
International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.15, January 2016

15

Analysis of Machine Learning Techniques used in

Malware Classification in Cloud Computing Environment

Ajeet Kumar
Maharaja Surajmal

Institute of Technology,
GGSIPU, New Delhi,

India

Naman Sharma
Maharaja Surajmal

Institute of Technology,
GGSIPU, New Delhi,

India

Abhishek Khanna
Maharaja Surajmal

Institute of Technology,
GGSIPU, New Delhi,

India

Saurav Gandhi
Maharaja Surajmal

Institute of Technology,
GGSIPU, New Delhi,

India

ABSTRACT

Study the behavior of malicious software, understand the

security challenges, detect the malware behavior

automatically using dynamic approach. Study various

classification techniques and to group these malwares and

able to cluster different malware into unknown group whose

characteristics are not known. The classifiers used in this

research are k-Nearest Neighbors (kNN), J48 Decision Tree,

and n-grams. Based on the analysis of the tests and

experimental results of all the 3 classifiers, the overall best

performance was achieved by J48 decision tree with a recall

of 96.3%.

General Terms

Machine Learning techniques, malware classification, cloud

computing, pattern recognition.

Keywords

Malware, Opcode n-grams, Bytecode n-grams, malware

behaviors; malware classification.

1. INTRODUCTION
Distinguishing the region of malignant code on a given host is

a vital section of any watchman segment. The manual heuristic

review of static malware investigation is no more thought to be

successful and effective looked at against the high spreading

rate of malware. Different confusion and polymorphism

innovation let the conventional static mark based discovery

techniques get to be wasteful and deficient. The new idea of

cloud security requires fast and mechanized identification and

characterization of noxious programming. Malwares have a

place with the same family frequently had the same conduct

designs in light of the fact that they regularly have the

comparable reason and capacity. Malware is normally arranged

[1] as per its spread technique and objective.

In this paper, the authors add to a strategy for grouping

malware in light of malware conduct report. In synopsis, this

paper makes commitments as tails: The authors depict the

behavioral profile through the behavioral clues of malware

recorded in virtual circumstances. The authors create the

follow report, in .csv group which comprise all the document

of. .Asm and .Byte augmentation with closest malware

definition.

The authors remove the distinctive components by behavior

unit string from this report and assembling various components

into gatherings in perspective of the semantic association, then

used these informed bundles as segments and change take after

report into a high-dimensional vector space. The authors use

upheld vector machine to pick up from a readiness set and after

that the authors use the predefined model for test set. Similar

investigation demonstrates that their system has higher

precision and productivity.

2. RELATED WORK
Related work takes a shot at malware grouping are centered

around two perspectives most near their work. One viewpoint

is finding exact system for getting malware conduct report

and the other is create suitable conduct representation of

malware family as the info of machine learning systems.

Monitoring API call historial was used to discover program

behavior [2], malicious program often run in a protective

environment called „sandbox‟ such as CWSandbox [3] and

Anubis [4]. But sandbox‟s reporting features aren‟t perfect, it

reports only the malicious program‟s visible behavior and not

how it‟s programmed.

For the second viewpoint [5][6] transform follow reports into

arrangements and use consecutive separations to gathering

them into bunches which are accepted to compare to malware

families. The principle lack was because of the unsupervised

learning of bunch; it can't utilize the direction of the current

infection database. [7] Presented a technique shut to their

strategy, they utilized content classifications system to group

obscure malware tests in view of their conduct report. Be that

as it may, they overlooked the semantic relationship of the

element word between variations of malwares which will

likewise prompt a high measurement vector space. Highlight

determination must be utilized to enhance the characterization

productivity.

3. EXPERIMENT AND EVALUATION

3.1 Malware Behavior Analysis
Behavioral investigation concentrate on what projects do. The

initial step of their strategy is the robotized examination of

malware tests. For this reason, the authors have expanded

Argus [8], their apparatus for robotized dynamic malware

examination. Since malware regularly posture solid risk to the

PC framework and the nearby system, so the authors partition

the analyzer framework in two administrator framework. One

is host and the other is guest framework. The authors use

Azure cloud to comprehend this basic designing. Argus is

running inside in the Azure which gives a solidly controlled

course of action of advantages for activities to continue

running in, for instance, framework access, virtual space on

plate and memory.

The ability to inspect the host system or read from input

device could be usually disallowed or heavily restricted [9].

The examination framework let malware execute in the copied

The examination framework let malware execute in the

imitated environment for compelled time, normally perhaps

two or three minutes. Malware will summon numerous

framework calls to do their vindictive activities [10]. For

instance, attempting to adjust certain parts of the framework

registry, or compose to pre-characterized envelopes. The

activity can be blocked, or the client informed about the

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.15, January 2016

16

endeavored activity. Consolidating API snaring and DLL

infusion inside of the Azure, their analyzer instrument can

follow and screen all significant framework calls amid the

running of the malware.

3.2 Datasets
The authors utilized three datasets: A TrainLable, a test

dataset, and a train dataset. The quantity of malware records

and individually clean documents in these datasets is appeared

in the initial two segments. As expressed over, their

fundamental objective is to accomplish malware location with

just a couple (if conceivable 0) false positives, hence the

spotless documents in this dataset (furthermore in the scale-up

dataset) is much bigger than the quantity of malware records.

The information set comprises of malware information set,

both are in the arrangement of gathering (.asm) and byte

(parallel).

From the entire list of capabilities that the authors made for

malware recognition, 308 double components were chosen for

the investigations to be displayed in this paper. Records that

produce comparative qualities for the picked list of

capabilities were checked just once. Note that the quantity of

clean mixes i.e. blends of highlight qualities for the spotless

documents in the three datasets is much littler than the

quantity of malware extraordinary mixes the spotless

documents in the preparation database are mostly framework

records (from distinctive forms of working frameworks) and

executable and library records from diverse mainstream

applications. The authors likewise utilize clean records that

are stuffed or have the same structure or the same geometrical

likenesses with malware documents (e.g. utilize the same

packer) keeping in mind the end goal to better prepare and test

the framework.

The malware documents in the preparation dataset have been

taken from the Training Data Set. The test dataset contains

malware documents from the TrainLable accumulation and

clean records from distinctive working frameworks (different

documents that the ones utilized as a part of the first

database). The malware accumulation in the preparation and

test datasets comprises of Ramnit, Lollipop, Kelihos_ver3,

Vundo, Simda, Tracur, Kelihos_ver1, Obfuscator-ACY and

Gatak sorts of malware. The primary and third sections in

Table II speak to the rate of those malware sorts from the

aggregate number of documents of the preparation and

separately test data.

4. ALGORITHM
The test shows, the authors get an information set of 5231

malware tests with 9 classes from aggregate 19118.

Algorithm 1 : n-gram .

malware<-read.csv("trainLabels.csv")
 def join_ngrams (num = 100000):
 dict_all = dict()
 for c in range(1,10):
 print "merging %i out of 9"%c
 pickle.dump(dict_all, open('ready_for_selection.pkl','wb'))
 load data

#instead of binary features, do count
 grams_dict = dict()
 for gram in grams_string:
 if gram not in grams_dict:
 grams_dict[gram] = 1

 else:
 grams_dict[gram] += 1
 binary_features = []
 for feature in features_all:
 if feature in grams_dict:
 binary_features.append(grams_dict[feature])
 else:
 binary_features.append(0)
 del grams_string'''
 yield [f_id] + binary_features
 with open('train_data_750.csv','wb') as outfile:
 with open('test_data_750.csv','wb') as outfile:
 "DONE 4 gram features!"

These specimens are subjectively part into two bundles are

arbitrarily part into two parcels, a preparation and testing

segment, preparing contains 2664 examples and test is 1332.

Single-byte recurrence, byte 4gram, direction check, capacity

names and Derived Assembly Features (DAF). These

components are motivated by paper and beat benchmark code

in the gathering. For 4gram bytes, the authors utilize

information addition to choose the best 500 elements for

every class. For direction number, regular guidelines like

„MOV‟ and „JMP‟ are tallied. Capacity name elements should

be DLL highlights. The authors supplant it by social event just

the capacity names rather for effortlessness. For DAF, every

element is a standard representation of asm directions, taking

after the malware family: name. para1.para2, for example, or

memory register. In their trial the authors pick n-gram, so the

authors perform their system on their dataset. The authors can

make an examination with their system. They didn't give the

insights about the component vector space, so the authors

receive the properties diminishment of Information-Gain [13]

on the capabilities with these two technique. The authors

figure the Information Gain of every component: p(v Cj ,)

The result of comparison

 IG j() = -vj∑ ∑∈(0,1) c∈{cj } P v C(j ,)log p(vj) ()p C

Where IG j() denote the Information Gain value of feature j ,

C represents one class in{Ci}, {Ci} represent the class set of

malware family. p(v Cj ,) denotes the probability of feature j

with the value of vj in class C . p(vj) denotes the probability of

feature j equal vj in all training sets. p()C denotes the

probability of class C in all training sets. At last, the authors

will select features which have the lower IG value and save in

the feature database [11].

0.3
0.4
0.5
0.6
0.7
0.8
0.9

100 300 420 520 600 680 850 1090 1430 2000 5000
No. of features

pr

ec

is

io

n

n- gram

KR method

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.15, January 2016

17

 kNN - clustering of malware definitions

4.1 ASM file Pixel Intensity Feature
Malwares can be visualized as grayscale images using the

byte file [15]. Each byte is from 0 to 255 so it can be easily

translated into pixel intensity. However, the authors found

the image processing techniques in [15] doesn‟t work well

with their features above. Inspired by the [14], the authors

tried to extract a grayscale image from asm file rather than

the byte file. The code is shown in Figure 1. Figure 2

compares the byte image and asm image of the same

malware, but this method is data driven and hence can‟t

stop attack on same time.

Classifier Accuracy

kNN (Image) 79.4%

n-grams 85.0%

J48 96.3%

Malware graph tree obtained from IDA pro

5. CONCLUSION AND FUTURE WORK
In their paper essential target was to think about a machine

learning design that insipidly perceives as much malware tests

as it can. In the interim, the authors contrasted their system

and other comparable methodology. Analysis demonstrate

that various machine learning techniques performs well. An

impediment of element malware examination taking into

account API follow report is not sufficiently vigorous

particularly confronted the malware which utilized numerous

hostile to following innovation. As the authors would see it,

malware identification by means of machine learning won't

supplant the standard discovery routines utilized by hostile to

infection merchants, however will come as an expansion to

them.

The execution examination of 3 unique classifiers was

additionally, introduced. The general best execution was

accomplished by J48 utilizing the term recurrence weight

without highlight choice information set, with an exactness of

96.3%. The investigation of the tests what's more, exploratory

results presumed this evidence of-idea is entirely powerful

and effective in classifying malware.

6. REFERENCES
[1] G. Mc Graw, G. Morrisett, “Attacking malicious code:

Report to the infosec research council”, IEEE Software,

17(5) , Sept 2000, pp. 3341.

[2] Wagner M. (2004). Behavior Oriented Detection of

Malicious Code at Run-time. M.Sc. Thesis, Florida

Institute of Technology.

[3] C.Willems, T.Holz, and F.Freiling. Toward Automated

Dynamic Malware Analysis Using CWSandbox. IEEE

Security and Privacy, 2007, 5(2):32-39.

[4] U.Bayer, C.Kruegel, and E.Kirda. TTanalyze: A Tool for

Analyzing Malware. In 15th Annual Conference of the

European Institute for Computer Antivirus Research,

Hamburg, Germany, 2006: 180–192.

[5] M.Bailey, J.Oberheide, J.Andersen, Z.M.Mao,

F.Jahanian,and J.Nazario. Automated classification and

analysis of internet malware. In Proceedings RAID07,

pages 178–197,2007.

[6] Tony Lee & Jigar J. Mody Behavioral Classification. In

Proceedings of EICAR2006, April 2006.

[7] T.Holz,C.Willems,K.Rieck,P.Duessel,andP.Laskov.Lear

ning and Classification of Malware Behavior.In

DIMVA08,June2008

[8] Yongtao Hu Unknown Malicious Executables Detection

Based on Run-Time Behavior In Fuzzy Systems and

Knowledge Discovery, 2008 pp. 391-395.

[9] Wikipedia, “Sandbox” [Online], Available:

http://en.wikipedia.org/wiki/Sandbox

[10] V. I. Levenshtein, Binary codes capable of correcting

deletions, insertions, and reversals. Soviet Physics

Doklady 10 (1966):707–710.

[11] Hengli Zhao, Ming Xu, Ning Zheng, Jingjing Yao, Qiang

Hou Malicious executables classification based on

behavioral factor analysis

[12] J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Morgan Kaufmann, August 2000.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.15, January 2016

18

[13] M. Chandrasekaran, V. Vidyaraman, and S. J.

Upadhyaya, “Spycon: Emulating user activities to detect

evasive spyware,” in IPCCC. IEEE Computer Society,

2007, pp. 502–509.

[14] L. Natrajan, “http://sarvamblog.blogspot.com/”,

[ONLINE],2014

[15] L. Natrajan, S, Karthikayen, G. Jacob, and B. Manjunath,

“Malware images: visualization symposium on

visualization for cybersecurity. ACM, 2011, p.4

[16] Proceedings of the 2014 Workshop on Artificial

Intelligent and Security Workshop, AIS.

[17] D. Bilar. Statistical structures: Fingerprinting malware

for classification and analysis. In Blackhat, 2006

[18] L. Breiman. Bagging predictors. Mach. Learn.,

24(2):123–140, Aug. 1996

[19] L. I. Kuncheva. Ensemble Methods, pages 186–229.

John Wiley & Sons, Inc., 2014.

IJCATM : www.ijcaonline.org

