
International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

12

ROS-based Autonomous Navigation Wheelchair using

Omnidirectional Sensor

Yassine Nasri
ESIGELEC – IRSEEM

Technopole du Madrillet,
Av. Galilée, 76801 Saint

Etienne du Rouvray
Cedex Rouen, France

Vincent Vauchey
ESIGELEC – IRSEEM

Technopole du Madrillet,
Av. Galilée, 76801 Saint

Etienne du Rouvray
Cedex Rouen, France.

Redouane Khemmar
ESIGELEC – IRSEEM

Technopole du Madrillet,
Av. Galilée, 76801 Saint

Etienne du Rouvray
Cedex Rouen, France.

Nicolas Ragot
ESIGELEC – IRSEEM

Technopole du Madrillet,
Av. Galilée, 76801 Saint

Etienne du Rouvray
Cedex Rouen, France.

Konstantinos Sirlantzis
University of Kent

School of Engineering and
Digital Arts

Jennison Building,
Canterbury, Kent CT2 7NT, UK

Jean-Yves Ertaud
ESIGELEC – IRSEEM

Technopole du Madrillet,
Av. Galilée, 76801 Saint

Etienne du Rouvray
Cedex Rouen, France.

ABSTRACT
In the medical sector, and mainly for dependent patients with

movement disabilities, controlling an electric powered

wheelchair could prove a challenging task. Thus,

implementing an autonomous navigation algorithm for

static/dynamic environments could provide an easier way to

move. Within this context, this paper presents innovative

work on integrating a novel method of image-based

geolocalization in a powered wheelchair. The work focuses

on integrating the geolocalization algorithm within the Robot

Operating System (ROS) framework. Tests are being

conducted using an omnidirectional camera fixed on an

automated wheelchair control system. Our results show low

control errors both in straight line and curved paths. The

proposed algorithm was developed by the ESIGELEC

laboratory.

Keywords
Image-based geolocalization, automated robotic wheelchair,

omnidirectional vision sensor.

1. INTRODUCTION
Over the last decades, motion estimation of moving objects

and 3D reconstruction has been highly researched worldwide.

The computer vision field has been studied and great results

have been obtained. Recently, along with the predominance of

mobile devices having access to localization services (google

street view, google map, etc.), a new topic has surfaced; the

image-based geolocalization. In our work, as our wheelchair

navigation system is targeting mainly the indoor environment,

we propose a ROS-based autonomous navigation wheelchair

running a novel version of an indoor image-based

geolocalization algorithm.

Within the framework of the EU, INTERREG IVA,

COALAS1 (COgnitive Assisted Living Ambient System)

project, we have been working on a semi/fully autonomous

wheelchair design and prototyping [1]. To deal with the

different specifications of COALAS project, a multi-sensor

platform was created to assist the wheelchair intelligence with

the necessary environment information. Thus, Ultrasound,

Infrared, Laser Range Finder, etc. have been planned for use.

Considering the complexity that image-based geolocalization

algorithms usually require [2], and wide range of other

sensors that our wheelchair implements, and the huge amount

of data to process, several methods have been proposed. In

order to have a structured and efficient handling for events on

the wheelchair platform, a ROS-based architecture has been

chosen.

This paper is organized as follows. In Section 2, the ROS-

based wheelchair navigation system is defined in which we

include the wheelchair instrumentation, the localization

algorithm based on omnivision, collision avoidance algorithm

and ROS integration. In Section 3, we present and discuss the

results obtained from indoor testing. Section 4 concludes this

work and discusses possible extensions and future work.

2. ROS-BASED WHEELCHAIR

NAVIGATION USING

OMNIDIRECTIONAL SENSOR

2.1. Wheelchair Instrumentation
Although the wide range of commercialized electric powered

wheelchairs available in the market, there has been little

consideration to providing researchers with an embedded

system which is fully compatible, and communicates

seamlessly with current manufacturers’ wheelchair systems.

For our work, communication with the wheelchair embedded

system is a crucial characteristic of the model to choose. The

Bora Model (Fig 1) from the Invacare Corporation is an

electric powered wheelchair [3] available in the market for a

number of years and the company is supporting research on

its platform by providing an interfacing board to communicate

with its proprietary DX-System.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

13

Fig 1: Bora wheelchair model from Invacare Inc.

 GPSB Interface

The GPSB interface, as shown in Fig 2, is an electronic board

that allows control of the wheelchair using an instruction set

to drive, change directions, change driving profiles, etc., and

using only a serial interface (USB) to connect with a laptop.

Fig 2: GPSB board.

 Omnidirectional Sensor

In our work, we used an omnidirectional camera fixed on the

top of the wheelchair (as is shows in Fig 3); the overall height

of the camera center to the ground is 1.6 meters. For the

calibration, we used the calibration tool developed by

ESIGELEC laboratory.

Fig 3: Testing wheelchair (Omnidirectional sensor

embedded on top).

 Infrared and Ultrasound Platform

The IR/US platform implemented in the COALAS wheelchair

is a pre-built system from the SYSSIAS IVA Interreg 2 Seas

project. The SYSSIASs work has been integrated as is and the

main contribution of our team in this is the integration of the

collision avoidance algorithm developed by the School of

Engineering and Digital Arts at the University of Kent to the

ROS framework.

The hardware part consists of a combination of IR and US

sensors on the wheelchair’s outside edges, a set of 11 US

sensors and 12 IRs have been setup to provide ranging

information about the wheelchair surroundings and distances

from other objects in almost 360 degrees (as is shows in Fig 5

and 6). Data from the sensors is collected directly by 4

Arduino Mini boards controlling 3 US and 3 IR sensors each.

Measurements are then sent back to an Arduino Due board

using an RJ458 serial link. The Due format the data collected

from the sensors to a specific data protocol appends the

joystick input and sends it to the ROS framework for collision

avoidance processing. The Arduino Due board is also

responsible of receiving control commands from the ROS

framework and writing it on the wheelchair control bus using

the GPSB interface (Fig 4).

Fig 4: Collision Avoidance system following COALAS

specification

The position of the sensors implemented on this platform can

be shown on Fig 5 and Fig 6:

Fig 5: Ultrasound and Infrared sensors positions.

Fig 6: Ultrasound and Infrared sensors mouting on the

back (left) and left front side (right) of the wheelchair.

 Multi-sensor fusion Platform

Navigation and location technologies are continually

progressing, allowing ever higher accuracies and operation

under ever more challenging conditions [4]. The development

of such technologies requires the rapid evaluation of a large

number of sensors and related utilization strategies [5]. For

autonomous and assisted navigation systems, a wide range of

sensors could be used: Laser range finders, Kinect RGB-D

cameras, Ultrasound sensors, Infrared sensors, etc. These

sensors allow more accuracy and provide rich information

about the environment to the robot (wheelchair), thus a better

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

14

understanding of the surroundings and better algorithm

design.

In our case, to comply with COALAS project specifications,

several sensors are used. The following list shows the most

needed ones with their respective use:

 Omnidirectional camera: Autonomous navigation

 Kinect : Human fall detection

 Odometers: wheelchair movements tracking

 Camera and Microphone: Head and speech control of the

wheelchair

All data coming from the above sensors should be integrated

and processed seamlessly. A simple example of that is

controlling the wheelchair by tracking the head movements of

the user while running the collision avoidance algorithm to

avoid obstacles on the way, or running the autonomous

navigation system based on the omnidirectional camera while

running the fall detection algorithm in parallel to detect a

possible fall of a patient.

2.2.Vision-based Localization Algorithm
The Motion estimation from sets of images is a difficult

task and requires multiple steps to achieve good results.

The image-based geolocalization algorithm implemented in

this work consists of two separate and complementing phases.

The first phase is to store all the images, at a certain

frequency, of the possible paths that the robot could pass

through, thus creating a local or remote database, while the

second phase is running the navigation algorithm using the

images database created before.

For this work, an omnidirectional camera was used to create

panoramic images. Once all the images representing our

ground truth were acquired, we define the mathematical

constraints to analyze them.

The proposed solution consists of three steps:

 Camera calibration: to get good results for our PIBG

algorithm, we need to know how our sensor is set. This

process is about finding the intrinsic parameters (focal

length, pixel skew, principal point).

 Features detection and correspondence: As our

algorithm relies on features detection, an essential step of

this work is to choose our features extractor. Many

solutions have been proposed in literature but we used

Scale-Invariant Feature Transform (SIFT) [6].

 Essential matrix and 3D triangulation: The epipolar

geometry (as shown in Fig 7) gives the relative

position of one vision sensor with respect to another.

Here we estimate from point clouds the essential

matrix which completely describes the rigid geometric

relationship between corresponding points of a stereo

pair of cameras. The essential matrix is then

decomposed – Singular Value Decomposition (SVD) –

into two rotations matrices R1, R2 and two translation

matrices t1, t2. In order to find the best combination out

of the four possibilities, we must triangulate. This

process consists of determining the three-dimensional

world coordinates for an object given two dimensional

views. As the intersection of the two vectors is almost

impossible in the 3D world, we use an estimation to

detect the closest point. As our navigation algorithm

relies on a spherical camera model, after acquiring the

2D images, each pixel of the panoramic image 2D point

(x, y /RGB) –is projected (mapped) to a 3D point on the

unit sphere. For all the pixels we compute a spherical

point cloud and therefore define the camera model. This

model consists of having a projected image on a surface

of a unit sphere centered by the camera.

Fig 7: Position estimation using epipolar geometry and

triangulation.

2.3. Collision Avoidance Algorithm
The collision avoidance algorithm is a part of the University

of Kent SYSSIAS project. The algorithm consists of fusing

data coming from the US/IR platform to detect and avoid

obstacles along the wheelchair’s way. This algorithm can be

decomposed into three main steps; collecting data from the

sensors using four separate Arduino mini boards, getting the

user inputs by reading the joystick positions using the GPSB

board, and finally, applying an artificial potential fields-based

algorithm by an Arduino Due, and writing data back in the

wheelchair control bus.

Our contribution is that in this work the corresponding

collision avoidance algorithm is implemented within the ROS

framework. For this purpose, the Arduino Due software is

changed to collect data coming from the sensors and joystick

data, and transfer it to the ROS system using a serial link with

a PC. Also, some updates to the Arduino Minis code were

necessary in order to comply with the COALAS specification

(ROS framework) and allowing more control of the system.

Fig 4 summarizes the COALAS Collision avoidance platform.

2.4. ROS Integration
1) ROS Architecture

ROS is a Linux based software framework for operating

robots. This framework uses the concept of packages, nodes,

topics, messages and services. A node is a piece of software

responsible for a very specific task, its output may be

redirected to another node’s input. The information which

moves from node to node is called a message. Messages

always travel anonymously via special ports called topics. A

node which sends messages on a topic is called a publisher

and the receiving node has to subscribe to the topic to receive

that message, hence it is called a subscriber. All related nodes

are combined in one package that can easily be compiled and

ported to other computers. The packages are necessary to

build a complete ROS-based autonomous robot control

system.

Also, ROS architecture allows a more effective distributed

inter-process/inter-machine communication and configuration

using a language independent basis (C++, python, lisp, java,

and more), thus, easier hardware abstraction and code reuse.

2) ROS Simulation Environment

Robot simulation (Fig 8) is an essential tool in every robotics’

toolbox. A well-designed simulator makes it possible to

rapidly test algorithms, design robots, and perform regression

testing using realistic scenarios.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

15

In order to test ROS scripts before uploading them to robots,

ROS offers the use of two main simulators; RVIZ and

Gazebo. While RVIZ is used mainly for its simplicity and for

simple 3D environments, Gazebo offers the ability to

accurately and efficiently simulate populations of robots in

complex indoor and outdoor environments. At your fingertips

is a robust physics engine, high-quality graphics, and

convenient programming and graphical interfaces.

In this work, as no wheelchair model has been already

developed under the gazebo library, we had to create it. For

creating new models for gazebo, SDF (Simulator Description

Format), a new description format have been released to

replace the old URDF (Unified Robot Description Format)

description language. To implement the sensors on the

modeled wheelchair, a simple way is too use the mesh

description of each one and include it in the SDF model.

Fig 8: Simulated wheelchair model in RVIZ.

3) PIBG ROS Integration

a) PIBG ROS package dependencies

Software in ROS is organized in packages. A package might

contain ROS nodes, a ROS-independent library, a dataset,

configuration files, a third-party piece of software, or

anything else that logically constitutes a useful module. The

goal of these packages it to provide this useful functionality in

an easy-to-consume manner so that software can be easily

reused.

For the PIBG integration, an independent ROS package was

implemented using the Catkin building tool. In this package,

we created our PIBG nodes, topics, messages, etc.

The package dependencies are the core packages that are used

by the PIBG package. For this work, we can cite among

others:

 Vision_Opencv2: provides packaging of the popular

OpenCV library for ROS. Also it implements the

CV_bridge (bridge between ROS messages and

OpenCV) and Image_geometry (Collection of methods

for dealing with image and pixel geometry)

 Roscpp: a C++ implementation of ROS. It provides a

client library that enables C++ programmers to quickly

interface with ROS Topics, Services, and Parameters.

Roscpp is the most widely used ROS client library and is

designed to be the high-performance library for ROS.

 Pcl [7]: for point cloud processing – development. The

PCL framework contains numerous state-of-the art

algorithms including filtering, feature estimation, surface

reconstruction, registration, model fitting and

segmentation.

 Image Transport: should always be used to subscribe to

and publish images. It provides transparent support for

transporting images in low-bandwidth compressed

formats. Examples (provided by separate plugin

packages) include JPEG/PNG compression and Theora

streaming video.

 Other libraries Creation: the key power of the Catkin

(Fig 6) build tool is how it makes it easier to build

modular software without having to keep track of the

specific build products of each package. Modularity, in

this case, comes in the form of building specific

functionality into libraries which can be used by other

packages.

For this work, two pre-developed codes were used; the

navigation algorithm code that implements the three main

steps, calibrating the camera, features detection/

correspondence. For the essential matrix and 3D triangulation

step, another Omnivision code was developed in the lab

during a previous work. The two codes were developed using

C++ language and in order to be able to use them in our work,

we created a separate library for each code. Thus, we can use

them in different, independent ROS packages, respecting the

modularity of the ROS framework. Fig 9 presents the creation

of these libraries.

Fig 9: Catkin easy-way to create shared libraries.

b) PIBG Nodes

For implementing the PIBG algorithm and to comply with the

ROS specification, we had to break up the algorithm logic

into nodes. A node is a process that performs computation.

Nodes are combined together into a graph and communicate

with one another using streaming topics, RPC services, and

the Parameter Server. These nodes are meant to operate at a

fine-grained scale; a robot control system will usually

comprise many nodes. In this work, the following ones have

been employed:

 Omnivision_Server

This node implements the PIBG processing logic; it takes two

successive images and calculates the relative distance and

rotation between them. The output is a combined

Translation/rotation vector.

 Omnivision_Publisher

This node is responsible of publishing the images from the

image database to the subscribing image. This

publish/subscribe is achieved using the OpenCV package to

allow the transformation Image <-> ROS message as required

by the ROS specification.

 Omnivision_Launcher

This node is the starter of the PIBG algorithm, loading the

first image to the Omnivision_node and thus launching the

image request calls.

 PIBG ROS chain

 After explaining above all the components related to the

PIBG implementation in ROS, the diagram in Fig 10 presents

the whole chain of the PIBG process:

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

16

Fig 10: PIBG ROS Chain.

The /image server topic is the ROS topic where all images

should be sent as ROS messages. First, the launcher sends the

two first images to the server. After finishing its processing,

the server sends a ROS message under the /image_request to

the publisher that sends back in response the next image in the

database or signals the end of processing if the path end is

reached.

4) Collision Avoidance ROS package

Unlike the PIBG algorithm (Fig 11), the collision avoidance

doesn’t need any particular dependencies, the processing here

doesn’t in fact include any particular data type or specific

exchange protocol, thus, no more than the Roscpp and the

Rospy dependencies were added.

The ROS chain created consists of three nodes; the first node

is responsible of handling the serial link between the Arduino

Due and the laptop, it reads data (sensors measurements and

joystick inputs) incoming from the Due board and writes data

(control commands) on the bus to the Due for execution. The

second node subscribes to the /raw_data topic, format it to

sensors measurements and joystick inputs to publish under the

/sensor_data and /joy_cmd topics respectively. The third node

is the main part of our algorithm, it subscribes to both

previous topics, applies the collision avoidance algorithm and

finally publishes the control commands under the /cmd_vel

topic. These messages are redirected under ROS to the first

node to be written on the serial bus for execution.

Fig 11: Collision Avoidance ROS chain.

Also, under ROS, it is possible to integrate QT interfaces.

For analysis and visualization purposes, we developed a

simple QT interface (

Fig 12) to show data incoming from the US/IR platform, so

giving us a feedback of the wheelchair surroundings.

Fig 12: QT testing and vizualisation interface.

3. RESULTS & ANALYSIS
As described before, the PIBG algorithm consists of two

separate phases: a) creating path images database and, b)

applying the algorithm. For the first part, we used RTMaps

software to get data from the camera at a frequency of 0.5 Hz

and create our path database. In addition, the covered path and

positions of the wheelchair have been recorded using the

Vicon system (3D localization system based on NIR cameras

and time of flight calculation). For the second part of the test,

we run the PIBG algorithm on a laptop carried by the

wheelchair and also record the driven path.

In order to have reliable ground distance results, the tests

were conducted on a constant speed. So, after obtaining the

Translation/Rotation vector, the next relative position of the

wheelchair can be deducted by a simple multiplication of its

values by the distance scale.

3.1.Tests and Results
For software integration, we used Linux 12.04 (LTS version)

and ROS Groovy and the wheelchair control (ROS compliant)

package was employed. Finally,, to convert the

Translation/Rotation vector obtained from the PIBG package

to a real world pose, we implemented an intermediate node

called “vect_to_pose”. The resulting test nodes chain can be

seen in Fig 13:

Fig 13 : Interface diagram of PIBG and wheelchair

control ROS packages.

To test the PIBG algorithm in indoor environments, we

implemented two different tests; the first consists of driving

the wheelchair in a straight line and the second a Z form. The

tests were carried in the ESIGELEC LNA lab and we used the

Vicon system to record both driven paths positions. After that,

and using the QtiPlot utility in Linux, we draw the

Real/Driven paths of the wheelchair. Fig 14, 15, 16 and 17

present the results obtained:

Fig 14: Real Vs Driven results for a Z form path.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

17

Fig 15: Real Vs Driven results for a straight forward path.

The error estimation was calculated as the average of errors

between the ground truth positions and the ones resulting

from our test runs. This error shows that for a straight line

path, the average error between the ground truth position and

the calculated one is only -0.18 meters in the X-axis and +0.2

meters on the Y-axis , while it is up to -0.36 in the X-axis and

-0.6 meters on the Y-axis when the path is Z-like. This shows

that the complexity of the path is affecting directly the

algorithm’s accuracy.

Fig 16: Real Vs Driven results for a Z form path + error

intervals.

Fig 17: Real Vs Driven results for a straight forward path

+ error intervals.

4. CONCLUSION
Today, the world count between 110 million and 190 million

adults who have significant difficulties in walking [8] and

billions have been spent in the wheelchair industry. However,

wheelchair automation is still a new concept. In this article,

we present a novel model of automated wheelchairs. This

model based on the ROS framework allows a new vision

towards this potential future industry. In order to test the

effectiveness of the ROS framework on the wheelchair, we

implemented an autonomous navigation system based on an

image-based geolocalization algorithm. Tests have been

conducted using an omnidirectional sensor in an indoor

environment. In the future, an optimization of the proposed

solution will be done to enable the processing of larger

amount of data and optimal path choice.

5. ACKNOWLEDGMENTS
This research is supported by the Franco-British research

project Cognitive Assisted Living Ambient System

(COALAS, Project Nr. 4194, URL: http://coalas-project.eu/),

that has been selected in the context of the INTERREG IVA,

France (Channel) England, European cross-border co-

operation program.

The authors wish to thank the Technological Resource Center

(TRC) of ESIGELEC/IRSEEM for his help in the testing

phase. We also thank the Autonomous Navigation Laboratory

(ANL) staff for the significant contribution during the

different tests.

6. REFERENCES
[1] N. Ragot, and G. Caron, and M. Sakel, and K. Sirlantzis,

“A EU multidisciplinary research project for assistive

robotics neuro-rehabilitation”, IEEE/RSJ International

Conference on Intelligent Robots (IROS), Workshop on

Rehabilitation and Assistive Robotics: Bridging the Gap

Between Clinicians and Roboticists, Chicago, USA,

September 12-18, 2014.

[2] F. Dellaert, and W. Burgard, and D. Fox, and S. Thrun,

“Using the condensation algorithm for robust, vision-

based mobile robot localization”. In Proceedings 1999

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, Vol. 2, June 23-25, 1999.

[3] Invacare® Bora User manual REV1.6.

[4] J. Llinas, and D. L. Hall, “An introduction to multi-

sensor data fusion”. ISCAS ’98, In Proceedings of the

1998 IEEE International Symposium on Circuits and

Systems. Vol. 6, pp. 537-540, May 31-June 3, 1998.

[5] W. Meeussen, and M. Wise, and S. Glaser, and S. Chitta,

and C. McGann, and P. Mihelich, and E. Marder-

Eppstein, and E. Muja, and V. Eruhimov, and T. Foote,

and J. Hsu, and R.B. Rusu, and B. Marthi, and G.

Bradski, and K. Konolige, and B. Gerkey, and E. Berger,

"Autonomous door opening and plugging in with a

personal robot", In Proceedings of 2010 IEEE

International Conference on Robotics and Automation

(ICRA), pp.729-736, May 3-7, 2010.

[6] A.C. Murillo, and J.J. Guerrero, and C. Sagues, "SURF

features for efficient robot localization with

omnidirectional images", In Proceedings of 2007 IEEE

International Conference on Robotics and Automation,

pp. 3901-3907, April 10-14, 2007.

[7] R.B. Rusu, and S. Cousins, “3d is here: Point cloud

library (PCL)”. In 2011 IEEE International Conference

on Robotics and Automation (ICRA), pp. 1-4, 2011.

[8] World Health Organization Report, Fact Sheet N°352,

September 2013.

IJCATM : www.ijcaonline.org

