replacement ratio reduces disk fragmentation and the need for 

constant cache maintenance. One-time referring behaviour 

can result in the clattering of one-third of a server cache with 

useless files. A low replacement ratio, therefore, also 

indicates the caching efficiency. Other estimates of cache 

performance use similar metrics since they can be easily 

computed with an off line simulator. 

4. ACASH 
ACASH [16] takes care of a cache scope by dividing it 

dependent on the heterogeneity of web objects. It adaptively 

contemplates modifications on the reference point 

characteristics of the object based the time elapsed. Large 

heterogeneity of the web object stimulates more frequent 

cache substitution and helps to create large variations in 

object size. ACASH divides the storage scope of web cache 

into two kinds of domain in accordance to object size. 
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 Some considerations recommended would be to 

store as many web objects as possible in web cache 

and not to save small sized web objects in the cache 

with this perspective. 

 Also, the replacement of a large object eliminates 

many small sized objects at a time. 

The absence of cache for a large object highly boosts network 

traffic and decreases the performance of the web system. With 

this belief, saving a large object in a cache is better to 

appreciate to network. Based on prior research, we can 

determine a large number of dissimilarities between your total 

transmission high quality and the number of rate of recurrence 

references based on a 10K size object. ACASH takes care of 

web objects by dividing them in accordance to their size. 

Objects are classified as LARGE (over 10K in size) and 

SMALL (below 10K in size) based on their size for easy 

administration.  

ACASH gets flexibility with reference characteristics of web 

objects in accordance to time changes by controlling the 

division rate of each presented cache domain. A cache 

management checks for the existence of the object in the 

division's scope constituted by the object size when an object 

is requested by a client. In case of a cache hit, the cache 

management provides the service object for the client request 

and enhancements the time used record, which receives high 

priority in a LRUMIN substitution. In case of a cache miss, 

the cache manager receives the transmission of the object by 

requesting service from the URL internet server. Then the 

transmissible objects are divided to LARGE or SMALL basis 

of object size. The cache manager then checks the storage 

scope to save these objects in the cache domain in the proper 

object level. If there are spaces to save it, the objects are 

stored in cache scope and if there are no spaces to save it, the 

objects are allocated to free spaces by LRUMIN and are saved 

in the cache. The objects can be replaced between same scope 

level objects and high priority is allocated by saving the time 

record of the newly stored object. ACASH has a relatively 

small variation of web object size compared with LRU, 

LRUMIN and SIZE because it manages the storage scope of 

the cache by dividing the object's size into LARGE and 

SMALL 

ACASH ADAPTOR is used to get the adaptability of division 

rate of the cache scope. Each domain is divided into lightly 

loaded, lightly overloaded and overloaded stated based on 

load state. The workflow is as follows: 

 Initially and the ratio of load state is 5:5 which 

changes according to object reference on each 

division domain.  

 Periodically, as the load state of a domain changes, 

if a load state of a domain reaches the overloaded 

state, the ACASH ADAPTOR checks the load state 

of the different domain.  

 If the load state of other domain is lesser than the 

overloaded state, then the division rate of 

overloaded state is increased by 5% on the total 

cache division scale. Else, if the load state of other 

domain is slightly overloaded, the cache division 

operates without adjustment.  

 The rate of a domain cannot be over 70% on a 

division rate adjustment. 

 Periodically, as the load state of a domain changes, 

if a load state of a domain reaches the overloaded 

state, the ACASH ADAPTOR checks the load state 

of the different domain.  

 If the load state of other domain is lesser than the 

overloaded state, then the division rate of 

overloaded state is increased by 5% on the total 

cache division scale. Else, if the load state of other 

domain is slightly overloaded, the cache division 

operates without adjustment.  

 The rate of a domain cannot be over 70% on a division rate         

adjustment 

 

Fig 1: ACASH Algorithm 

5. ACME 
ACME (Adaptive Caching using Multiple Experts) [9] is 

inspired by problems existing in existing static caching 

algorithms such as data access latency due to disparity in 

between processor and storage I/O speeds, locality, lack of 

adaption to network topologies, changing workloads and 

increasing dynamic content. ACME treats existing cache 

replacements algorithms (such as LRU, RAND, MRU, FIFO, 

LIFO, LFU, SIZE, GDS, GDSF) as experts and registers them 

to a pool which has equal weights initially. In case of 

invention of new algorithms, they are added to the pool to test 

their proficiency. ACME does not propose new algorithms 

but uses existing algorithms more successfully. When the 

requests are manufactured by clients and the intensity 

improves, the weights are transformed by computationally 

simple but strong machine learning algorithms based on their 

achievements on hit rate or byte hit rate. Each node is an 

independent transformative organization. Because cache 

content information or synchronization messages are not 
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shared within peer caches, the clusters of these cache nodes 

will be scalable and easy to manage. This technique increases 

machine learning algorithms to improve caching algorithms in 

resolving insignificant problems [8]. It uses a pool of static 

cache replacement algorithms to join their relatively weak 

predictions into one highly-accurate prediction that aims to 

decide what objects remain in cache. Similar mechanics have 

been earlier used in resolving non-trivial complications with 

operating system.  

The mechanism identifies a pool of virtual caches each of 

which simulates a single static cache substitution policy by 

sustaining an object ordering as if it possessed the complete 

physical cache. Each virtual cache uses keeps only the object 

metadata and not the actual object data with a purpose to save 

space. On each request, each virtual cache reports whether it 

would have got a hit (scored as 1) or a miss (scored as 0) as if 

it were real cache. This ranking is used to adjust the weights 

of the policies by increasing the weight of the objects that 

would have kept the object and lowering for people who 

would have dumped the object. Both caching and replacement 

are done based on votes. Each virtual cache votes on the 

objects it wishes to keep and assigning higher values to 

objects that it believes are most worth keeping. The objects 

with the highest weighted total vote stay in the cache. Over a 

period, the real cache ordering will probably appear like the 

ordering of virtual caches with highest weights, but will still 

be a mixture of a number of policies 

One potential restriction that can be anticipated because of 

this approach is that virtual caches only keep as many objects 

that fit in the physical cache. In this case, a virtual cache with 

space for n objects will not contain an object that rank n+1 or 

n+100, where n is an object with rank of 1, which implies n is 

the most worthwhile object in the virtual cache. Therefore, it 

would be advisable to reward caches rather than rank reused 

objects and use virtual caches larger than the physical cache. 

By doing so, an object ranked n+1 in all virtual caches might 

be chosen over an object that is ranked n-1 in one cache and 

unranked in every other cache. If virtual caches were the same 

size as physical caches, the object with rank n+1 would be 

totally unknown and thereby, it will be ineligible for ranking. 

However, in a most likely scenario, the object with rank n+1 

is more appealing and much more likely to be placed in cache 
than one with n-1 since so many policies rank it relatively 

extreme. 

       Fig 2 ACME Framework 

 

 

Figure 3 Virtual Caches and Physical Caches 

6. NEURO-FUZZY SYSTEM IN 

PARTITIONED CLIENT SIDE WEB 

CACHE (ICWCS) 
This procedure suggests that client-side caching is more 

affordable as well as efficient way to improve web overall 

performance of the web [14] due to the nature of browser 

cache that is closer to the user. A neuro-fuzzy system is a 

neural network that is functionally equal to a fuzzy inference 

model. A prevalent perspective in neuro-fuzzy development is 

adaptive neuro-fuzzy inference system (ANFIS) which is 

more compelling when compared with synthetic neural-

networks (ANNs) and fuzzy systems. An intelligent client-

side web caching scheme (ICWCS) is proposed to enhance 

the performance of the client side caching by splitting the 

client side cache into two caches, short-term cache and long-

term cache. The splitting mechanism is implemented for 

storing the ideal web objects and eliminating undesirable 

objects in the cache for more effective storage. Also, ANFIS 

is employed to ascertain which objects in the long-term cache 

should be removed when the long-term cache runs out of 

capacity.  

Neuro-fuzzy systems incorporate the parallel computation and 

learning abilities of ANNs with human-like knowledge 

representation and explanation abilities of fuzzy systems. A 

common technique in neuro-fuzzy development is ANFIS 

which has shown colossal functionality at binary 

classification tasks, being comparatively more profitable than 

other classification methods  

The web cache is separated into short-term cache that receives 

objects immediately from the web and long term cache that 

receives objects from the short-term cache. In ICWCS, when 

a web page is viewed by the user, the objects relating to the 

page are stored in short-term cache originally. If the objects 

are accessed again, then the objects are transmitted to the 

long-term cache. This implies that if a web object is reused, it 

would be transferred to the long-term cache. Other objects 

will be managed by LRU algorithm. This ensures that objects 

that are used more often will be cached for a longer duration 

while lesser preferred objects would be removed to eliminate 

cache pollution and maximize hit ratio. ANFIS has a Sugeno-

type fuzzy model. ANFIS is trained using a hybrid algorithm 

that uses least-squares estimator and the gradient ancestry 

method. In case, the long-term cache runs out of capacity, the 

ANFIS is employed in replacement process that classifies 

each object each object in long-term cache as cacheable or 

non-cacheable object. The old non-cacheable objects are 

removed first form the long term cache to make space for the 

incoming objects. If all objects are considered as cacheable, 

then the scheme will work like LRU policy. ICWCS can be 

converted from client cache to a proxy cache using minimum 
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effort. The distinction lies mainly in data size which is 

humongous at server end. 

 

 

 

 

 

 

 

 

 

Figure 4 Framework of ICWCS 

Some other intelligent web cache replacement policies are: 

 Neural Network Proxy Cache Replacement: In 

NNPCR, artificial neural network has been used to 

make cache substitution decision. And object is 

selected for caching based on the rating given to it 

by the ANN. The restriction with this particular 

policy is that the objects with the same class are 

removed without any precedence anywhere between 

those objects. 

 Web cache optimization with non-linear model 

using object feature: Artificial neural network has 

been used depending on syntactical features from 

HTML structure of the piece of content and the 

HTTP responses of the server as inputs. The 

constraints include that the rate of recurrence factor 

is ignored in web cache replacement decision. Also, 

this policy takes in some factors that do not 

manipulate web caching. 

 Adaptive Web cache access predictor using 

neural network: The approach exhibits design of 

an intelligent predicator that used back propagation 

neural network to augment the performance of web 

caching by forecasting the most likely re-accessed 

objects established on history of accesses from the 

origin server and then keep them in cache. 

However, it disregards appearance period of the 

object. 

7. SUMMARY OF ADAPTIVE 

CACHING ALGORITHMS. 
Adaptive caching is a remedy to efficiency issues in the 

dynamic and complex web [4]. Each algorithm optimizes a 

different parameter to achieve greater efficiency in designated 

environment [7]. Because most of the results manufactured 

for caching algorithms are imitative, they may differ at some 

levels in real implementations due to lack of external 

limitations during simulation. Real implementations may 

require to minimize space and computational overheads and 

make performance trade-offs. Table 2 discusses few caching 

algorithms, their guidelines, brief and disadvantages 

 

 

  Table 1:Summery of Caching Algorithim 

Caching 

Algorithm 
Brief Description Disadvantage 

Fuzzy 

Inference 

System 

Replacement policy based on 

Sugeno-type fuzzy inference 

system is employed that 

ranks objects using three 

parameters: Byte sent, 

Frequency and latency 

Extra 

computation 

overhead, 

Implementation 

can be complex 

[2] 

Logistic 

Regression 

Optimal 

cache 

algorithm 

Logistic Regression function 

is used to statistically predict 

future accesses by learning 

access patterns from 

previous accesses 

The objects with 

the lowest re-

access 

probability 

value are 

replaced first 

regardless of 

cost and size of 

the predicted 

object [5] [20][3] 

ACASH 

Adaptively caches objects by 

dividing cache scope based 

on heterogeneity of web 

objects and adaptively 

reflects changes based in the 

reference characteristics of 

the objects according to the 

time elapsed 

Does not take 

factors such as 

arrival time in 

account 

ACME 

Machine learning algorithms 

rate and select current best 

policies or mixture of 

policies via weight updates 

based on their recent 

success, allowing each 

adaptive cache node to tune 

itself based on the workload 

it observes 

Virtual caches 

may only keep 

objects as 

much fit in 

physical 

caches 

making 

eligible 

caching 

candidates 

invalid when 

the cache fills 

[9] 

Intelligent 

client side 

web caching 

system 

Client-side approach that 

divides cache into two 

caches: short term and long 

term; The objects in short 

term cache are  replaced 

using LRU and if the objects 

are re-accessed, they are 

relocated to long term cache 

where a neuro-fuzzy system 

is employed in case the long-

term cache saturates 

Training process 

requires long-

time and extra 

computation; 

implemented at 

client-side [14] [6] 

[15] 

8. CONCLUSION 
Due to heterogeneous characteristics of the web, the 

algorithms suited for CPU cache (Such as LRU, LFU) are not 

conditioned to support web objects. Algorithms for CPU 

caches are more familiar to static and consistent objects. 

However, the web has an ever-changing dynamic and 

complicated structure and more dynamic algorithms are 

required. Adaptive web caching techniques need to be built 

that use machine learning to adapt to the important changes in 

usage behaviors as well as store appropriate objects in cache 

while utilizing the cache space thoroughly. In this particular 

document, we survey various adaptive caching techniques and 

Frequently Requested 

Object(Cache) 

Browser Internet 

 

Long 

Term  

Cache 

Long 

Term  

Cache 

Removing Objects 

Based on ANFIS 

Removing Infrequently 

Requested Object Using 

LRU 
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algorithms while discussing their pros and cons that may help 

to reduce the bottleneck in data transmission through web 
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