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ABSTRACT 
In the medical sector, and mainly for dependent patients with 

movement disabilities, controlling an electric powered 

wheelchair could prove a challenging task. Thus, 

implementing an autonomous navigation algorithm for 

static/dynamic environments could provide an easier way to 

move. Within this context, this paper presents innovative 

work on integrating a novel method of image-based 

geolocalization in a powered wheelchair. The work focuses 

on integrating the geolocalization algorithm within the Robot 

Operating System (ROS) framework. Tests are being 

conducted using an omnidirectional camera fixed on an 

automated wheelchair control system. Our results show low 

control errors both in straight line and curved paths. The 

proposed algorithm was developed by the ESIGELEC 

laboratory.  

Keywords 
Image-based geolocalization, automated robotic wheelchair, 

omnidirectional vision sensor.  

1. INTRODUCTION 
Over the last decades, motion estimation of moving objects 

and 3D reconstruction has been highly researched worldwide. 

The computer vision field has been studied and great results 

have been obtained. Recently, along with the predominance of 

mobile devices having access to localization services (google 

street view, google map, etc.), a new topic has surfaced; the 

image-based geolocalization. In our work, as our wheelchair 

navigation system is targeting mainly the indoor environment, 

we propose a ROS-based autonomous navigation wheelchair 

running a novel version of an indoor image-based 

geolocalization algorithm. 

Within the framework of the EU, INTERREG IVA, 

COALAS1 (COgnitive Assisted Living Ambient System) 

project, we have been working on a semi/fully autonomous 

wheelchair design and prototyping [1]. To deal with the 

different specifications of COALAS project, a multi-sensor 

platform was created to assist the wheelchair intelligence with 

the necessary environment information. Thus, Ultrasound, 

Infrared, Laser Range Finder, etc. have been planned for use. 

Considering the complexity that image-based geolocalization 

algorithms usually require [2], and wide range of other 

sensors that our wheelchair implements, and the huge amount 

of data to process, several methods have been proposed. In 

order to have a structured and efficient handling for events on 

the wheelchair platform, a ROS-based architecture has been 

chosen. 

This paper is organized as follows. In Section 2, the ROS-

based wheelchair navigation system is defined in which we 

include the wheelchair instrumentation, the localization 

algorithm based on omnivision, collision avoidance algorithm 

and ROS integration. In Section 3, we present and discuss the 

results obtained from indoor testing. Section 4 concludes this 

work and discusses possible extensions and future work. 

2. ROS-BASED WHEELCHAIR 

NAVIGATION USING 

OMNIDIRECTIONAL SENSOR 

2.1. Wheelchair Instrumentation 
Although the wide range of commercialized electric powered 

wheelchairs available in the market, there has been little 

consideration to providing researchers with an embedded 

system which is fully compatible, and communicates 

seamlessly with current manufacturers’ wheelchair systems. 

For our work, communication with the wheelchair embedded 

system is a crucial characteristic of the model to choose. The 

Bora Model (Fig 1) from the Invacare Corporation is an 

electric powered wheelchair [3] available in the market for a 

number of years and the company is supporting research on 

its platform by providing an interfacing board to communicate 

with its proprietary DX-System.  
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Fig 1: Bora wheelchair model from Invacare Inc. 

 GPSB Interface 

The GPSB interface, as shown in Fig 2, is an electronic board 

that allows control of the wheelchair using an instruction set 

to drive, change directions, change driving profiles, etc., and 

using only a serial interface (USB) to connect with a laptop. 

 

Fig 2: GPSB board. 

 Omnidirectional  Sensor 

In our work, we used an omnidirectional camera fixed on the 

top of the wheelchair (as is shows in Fig 3); the overall height 

of the camera center to the ground is 1.6 meters. For the 

calibration, we used the calibration tool developed by 

ESIGELEC laboratory. 

 

Fig 3: Testing wheelchair (Omnidirectional sensor 

embedded on top). 

 Infrared and Ultrasound Platform 

The IR/US platform implemented in the COALAS wheelchair 

is a pre-built system from the SYSSIAS IVA Interreg 2 Seas 

project. The SYSSIASs work has been integrated as is and the 

main contribution of our team in this is the integration of the 

collision avoidance algorithm developed by the School of 

Engineering and Digital Arts at the University of Kent to the 

ROS framework. 

The hardware part consists of a combination of IR and US 

sensors on the wheelchair’s outside edges, a set of 11 US 

sensors and 12 IRs have been setup to provide ranging 

information about the wheelchair surroundings and distances 

from other objects in almost 360 degrees (as is shows in Fig 5 

and 6). Data from the sensors is collected directly by 4 

Arduino Mini boards controlling 3 US and 3 IR sensors each. 

Measurements are then sent back to an Arduino Due board 

using an RJ458 serial link. The Due format the data collected 

from the sensors to a specific data protocol appends the 

joystick input and sends it to the ROS framework for collision 

avoidance processing. The Arduino Due board is also 

responsible of receiving control commands from the ROS 

framework and writing it on the wheelchair control bus using 

the GPSB interface (Fig 4). 

 

Fig 4: Collision Avoidance system following COALAS 

specification 

The position of the sensors implemented on this platform can 

be shown on Fig 5 and Fig 6: 

 

Fig 5: Ultrasound and Infrared sensors positions. 

   

Fig 6: Ultrasound and Infrared sensors mouting on the 

back (left) and left front side (right) of the wheelchair. 

 Multi-sensor fusion Platform 

Navigation and location technologies are continually 

progressing, allowing ever higher accuracies and operation 

under ever more challenging conditions [4]. The development 

of such technologies requires the rapid evaluation of a large 

number of sensors and related utilization strategies [5]. For 

autonomous and assisted navigation systems, a wide range of 

sensors could be used: Laser range finders, Kinect RGB-D 

cameras, Ultrasound sensors, Infrared sensors, etc. These 

sensors allow more accuracy and provide rich information 

about the environment to the robot (wheelchair), thus a better 
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understanding of the surroundings and better algorithm 

design.  

In our case, to comply with COALAS project specifications, 

several sensors are used. The following list shows the most 

needed ones with their respective use: 

 Omnidirectional  camera: Autonomous navigation  

 Kinect : Human fall detection 

 Odometers: wheelchair movements tracking 

 Camera and Microphone: Head and speech control of the 

wheelchair 

All data coming from the above sensors should be integrated 

and processed seamlessly. A simple example of that is 

controlling the wheelchair by tracking the head movements of 

the user while running the collision avoidance algorithm to 

avoid obstacles on the way, or running the autonomous 

navigation system based on the omnidirectional camera while 

running the fall detection algorithm in parallel to detect a 

possible fall of a patient. 

2.2.Vision-based Localization Algorithm 
The Motion  estimation  from  sets  of images  is  a  difficult  

task  and  requires multiple  steps  to  achieve  good  results. 

The image-based geolocalization algorithm implemented in 

this work consists of two separate and complementing phases. 

The first phase is to store all the images, at a certain 

frequency, of the possible paths that the robot could pass 

through, thus creating a local or remote database, while the 

second phase is running the navigation algorithm using the 

images database created before.  

For this work, an omnidirectional camera was used to create 

panoramic images. Once all the images representing our 

ground truth were acquired, we define the mathematical 

constraints to analyze them. 

The proposed solution consists of three steps:  

 Camera calibration: to get good results for our PIBG 

algorithm, we need to know how our sensor is set. This 

process is about finding the intrinsic parameters (focal 

length, pixel skew, principal point). 

 Features detection and correspondence: As our 

algorithm relies on features detection, an essential step of 

this work is to choose our features extractor. Many 

solutions have been proposed in literature but we used 

Scale-Invariant Feature Transform (SIFT) [6].  

 Essential matrix and 3D triangulation: The  epipolar  

geometry  (as shown in Fig 7) gives  the relative  

position  of  one  vision  sensor  with respect  to  another. 

Here  we estimate  from  point clouds  the  essential 

matrix which completely describes the rigid geometric  

relationship  between corresponding  points  of  a  stereo  

pair  of cameras.  The  essential  matrix  is  then 

decomposed – Singular Value Decomposition (SVD)  –  

into  two  rotations  matrices  R1,  R2 and two translation 

matrices t1, t2. In order to find the best combination out 

of the four possibilities, we must triangulate. This 

process consists of determining the three-dimensional 

world coordinates for an object given two dimensional 

views. As the intersection of the two vectors is almost 

impossible in the 3D world, we use an estimation to 

detect the closest point. As our navigation algorithm 

relies on a spherical camera model, after acquiring the 

2D images, each pixel of the panoramic image 2D point 

(x, y /RGB) –is projected (mapped) to a 3D point on the 

unit sphere. For all the pixels we compute a spherical 

point cloud and therefore define the camera model. This 

model consists of having a projected image on a surface 

of a unit sphere centered by the camera.  

 

Fig 7: Position estimation using epipolar geometry and 

triangulation. 

2.3. Collision Avoidance Algorithm 
The collision avoidance algorithm is a part of the University 

of Kent SYSSIAS project. The algorithm consists of fusing 

data coming from the US/IR platform to detect and avoid 

obstacles along the wheelchair’s way. This algorithm can be 

decomposed into three main steps; collecting data from the 

sensors using four separate Arduino mini boards, getting the 

user inputs by reading the joystick positions using the GPSB 

board, and finally, applying an artificial potential fields-based 

algorithm by an Arduino Due, and writing data back in the 

wheelchair control bus. 

Our contribution is that in this work the corresponding 

collision avoidance algorithm is implemented within the ROS 

framework. For this purpose, the Arduino Due software is 

changed to collect data coming from the sensors and joystick 

data, and transfer it to the ROS system using a serial link with 

a PC. Also, some updates to the Arduino Minis code were 

necessary in order to comply with the COALAS specification 

(ROS framework) and allowing more control of the system. 

Fig 4 summarizes the COALAS Collision avoidance platform. 

2.4. ROS Integration 
1) ROS Architecture 

ROS is a Linux based software framework for operating 

robots. This framework uses the concept of packages, nodes, 

topics, messages and services. A node is a piece of software 

responsible for a very specific task, its output may be 

redirected to another node’s input. The information which 

moves from node to node is called a message. Messages 

always travel anonymously via special ports called topics. A 

node which sends messages on a topic is called a publisher 

and the receiving node has to subscribe to the topic to receive 

that message, hence it is called a subscriber. All related nodes 

are combined in one package that can easily be compiled and 

ported to other computers. The packages are necessary to 

build a complete ROS-based autonomous robot control 

system. 

Also, ROS architecture allows a more effective distributed 

inter-process/inter-machine communication and configuration 

using a language independent basis (C++, python, lisp, java, 

and more), thus, easier hardware abstraction and code reuse. 

2) ROS Simulation Environment 

Robot simulation (Fig 8) is an essential tool in every robotics’ 

toolbox. A well-designed simulator makes it possible to 

rapidly test algorithms, design robots, and perform regression 

testing using realistic scenarios. 
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In order to test ROS scripts before uploading them to robots, 

ROS offers the use of two main simulators; RVIZ and 

Gazebo. While RVIZ is used mainly for its simplicity and for 

simple 3D environments, Gazebo offers the ability to 

accurately and efficiently simulate populations of robots in 

complex indoor and outdoor environments. At your fingertips 

is a robust physics engine, high-quality graphics, and 

convenient programming and graphical interfaces.  

In this work, as no wheelchair model has been already 

developed under the gazebo library, we had to create it. For 

creating new models for gazebo, SDF (Simulator Description 

Format), a new description format have been released to 

replace the old URDF (Unified Robot Description Format) 

description language. To implement the sensors on the 

modeled wheelchair, a simple way is too use the mesh 

description of each one and include it in the SDF model. 

 

 

Fig 8: Simulated wheelchair model in RVIZ. 

3) PIBG ROS Integration 

a) PIBG ROS package dependencies 

Software in ROS is organized in packages. A package might 

contain ROS nodes, a ROS-independent library, a dataset, 

configuration files, a third-party piece of software, or 

anything else that logically constitutes a useful module. The 

goal of these packages it to provide this useful functionality in 

an easy-to-consume manner so that software can be easily 

reused. 

For the PIBG integration, an independent ROS package was 

implemented using the Catkin building tool. In this package, 

we created our PIBG nodes, topics, messages, etc.  

The package dependencies are the core packages that are used 

by the PIBG package. For this work, we can cite among 

others: 

 Vision_Opencv2: provides packaging of the popular 

OpenCV library for ROS. Also it implements the 

CV_bridge (bridge between ROS messages and 

OpenCV) and Image_geometry (Collection of methods 

for dealing with image and pixel geometry) 

 Roscpp: a C++ implementation of ROS. It provides a 

client library that enables C++ programmers to quickly 

interface with ROS Topics, Services, and Parameters. 

Roscpp is the most widely used ROS client library and is 

designed to be the high-performance library for ROS. 

 Pcl [7]: for point cloud processing – development. The 

PCL framework contains numerous state-of-the art 

algorithms including filtering, feature estimation, surface 

reconstruction, registration, model fitting and 

segmentation.  

 Image Transport: should always be used to subscribe to 

and publish images. It provides transparent support for 

transporting images in low-bandwidth compressed 

formats. Examples (provided by separate plugin 

packages) include JPEG/PNG compression and Theora 

streaming video. 

 Other libraries Creation: the key power of the Catkin 

(Fig 6) build tool is how it makes it easier to build 

modular software without having to keep track of the 

specific build products of each package. Modularity, in 

this case, comes in the form of building specific 

functionality into libraries which can be used by other 

packages.   

For this work, two pre-developed codes were used; the 

navigation algorithm code that implements the three main 

steps, calibrating the camera, features detection/ 

correspondence. For the essential matrix and 3D triangulation 

step, another Omnivision code was developed in the lab 

during a previous work. The two codes were developed using 

C++ language and in order to be able to use them in our work, 

we created a separate library for each code. Thus, we can use 

them in different, independent ROS packages, respecting the 

modularity of the ROS framework. Fig 9 presents the creation 

of these libraries. 

 

Fig 9: Catkin easy-way to create shared libraries. 

b) PIBG Nodes  

For implementing the PIBG algorithm and to comply with the 

ROS specification, we had to break up the algorithm logic 

into nodes. A node is a process that performs computation. 

Nodes are combined together into a graph and communicate 

with one another using streaming topics, RPC services, and 

the Parameter Server. These nodes are meant to operate at a 

fine-grained scale; a robot control system will usually 

comprise many nodes. In this work, the following ones have 

been employed:  

 Omnivision_Server 

This node implements the PIBG processing logic; it takes two 

successive images and calculates the relative distance and 

rotation between them. The output is a combined 

Translation/rotation vector.  

 
 Omnivision_Publisher 

This node is responsible of publishing the images from the 

image database to the subscribing image. This 

publish/subscribe is achieved using the OpenCV package to 

allow the transformation Image <-> ROS message as required 

by the ROS specification. 

 Omnivision_Launcher 

This node is the starter of the PIBG algorithm, loading the 

first image to the Omnivision_node and thus launching the 

image request calls.  

 PIBG ROS chain 

 After explaining above all the components related to the 

PIBG implementation in ROS, the diagram in Fig 10 presents 

the whole chain of the PIBG process:   
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Fig 10: PIBG ROS Chain. 

The /image server topic is the ROS topic where all images 

should be sent as ROS messages. First, the launcher sends the 

two first images to the server. After finishing its processing, 

the server sends a ROS message under the /image_request to 

the publisher that sends back in response the next image in the 

database or signals the end of processing if the path end is 

reached. 

4) Collision Avoidance ROS package  

Unlike the PIBG algorithm (Fig 11), the collision avoidance 

doesn’t need any particular dependencies, the processing here 

doesn’t in fact include any particular data type or specific 

exchange protocol, thus, no more than the Roscpp and the 

Rospy dependencies were added.  

The ROS chain created consists of three nodes; the first node 

is responsible of handling the serial link between the Arduino 

Due and the laptop, it reads data (sensors measurements and 

joystick inputs) incoming from the Due board and writes data 

(control commands) on the bus to the Due for execution. The 

second node subscribes to the /raw_data topic, format it to 

sensors measurements and joystick inputs to publish under the 

/sensor_data and /joy_cmd topics respectively. The third node 

is the main part of our algorithm, it subscribes to both 

previous topics, applies the collision avoidance algorithm and 

finally publishes the control commands under the /cmd_vel 

topic. These messages are redirected under ROS to the first 

node to be written on the serial bus for execution.  

 

Fig 11: Collision Avoidance ROS chain. 

Also, under ROS, it is possible to integrate QT interfaces. 

For analysis and visualization purposes, we developed a 

simple QT interface ( 

Fig 12) to show data incoming from the US/IR platform, so 

giving us a feedback of the wheelchair surroundings.   

 

 
 

Fig 12: QT testing and vizualisation interface. 

3. RESULTS & ANALYSIS 
As described before, the PIBG algorithm consists of two 

separate phases: a) creating path images database and, b) 

applying the algorithm. For the first part, we used RTMaps 

software to get data from the camera at a frequency of 0.5 Hz 

and create our path database. In addition, the covered path and 

positions of the wheelchair have been recorded using the 

Vicon system (3D localization system based on NIR cameras 

and time of flight calculation). For the second part of the test, 

we run the PIBG algorithm on a laptop carried by the 

wheelchair and also record the driven path. 

In order to have reliable ground distance results, the tests 

were conducted on a constant speed. So, after obtaining the 

Translation/Rotation vector, the next relative position of the 

wheelchair can be deducted by a simple multiplication of its 

values by the distance scale. 

3.1.Tests and Results 
For software integration, we used Linux 12.04 (LTS version) 

and ROS Groovy and the wheelchair control (ROS compliant) 

package was employed. Finally,, to convert the 

Translation/Rotation vector obtained from the PIBG package 

to a real world pose, we implemented an intermediate node 

called “vect_to_pose”. The resulting test nodes chain can be 

seen in Fig 13: 

 

Fig 13 : Interface diagram of PIBG and wheelchair 

control ROS packages. 

To test the PIBG algorithm in indoor environments, we 

implemented two different tests; the first consists of driving 

the wheelchair in a straight line and the second a Z form. The 

tests were carried in the ESIGELEC LNA lab and we used the 

Vicon system to record both driven paths positions. After that, 

and using the QtiPlot utility in Linux, we draw the 

Real/Driven paths of the wheelchair. Fig 14, 15, 16 and 17 

present the results obtained:   

 

Fig 14: Real Vs Driven results for a Z form path. 
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Fig 15: Real Vs Driven results for a straight forward path. 

The error estimation was calculated as the average of errors 

between the ground truth positions and the ones resulting 

from our test runs. This error shows that for a straight line 

path, the average error between the ground truth position and 

the calculated one is only -0.18 meters in the X-axis and +0.2 

meters on the Y-axis , while it is up to -0.36 in the X-axis and 

-0.6 meters on the Y-axis when the path is Z-like. This shows 

that the complexity of the path is affecting directly the 

algorithm’s accuracy.  

 

Fig 16: Real Vs Driven results for a Z form path + error 

intervals. 

 

Fig 17: Real Vs Driven results for a straight forward path 

+ error intervals. 

4. CONCLUSION  
Today, the world count between 110 million and 190 million 

adults who have significant difficulties in walking [8] and 

billions have been spent in the wheelchair industry. However, 

wheelchair automation is still a new concept. In this article, 

we present a novel model of automated wheelchairs. This 

model based on the ROS framework allows a new vision 

towards this potential future industry. In order to test the 

effectiveness of the ROS framework on the wheelchair, we 

implemented an autonomous navigation system based on an 

image-based geolocalization algorithm. Tests have been 

conducted using an omnidirectional sensor in an indoor 

environment. In the future, an optimization of the proposed 

solution will be done to enable the processing of larger 

amount of data and optimal path choice.   
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