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ABSTRACT 

In the recent era the distributed generation (DG) has a lot of 

power setups operation. The basic advantage of distribution 

generation includes reduce   Power loss, eco; improve voltage, 

system upgrading postponement. Also it’s more reliable and 

environment friendly. We will compare optimization 

approach with   the hybrid particle swarm optimization 

(HPSO) and the No dominated sorting Genetic Algorithm 

(NSGA-II).in this study for determining the optimal DG-

unit’s size, power factor, and location in to reduce the real 

power loss in the whole system with HPSO algorithm we can 

find the solution considering maximization of system load and 

relative minimum power losses. The second algorithms is 

improved no dominated sorting genetic algorithm II (INSGA-

II) with the help of which multi objective planning problem is 

resolved is also described here. Sample radial distribution 

feeder systems are compared here to find the validity of both 

above mentioned algorithm. In this way updating of the two 

parameters to find the most effective values has a higher 

chance of success as compared to any other metaheuristic 

methods.   
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1. INTRODUCTION 
Though the practical application is difficult the DG unit 

application still has been preferred by the researchers Due to 

its several advantages. The advantages comprise the benefits 

such as eco-friendly-ness improves voltage, system upgrading 

postponing and reduced power loss.  The final optimal output 

is impacted by the social economic and political factor in this 

method. This method can be interpreted as mixed integer non-

linear optimization problem. Generally maximize the voltages 

of the system and reduce the cost and power loss. The solution 

may vary from one application to another. Hence, if more 

objectives and constraints are included in the algorithm, than 

more data is required. Due to which the implementation 

becomes more difficult. Tools like genetic algorithm (GA), 

evolutionary programming (EP), and particle swarm 

optimization (PSO) are very useful and still evolving to solve 

different DG unit problem. Some of these techniques have 

been modified to improve their solution performance and 

reduce the limitation most of these tools have different 

parameters which needs to be tuned. A methodology for 

evaluating the impact of DG-units on power loss, reliability, 

and voltage profile of distribution networks was presented in 

reference [1]. The DG unit represented here as a PV bus 

which is different from what radial distribution feeders are 

designed for. It implies that on-line systems including DG-

units can be more reliable interruption situations to keep 

customers supplied. It states that the simplest representation 

of DG-units operating in parallel with the system, especially 

in radial feeders, is as negative active and reactive power 

injections, independent of the system voltage at the terminal 

bus. When using multiple DG-units as PV configurations, it is 

unrealistic to manage these DG-units as available for 

dispatching because they may not be controlled by the utility. 

According to the IEEE standard, distributed resources (DR or 

DG) are not preferred to regulate the voltage (i.e., PV-bus) at 

the point of installation [2]. 

 

Fig 1: Single-line diagram of a two-bus system with and 

without reactive power injection 

With the insertion of DG unit application the basic 

assumption that the system was design for one way power 

flow is violates which can cause disruption in the distribution 

operation causing islanding and protection disturbances; it can 

also upset voltage regulation, and can cause power quality 

issues. Therefore it should be employed very carefully. This 

system flows the utility voltage and injects a constant amount 

of reactive and real power [3]. We can reduce search space 

significantly by reducing the DG unit size. However 

dispatching it can cause operational problem in the 

distribution feeders. An algorithm is shown in figure [4]. For 

maximizing the load supply costs reduction and operational 

schedules by exploiting EP for all feeder loads level. On The 

basis of maximum cost reduction, the optimal solution can be 

selected by evaluating the cost of DG-unit supply 

circumstances based on the base case in figure [5] a   method 

to calculate the optimal DG-unit size is described. In addition, 

an approximate loss formula to identify the optimal DG-unit 

placement was suggested. The remainder of the paper is 

organized as follows. Section III presents the mathematical 

formulations of the problem, Section IV explains the ABC 

algorithm, Section V describes the ABC algorithm in solving 

the DG-unit application, Section VI includes results and 

discussion, and Section VII outlines the conclusions. 
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2. PROBLEM FORMULATION  

2.1 DG Owner’s Cost and Profit Functions 
For an investor of DG the main purpose is to get maximum 

profit irrespective of as power grid operational conditions. 

The cost and profit for DG owner is described as follows. 

1) Investment Cost:  includes costs spent on unit construction, 

installing cost and essential equipment cost for every unit of 

generation. It is described in the below equation: 

Cinvestment =  PDG ,i × Costinv
NDG

i=1  (1) 

The above equation denotes the active power generated by the 

unit. 

2) Operational Cost: this cost includes the expanses on fuel 

generation, and other operating costs below equation 

described this cost.  

Coperational =   PDG ,i × CFi × Th
NDG

i=1 × Costoper  ×
NN

j=1

 
1+INF _R

1+INT _R
 

j
  (2) 

Where denotes the year index. 

3) Maintenance Cost: This cost includes the expenses incurred 

on repairing, renewing and restoring the equipment whenever 

required. This cost is calculated as per below equation.  

Cmaintanance =   PDG ,i × CFi × Th
NDG

i=1 × Costmaint  ×
NN

j=1

 
1+INF _R

1+INT _R
 

j
  (3) 

4) DG Owner’s Income: The profit can be gained by selling 

the generated power to the DisCo as per the contract price. 

This income can be calculated as per below equation.  

INDG =   PDG ,i × CFi × Th
NDG

i=1 × CostDG  ×  
1+INF _R

1+INT _R
 

j
NY

j=1

 (4) 

2.2 Disco’s Costs 
A part from on own profit the Disco also has to take into 

account the operational condition of the power grid like 

voltage profile and stability, branch current limits, customer 

security, and reliability. Hence, the DGs’ sizes, contract prices 

and locations are the key factors in it. The DisCo’s costs can 

be calculated as below. 

1) Price of Purchasing Power From the DG Owner: It is based 

on the contract price. DisCo cost has already been calculated 

above as DG owner’s income in equation (4). The DG owner 

gets profited by the Disco’s purchasing power from him or 

her. Therefore they are strongly interconnected. 

 

2) Cost of Buying Power from the Substation: The power, 

which is beyond the DG unit’s capacities, should be bought 

by the DisCo from the substation. This power is computed by 

the following equation: 

     

Psub ,t,j =  PL,n,t,j +
NBus
n=1 PLoss ,t,j −  PDG ,i

NDG

i=1  (5) 

Where 

PLoss ,t,j =  rb × Ib,t,j
2Nb

b=1   (6) 

In (5) and (6), and refer to the bus and branch indices, 

respectively. Furthermore, is the time index referring to each 

hour of the day. Buying power from the substation is another 

cost that the DisCo should spend. The present value of this 

cost is 

Csub =   Psub ,t,j × TdCMWh ,P
24
t=1  ×  

1+INF _R

1+INT _R
 

j
NY

j=1       (7) 

It is obvious that the proper location and size of DGs can 

decrease power losses in the system and, consequently, it can 

impact the mentioned cost.  

3) Customer Interruption Cost: Customer satisfaction and 

welfare are imperative in case of power failure in the power 

grid. Hence, the cost associated with them is added to the 

Discos’ responsibility. On the basis of this fact, the customer 

interruption cost (CIC) in (8) is utilized to evaluate the present 

expense as shown below. 

CIC =   Cint × b × Lb
Nb

b=1 ×  PL,k,j
NNS

k=1 ×  
1+INF _R

1+INT _R
 

j
NY

j=1

 (8) 

Where denotes the not-supplied loads index. According to (8), 

CIC is the calculation of the interruption cost based on the 

amount of energy which is not supplied (ENS) to the 

customers.  It is the price of interruption in supplying the load 

during the repairing time varying on the type of loads 

(residential, commercial, or industrial). 

2.3 Objective Functions and Constraints 
In this section, the objective functions and their related 

constraints for solving this optimization problem are 

introduced. Three objectives are considered in the 

optimization model, which include: 1) reducing system line 

losses; 2) reducing voltage deviation; and 3) increasing 

voltage stability margin when DG units are considered in the 

distribution network (DN).  

1) Minimization of Line Losses: The first objective is to 

minimize system line losses after DG injection into the 

distribution network. This objective function is as   

minf1 x = min gij Vi
2 + Vj

2 − 2ViVjcosθij (i,j)∈B   (9) 

Where B is the set of branches of network, and (I, j) ∈
B denotes that (I, j) ∈are two nodes of a branch, and Vi and  

Vj are voltage magnitudes of nodes i and j, respectively. Gij is 

the conductance between nodes i and j. And θij is the 

difference between nodal phase angles and, 

2) Minimization of Voltage Deviation: The second objective 

is to minimize the voltage deviation between nodal voltage 

and specified voltage magnitude. Nodal voltage magnitude is 

an important indicator to evaluate system security and power 

quality (PQ). The minimization of voltage deviation can help 

guarantee a better voltage level in distribution power systems. 

The function can be written as  

minf2 x = min  
V i−V i

spec

V i
max −V i

min  
2

N
i=1   (10) 

Where Vi is the voltage magnitude at the ith bus, and Vi
spec

is 

the specified voltage magnitude.Vi
max  and Vi

min are the upper 

and lower limits at the iTh bus, respectively. N is the number 

of buses. The exponent in (10) is set to 2 in order to make the 

difference between the voltage in the ith node and the 

specified voltage non-negative.  

3) Maximization of Voltage Stability Margin: The third 

objective is to maximize steady-state voltage stability margin.  

Voltage stability margin is the measure of the security level of 

the distribution system. Among different indices for voltage 

stability, a fast indicator of voltage stability, L-index, is 
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chosen as the indicator for voltage stability index. L-index 

was presented by Kessel and Glavitsch [9], and developed by 

Jasmon and Lee [10]. The L-index of branch can be expressed 

as follows: 

Lij =
4  P j X ij −Q j R ij  

2
+ P j R ij −Q j X ij  V i

2 

V i
4   (11) 

Where Li,j  indicates the extent of branch voltage stability. The 

branch voltage will be instable if the value of Li,j  is large. 

Obviously, the voltage instability of the network is 

determined by the most instable branch, and its expression is 

as  

L = max L1, L2, … , LN−1   (12) 

Where the L-index ranges from 0 (no load of system) to 1 

(voltage collapse). The bus with the highest L-index will be 

the most vulnerable bus and, hence, this method helps identify 

the weak areas needing critical reactive power support in the 

system. In order to maximize the voltage stability margin, the 

corresponding function is as 

minf3 x = minL   (13) 

4) Constraints and Limitations: This optimization problem is 

subjected to various constraints as follows. 

a) Bus Voltages and Branch Currents Limits: In this 

optimization problem, DGs’ locations and sizes should be 

determined in such a way that bus voltages and branch 

currents remain in standard intervals during the planning 

period. These limitations are defined as follows: 

Ib,t,j ≤ Ib
max     (14) 

Vmin ≤ Vn,t,j ≤ Vmax    (15) 

Where and are the minimum and maximum allowed amounts 

of voltage in each bus, respectively. Also denotes the 

maximum amount of current that can flow in each line 

according to the lines thermal limitations. 

b) DG Capacity Limit: It should be assumed that the active 

and reactive capacity of each DG is limited to a specific 

interval as follows: 

PDG ,i
min ≤ PDG ,i ≤ PDG ,i

max    (16) 

QDG ,i
min ≤ QDG ,i ≤ QDG ,i

max    (17) 

In these inequalities...... and are the minimum and maximum 

amounts of active and reactive powers that can be generated 

by the DG unit. 

c) Contract Price Limits: It is logical to say that the contract 

price between the DG owner and the DisCo is limited 

according to the electricity market conditions and this 

inequality can be expressed as follows: 

CPDG
min ≤ CPDG ≤ CPDG

max    (18) 

 Where and are the minimum and maximum amounts of the 

contract price that can be determined according to the market 

electricity price and other economic deliberations. 

d) Power-Flow Constraints: It is necessary for active and 

reactive power injections to satisfy the power-flow equations 

Pn = Vn  Vm (gmn Cos θmn  + bmn Sin θmn  )m∈N (19) 

Qn = Vn  Vm (gmn Sin θmn  − bmn Cos θmn  )m∈N (20) 

e) DG Owner Capitalization Constraint: The amount of 

capitalization that the DG owner have enough money  and  

stated by the following inequity: 

Cinvestment ≤ Cinvestment
max    (21) 

WhereCinvestment
max  denotes the maximum affordable amount of 

capitalization from the DG owner’s opinion. 

f) Thermal limits: 

Sij =  Vi
2Gij − ViVj Gij cosθij + Bij sinθij   ≤ Sij

max     (22) 

Where PDGi
min ,PDGi

max ,QDGi
min , and QDGi

max are the lower/upper active 

and reactive generating unit limits of DG, respectively. Si,j
max is 

the apparent power thermal limit of the circuit between bus 

and. 

2.4 Operational and Economic Indices 
In order to have a better evaluation of the operational 

condition of the power grid and the profitability of the 

contract between the DG owner and the DisCo from their own 

viewpoints, some operational and economic indices are 

presented as follows. 

1) Operational Indices: In order to evaluate the operational 

state of the grid, some indices are introduced. For better 

evaluation, per-unit (p.u.) values of these indices are also 

calculated. 

 

Fig 2: Representative branch of a radial distribution 

system 

The numerators and denominators of these p.u. indices are the 

related values of the defined indices in the presence and 

absence of DGs in the grid.  

a) Total Voltage Profile Index (TVPI): This index 

calculates the variation of all bus voltages from 

Vrated  (1 p.u.). Since the flatter voltage profile is 

more appropriate, the total voltage profile index 

(TVPI) is considered as below [4]: 

TVPI =     Vrated − Vn,j,t 
NB us
n=1

24
t=1

NY

j=1  (23) 

TVPIp.u. =
TVPI with  DG

TVPI without  DG
   (24) 

b) Total Voltage Stability Index (TVSI): In radial 

distribution networks where each receiving node is 

fed by only one sending node, this index can be a 

good measure for evaluating voltage stability. 

According to Fig. 1, for all buses from two to, the 

stability index (SI) is calculated as follows [27]: 

VSIj,t,n2 =  Vj,t,n1 
4
− 4 ×  PL,j,t,n2 × xb − QL,j,t,n2 × rb 

2
−

4 ×  PL,j,t,n2 × rb + QL,j,t,n2 × xb 
2

×  Vj,t,n1 
2
  (25) 

The higher the VSI is for each bus, the better the stability of 

that relevant node shall be. The total voltage stability index 

(TVSI) and its per-unit value are described as 

TVSI =    VSIj,t,n
N
n=2

24
t=1

NY

j=1   (26) 
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TVSIp.u. =
TVSI with  DG

TVSI without  DG
   (27) 

c) Total Power-Loss Index (TPLI): As the lower active 

power loss is more appropriate in case of power grid 

operation, therefore, the total power loss index 

(TPLI) and its per-unit value are described as 

follows [4]: 

TPLI =    rb × Ij,t,b
2Nb

b=1
24
t=1

NY

j=1   (28) 

TPLIp.u. =
TPLI with  DG

TPLI without  DG
  (29) 

All material on each page should fit within a rectangle of 18 x 

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm 

(1") from the top of the page and ending with 2.54 cm (1") 

from the bottom.  The right and left margins should be 1.9 cm 

(.75”). The text should be in two 8.45 cm (3.33") columns 

with a .83 cm (.33") gutter. 

3. MULTI OBJECTIVE PARTICLE 

SWARM OPTIMIZATION (MOPSO) 

BASICS 

3.1 Selecting the Optimal Solution in 

Accordance with the DisCo’s and the 

DG Owner’s Viewpoints 
As discussed earlier, this problem should be solved using 

multiobjective methods, such as the MOPSO technique. 

Therefore, the final result of this optimization method is a 

Pareto optimal set of non-dominated solutions [23]. To extract 

the best compromise solution, various methods have been 

implemented in the literature, such as a fuzzy-based 

mechanism called a fuzzy Decision-making method which 

presents a solution to the decision maker [25]. In this paper, a 

new technique based on economic and operational indices is 

presented that satisfies both sides of the contract standpoints. 

To select an optimal solution, including DGs’ size, location, 

and the contract price, two important issues should be 

considered: First, in the optimal solution, the profit of the 

DisCo and the DG owner should be given adequately (based 

on the DG owner’s and DisCo’s perspectives). Secondly, the 

operational condition of the grid, based on the optimal 

solution, should be at acceptable levels (based on just the 

DisCo’s perspectives). 

 

Fig 3: Flowchart of the MOPSO method 

It is worthy to note that the operational issues are not directly 

used in the proposed multiobjective algorithm. Hence, another 

way must be affected to include the operational factors in our 

selection technique. 

According to the well-defined indices in Section II-D, it will 

be supposed that the ERR and PP are specified. These values 

are in accordance with the DG owner’s contract; therefore, the 

values of IRR which are more than the ERR and lower PPs 

will also be accepted by the DG owner. To encourage the DG 

owner, it is sensible to remove the Pareto answers with lesser 

values of IRR or higher values of PP indices from the Pareto 

set. In this case, the remaining points will be amenable by the 

DG owner and could be selected from his or her perspectives. 

After that, the DisCo’s viewpoints should be taken into 

attention in order to have better operational condition for the 

grid in addition gaining more profit. In the next step, the 

introduced operational indices will be calculated for each 

remaining point. In order to have all of the indices in an 

applicable condition, for each index, the first half of points 

having better conditions are carefully chosen. Among the 

intersection of obtained points for all indices, the point with 

the lowest DisCo’s cost will be selected ultimately. 

Consequently, the DG owner and the DisCo will be satisfied 

because the DG owner will receive adequate profit, and the 

DisCo’s cost will decrease in comparison to the case without 

using DGs. Moreover, the operational conditions of the grid 

will be of better-quality significantly. The flowchart of the 

algorithm is depicted in Fig. 3 

3.2 Multiobjective Pso  
The multiobjective (MO) format of PSO called MOPSO is 

suitable in case of minimizing multiple objective functions 

simultaneously. If f(x) consists of an objective functions, then 

the multiobjective problem can be defined as finding the 

vector  𝑥∗ =  𝑥1
∗, 𝑥2

∗…𝑥𝑚
∗  in order to minimize f(x) 

𝑚𝑖𝑛𝑓 𝑥 =  𝑓1 𝑥 𝑓2 𝑥 …𝑓𝑛(𝑥) subject to 𝑥∗ ∈ . Generally, 

Start 

Initialize parameters and operating 

condition 

MOPSO technique 

Determine pareto optimum set of 

answers 

Estimate answers with ERR less 

than desired ERR 

pareto optimum 

answers with better 

voltage profile (A) 

pareto optimum 

answers with 

minimum active 

power losses (B) 

pareto optimum 

answers with 

better voltage 

stability (C) 

 

pareto optimum 

answers with 

better reliability 

condition (D) 

 

Evaluate the 

intersection of 

A and B sets 
Evaluate the 

intersection of C 

and D sets 

 
Evaluate the intersection of 

these two sets 

 Determine the optimum answer from economic 

and operational points of view 

End 
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multiobjective optimization technique results in a set of 

optimal solutions, rather than having one solution. The reason 

is that none of the solutions can be considered to be better 

than any other with respect to all objective functions. 

Consequently, in the MOPSO method, there is not usually one 

global optimum, but a set of so-called Pareto-optimal 

solutions [23]. A decision vector x1 is called Pareto-optimal if 

there is no other decision vector x2 that dominates it. In the 

minimization problem, the solution x1 dominates x2 if 

1)   ∀𝑖∈  1,2,…𝑁𝑜𝑏𝑗  : 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2)  (30) 

2)   ∃𝑖∈  1,2,…𝑁𝑜𝑏𝑗  : 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2)  (31) 

Like PSO, in the MOPSO algorithm, each particle at the time 

t is introduced by two borders, its velocity 𝑉𝑖(𝑡) and its 

position 𝑋𝑖(𝑡). According to following equations, each vector 

will be updated at time (t+1) as below [24] 

𝑉𝑖 𝑡 + 1 = 𝑤 𝑡 𝑉𝑖 𝑡 + 𝑐1𝑟1(𝐿𝑖 𝑡 − 𝑋𝑖 𝑡 ) + 𝑐2𝑟2(𝐺𝑖 𝑡 
− 𝑋𝑖 𝑡 ) 

𝑋𝑖 𝑡 + 1 = 𝑉𝑖 𝑡 + 𝑋𝑖 𝑡    (32) 

Where 𝑐1 and 𝑐2 are positive constant coefficients which 

show the importance of local best and global best, 

respectively, 𝑟1 and 𝑟2 and are random numbers. 𝑤(𝑡) is 

inertia weight which helps the algorithm to find the Pareto 

optimal set more rapidly and is almost always constant.  

𝐿𝑖 𝑡 and 𝐺𝑖 𝑡  are local best and global best which are 

selected as follows: At first, the non-dominated local set 

(which contains a position of the non-dominated solution) and 

non-dominated  global set (which contains a position of the 

non-dominated solution between all members of non-

dominated local sets) is formed. Then individual distances 

between members in the non-dominated local set of the 

particle, and members in the non-dominated global set are 

measured in the objective space. Li(t) and Gi(t)  are the 

members of these sets that give the minimum distance [24] 

 

Fig 4: IEEE 33-bus distribution test system 

 

Fig 5: The 24-h variation curve of each bus load based on 

the peak value 

4. IMPROVED NSGA-II ALGORITHM 

4.1 Overview of NSGA-II 
NSGA-II uses non-dominated sorting and sharing to search a 

compromising solution for MOO, and it is an efficient 

algorithm for a large number of benchmark problems [15]. 

4.2 Dominated, Non-dominated, and 

Pareto-Optimal Set 
MOO can be expressed as follows: 

min fi f ,   i = 1,2,… , Nobj ,   x ∈ `          (33) 

Where fi x denotes the  ith objective function, and  is the 

feasible searching space. 

Definition 1: A solution x1is said to dominate  x2 (denoted by  

x1 < x2 ) if and only if 

∀i , j ∈  1,2,… , Nobj  ,

∃ fi x1 ≤ fi x2 fj x1 < fj x2  

for i ≠ j   (34) 

Definition 2: For S =  xi , i = 1, … , n , solution is said to be a 

nondominated solution (Pareto solution) of set S if x ∈ S , and 

there is no solution x′ ∈ S for which x′dominates x. 

Definition 3: Assume that set P contains all nondominated 

solutions of  S, then 

PF =  v|v =  f1 x , f2 x , … fNobj
 x  

T
x ∈ P is a Pareto front 

of setS. 

4.3 INSGA-II: Improved Non-dominated 

Sorting Strategy 
The enhanced sorting strategy simultaneously considers the 

non-dominated sorting and density information for each 

instance. Suppose that NP is the population size, it first 

computes the non-dominated rank for each individual in 

population using the fast non-dominated sorting strategy to be 

introduced by NSGA-II; then, it adds its non-dominated rank 

and the number of individuals that dominate it. The technique 

is as follows: 

m Xi = R Xi + n(Xi)   (35) 

Where Xiis the ith individual, R Xi is the nondominated rank 

ofXi, and n Xi  is the number of individuals to dominate  Xi . 

Finally, for i = 1,2,3… , NP , sorts m Xi in ascending order, 

and assigns the order to Xias the improved rank, i.e. 

Rnew  Xi = ascendingOrder m X1 , m X2 … , m(Xi)    

(36) 

Where Rnew  Xi is the improved rank of Xi. It will be as a 

rank result of improved non-dominated sorting. In order to 

demonstrate the effect of the INSGA-II, a 2-D objectives 

optimization problem is taken as an example. It assumes that 

after fast non-dominated sorting, individuals a~e are at the 

first rank, and individuals A~C  are at the second rank. It also 

assumed that individual is dominated by individual, a, b and c; 

individual is dominated by individual respectively, which can 

be shown in Fig. 1. Using the conventional sorting strategy, 

the individuals A~C   have the same rank. Conversely, the 

number of their respective adjacent dominating solutions is 

different. To illustrate the different density corresponding to 

A, B and C, three equal radius circles are displayed to cover 

the adjacent individuals. 
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Fig 6: Individual distribution chart 

As shown in Fig. 6, individual A is more crowded than B, and 

individual B is more crowded than C. Through the improved 

sorting strategy, the rank of individual A, B and C are 4, 3, 

and 2, respectively. Therefore, the individual C that has less 

density holds the lower rank, which means it has more 

superiority in the selection process. In this way, the improved 

sorting strategy is beneficial to maintain better diversity in 

population. 

4.4 INSGA-II: HAC-Based Truncation 

Strategy 
The truncation strategy in NSGA-II is shown in Fig. 2. Here, 

individuals with lower rank can be conserved directly to the 

next-generation population, until the size of the next-

generation population overflows if all individuals in certain 

rank are maintained. According to NSGA-II, individuals in 

that rank should be sorted using the crowded comparison 

operator [15] in descending order, and then individuals 

needed to fill all population slots selected. However, the 

truncation strategy may abolish the diversity of solutions; 

namely, it may lead to the uneven distribution. In order to 

better conserve the diversity and evenly distributed 

performance in Process 2, a method based on hierarchical 

agglomerative clustering (HAC) [16] is introduced. In the 

proposed method, individuals in the truncated rank are 

grouped into an appropriate number of clusters, and then those 

with the largest crowding distance in each cluster are 

conserved to fill population slots. The space distance of 

solutions is used to measure the similarity of individuals in 

pair, and the Euclidean distance is used as the distance metric. 

Taking 2-D objectives optimization problem as one example, 

as shown in Fig. 6, five individuals need be extracted from 

candidates a~i which are all in the same rank. Two steps 

should be followed to complete the truncation: 

Step 1) Use the HAC algorithm to separate all individuals into 

five clusters I~V. 

Step 2) Execute the crowded-comparison operator for each 

individual and choose the one with the largest crowding 

distance in each cluster. Then, the individuals a, b, e, g, and i  

are extracted. According to the traditional truncation strategy, 

individuals a, b, g, h, and i  will be selected Comparing two 

groups of results, the difference can be noticed that the HAC-

based truncation strategy chooses individual e but not h into 

population slots, which is shown in Fig. 4. In order to describe 

the evenly distributed performance of the proposed strategy, 

the coordinates of each individual are illustrated in Fig. 4. 

And the variance of distances of adjacent individuals is 

calculated to measure the even degree. Based on the HAC-

based truncation strategy, the variance is 0.3528. For the 

traditional truncated approach, the variance is 2.1580. So the 

proposed improved truncation strategy can make the obtained 

solutions be evenly distributed with more diversity. 

4.5 INSGA-II: Improved Mutation and 

Crossover Strategy 
The mutation and recombination strategy [17] in DE 

optimization is integrated in the proposed INSGA-II 

algorithm. Detailed operations are described as follows. 

1) Mutation Operation: For each 𝑥𝑖(𝑖 = 1,2, … , 𝑁𝑃), 

the weighted difference of two randomly chosen 

population vectors 𝑥𝑟2 and 𝑥𝑟3 is added to another 

randomly selected population member 𝑥𝑟1, to form 

a mutated vector 𝑥′𝑖  

𝑥′𝑖 =  𝑥𝑟1 + 𝐹 × ( 𝑥𝑟3 −  𝑥𝑟2)  (37) 

Where 𝑥′𝑖  is the new mutated vector, and is a predefined step 

size, which is typically chosen from range [0,2]. The mutation 

operation can improve the local search around the current best 

solution.  

2) Recombination Operation: Assuming that the 

individual i is composed with chromosome 

vector 𝑥𝑖 =  𝑢𝑖1, 𝑢𝑖2, … , 𝑢𝑖,𝑁𝐶 
𝑇

, and the mutated 

individual is composed with chromosome vector, 

then the new individual 𝑥′′𝑖 is created by (36). The 

new individual vector is mixed with the original 

vector 𝑥𝑖and mutated vector 𝑥′𝑖 to yield to the new 

vector 𝑥"𝑖after the recombination operation  

𝑢"𝑖,𝑗 =  
𝑢𝑖,𝑗  𝑖𝑓 𝑟𝑎𝑛𝑑(𝑗) ≥ 𝐶𝑅

𝑢′𝑖,𝑗  𝑖𝑓 𝑟𝑎𝑛𝑑(𝑗) < 𝐶𝑅
  𝑗 = 1,2, … , 𝑁𝐶 (38) 

Where 𝑟𝑎𝑛𝑑 𝑗 ∈ [0,1] and crossover rate 𝐶𝑅 ∈ [0,1], 𝑁𝐶 is 

the length of the chromosome. The recombination operation 

can increase the diversity of the perturbed parameter vector. 

4.6 Choosing the Best Compromise 

Solution via a Fuzzy Decision 
For decision making, it is essential to select a best 

compromise solution from the obtained MOO solution sets. 

Here, using the Fuzzy Set Theory determines the best 

compromise solution. First, the membership function τi
kof the 

kth solution for the kth objective function Fi
kis defined as 

τi
k =

Fi
max −Fi

k

Fi
max −Fi

min    (39) 

where Fi
max  and Fi

min  are the maximum and minimum of the 

kth objective function among all nondominated solutions, 

respectively. Obviously τi
k , gives a measure of the satisfaction 

degree of the kth solution for the kth objective function. Then, 

using the fuzzy decision determines the best compromise 

solution xk∗in the Pareto solution set as 

xk∗, and τ k∗ =
max

k = 1,… , M  
 τi

k
N obj
i=1

  τi
jN obj

i=1
M
j=1

  (40) 

Where M is the number of Pareto solutions. 

4.7 Complete Algorithm of the INSGA-II 

Method 
The flowchart of the proposed algorithm is shown in 

following pseudo-codes. 
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Algorithm 1 Procedures of the INSGA-II  

Input: The number of objectives, population size NP, 

maximal iteration 𝑡𝑚𝑎𝑥 , etc. 

Output: Optimal solution 𝑥𝑘∗ 

1: Initialize 𝑃0 =  𝑥1, 𝑥2, … , 𝑥𝑁𝑃 , and set iteration number 

t=0. 

2: Power flow computation, and compute objective values f1, 

f2, F3. 

3: while 𝑡 < 𝑡𝑚𝑎𝑥 , do. 

4: Make selection, mutation and recombination operations on 

parent group𝑃𝑡 , and form 𝑁𝑃/2 new individuals as offspring 

group 𝑄𝑡 ; 

5: Power-flow computation, combine current population and 

offspring group 𝑅𝑡 = 𝑃𝑡𝑈𝑄𝑡 ; 

6: Use improved nondominated sorting strategy in 𝑅𝑡 , and 

form multiple ranks 𝐿 =  𝐿1, 𝐿2. . .  ; 

7: Truncate the combined population using the HAC-based 

strategy, and form 𝑃𝑡+1; 

8: 𝑡 = 𝑡 + 1; 

9: end while 

10: Get the best comprises solution using the Fuzzy Set 

Theory; 

11: return 𝑥𝑘∗. 

5. EXPERIMENTAL RESULTS 
The multiobjective optimization has been solved using the 

MOPSO algorithm to obtain the optimum solution that 

maximizes the DG owner’s profit and minimizes the DisCo’s 

cost. As mentioned before, these two objective functions are 

dependent of each other seriously in a way that the reduction 

of one of them results in decreasing the other one. Hence, 

there is more than one optimal point. In order to demonstrate 

the effectiveness of the MOPSO and INSGA-II algorithm, the 

optimal DG allocation of the IEEE 33-bus distribution 

networks with DG are considered and tested. Both the 

algorithms are developed in MATLAB. In the INSGA-II 

algorithm, the population number NP= 200; the max-iteration 

number  𝑡𝑚𝑎𝑥 = 100; the mutation factor  𝐹 =0.25; the 

crossover factor 𝐶𝑅 = 0.9; and the penalty factor, 𝑤1𝑤2, and 

𝑤3are all set to 50. 

Table 1. Comparison for the Peak Loading on 33-Bus 

System with 2-DGS 

Method  DG Capacity 

(MW) 

Line Loss 

(KW) 

Voltage 

Deviation 

Without 

DG 

--- 202.6 11.7053 

NSGA–II 17- 0.5180 

32- 0.4224 

104.20 3.7420 

HPSO 17- 1.7477 

32- 1.7477 

65.529 5.2041 

 

Table 2. Result comparison for Light loading of HBPSO 

and INSGA 

Method No. of 

DGs 

Total power 

Loss(KW) 

Voltage 

Deviation 

HBPSO 1 16.6000 6.10 

INSGA 1 9.2486 8.18 

HBPSO 2   27.5256 6.00 

INSGA 2 9.4377 8.18 

HBPSO 3 22.7952 8.18 

INSGA 3 9.2830 8.18 

HBPSO 4 11.6735 8.18 

INSGA 4 9.4010 8.18 

DG units are considered in the modified IEEE 33-bus system 

shown in Fig. 4. The algorithms were applied to solve this 

problem. The peak loading data of IEEE 33-bus test system, 

seen in Table II, are employed as the typical load data. The 

maximal active power capacities of DG units are set to 1 MW.  

6. CONCLUSION 
The final solution for DG allocation and MOO function 

values in the IEEE 33-bus system are shown in Table I. 

MOPSO algorithm to obtain the optimum solution that 

maximizes the DG owner’s profit and minimizes the DisCo’s 

cost in terms of line loss. The, INSGA-II has benefits in 

finding evenly distributed solutions, and the light loading by 

INSGA-II has enhanced diversity in selecting the best 

compromise solution. The computation result is shown in 

Table I for peak loading. As shown in Table II, two objective 

function values in the light loading case are smaller than the 

peak loading cases. The aforementioned experiment result 

provides evidence that the optimal DG allocation scheme with 

INSGA-II in peak loading can be feasible in various loading 

levels.  There is the scope to work on the hybrid optimisation 

techniques with various load flow schemes. 
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