
International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

34

Implementation of Delay Efficient ALU using Vedic

Multiplier with AHL

P. Vimala, PhD
Associate Professor

Department of Electronics and
Communication Engineering,

Dayananda Sagar College of Engineering,
Bangalore, India

Swapna M.S.
PG Scholar

Department of Electronics and
Communication Engineering,

Dayananda Sagar College of Engineering,
Bangalore, India

ABSTRACT

Digital multipliers are most widely used component in

applications such as convolution, Fourier transform, discrete

cosine transforms, and digital filtering. Because outturn of

these applications mainly depends on multiplier speed,

therefore multipliers must be designed efficiently. In the

proposed architecture, a variable-latency multiplier design

with novel AHL architecture and a razor flip flop is used,

which results in reduced delay and increased speed than the

existing system. Meanwhile proposed architecture is used to

compare array multiplier, column-bypassing multiplier, row-

bypassing multiplier and Vedic multiplier. The experimental

result shows that the Vedic multiplier has better performance

in power consumption and delay. Here in this work Vedic

multiplication is done using Urdhva Tiryakbhyam Sutra

(Algorithm), which results in minimum delay. Thus using

Vedic multiplier ALU is designed which results in enhanced

performance compared to contemporary design.

General Terms

Adaptive hold logic (AHL), Urdhva-Tiryakbhyam sutra

(Algorithm).

Keywords

Adaptive hold logic (AHL), negative bias temperature

instability (NBTI), positive bias temperature instability

(PBTI), variable latency, Vedic mathematics, Urdhva-

Tiryakbhyam sutra (Algorithm).

1. INTRODUCTION
Digital Multiplication is most critical arithmetic functional

unit. As multiplication predominates the operating time for

most of the DSP applications like convolution, digital

filtering, Fourier transform, discrete cosine transform etc.

Since, their outputs are mainly based on the multipliers speed,

and if multipliers are slow then the execution of the whole

system will get diminished. So there is need of high speed

multipliers.

As CMOS transistors are scaled down to ultra-deep submicron

technologies, device accuracy can‟t be neglected. Negative

Bias Temperature Instability (NBTI) effects are caused due to

device aging process, which will have high impact on circuit

performance and speed. The PMOS transistors threshold

voltage increases due to NBTI effects over a time, due to this

switching speed and circuit performance will be degraded. As

a result of this circuit may fail because of timing variations.

NBTI effect caused due to trap creation at Si/SiO2 interface at

high temperature when the PMOS transistor is under negative

bias i.e. Vgs = -Vdd and this will decreases the circuit driving

current. The communication of hydrogen passivated Si atoms

with inversion layer holes can break the Si – H bonds, thereby

generating an interface trap.

These assembled interface traps between gate oxide interface

and silicon results in the accessed threshold voltage (Vth),

thereby decreasing the switching speed of the circuit. The

reverse action takes place when the biased voltage is removed

which will reduce the NBTI effect. But all generated interface

traps cannot be eliminated by performing reverse operation.

The same effect is caused to NMOS transistor when it is

under positive bias which is called Positive Bias Temperature

Instability (PBTI). The PBTI effect is much smaller when it is

compared with NBTI effect and it is usually ignored. But for

metal-gate NMOS transistors it is no longer ignored with

remarkable charge confinement. Thus it‟s necessary to

construct efficient high-speed multiplier.

Initially, [1] have proved that using NBTI-aware transistor

sizing method can reduce the NBTI effect on the flip-flops

timing features. Wu and Marculescu [2] implemented a

restructuring function on basis of detecting logic symmetries

and effects of transistors stacking. They also designed a

method by considering path sensitization using NBTI method.

In [3], [4], dynamic voltage scaling and body-basing

techniques were proposed to reduce power or extend circuit

life. These techniques, however, require circuit modification

or do not provide optimization of specific circuits. Several

variable-latency adders were proposed using the speculation

technique with error detection and recovery [5]–[7].

The accuracy of hold logic is improved and to optimize the

variable latency circuit [8] is done by proposing short path

activation function. Later a variable-latency pipelined design

[9], with a Booth algorithm was proposed. Ming-Chen Wen et

al [10] have addressed a low power parallel multiplier

architecture, where few columns of the multiplier arrays are

switched-off when their outputs are known. There by saving

switching power. The advantage of their work shows that it

retains the original array architecture without initiating

additional boundary cells as compared to earlier technique. J.

Ohban, V. G. Moshnyaga [11] has addressed the digital

multiplier based on dynamic bypassing of partial products. A

Debasish Subudhi et al [12], [13], have proposed the design

and implementation of high speed Vedic multiplier. They

designed the multiplier using Urdhva Tiryakbhyam sutra.

They designed the 4-bit modified multiplier using proposed 4-

bit adder circuit. Their proposed multiplier gives delay of

12.825 ns which is less when it is compared with existing

multiplier design. Ing-Chao Lin [14] has proposed the

multiplier design with adaptive hold logic technique. His

proposed multiplier uses the variable latency technique and he

proved that using variable latency technique, the multiplier is

capable to produce higher throughput and can adjust the AHL

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

35

to reduce the performance degradation due to aging effect. He

also proved that, his proposed architecture can applied to a

column or row-bypassing multiplier.

The paper is organized as follows: section 2 introduces the

background of array, column-bypassing, row-bypassing,

Vedic multiplier and variable latency design. Description of

the Proposed Methodology is given in Section 3 .The section

4 gives the detailed design of ALU using Proposed Multiplier

Architecture. Experimental setup and results are presented in

section 5. Section 6 concludes this paper.

2. VEDIC MATHEMATICS
The following The word „Vedas‟ means store-house of all

knowledge, from which the word „vedic‟ is derived. Vedic

mathematics is the most beneficial gift from the early sage‟s

of India. This mathematics is easier and faster than that of

conventional (modern) mathematics. In this mathematics

although the calculations can be done in written from, it can

also be done mentally. Therefore it is most interesting and

creative way of performing mathematic calculations. After

eight years of research on ancient Indian Veda‟s by Swamy

Bharati Krishna Tirthaji (1884-1960), he comprised and

reconstructed16 Vedas or algorithms and 16 upa-sutras or sub

algorithms. Therefore Vedic mathematics calculation is

mainly performed by using 16 basic sutras along with their

upa-sutras (corollaries). Using these algorithms any numerical

problems such as arithmetic, algebraic, geometric/

trigonometric functions can be resolved mentally.

Below gives the list of 16 sutras with their brief meanings in

alphabetical order:

1. (Anurupye) Shunyamanyat –If one is in ratio, the other is

zero.

2. Chalana Kalanabyham – Differences and Similarities.

3. Ekadhinkina Purvena – By one more than the previous

one.

4. Ekanyunena Purvena – By one less than the previous one.

5. Gunakasamuchyah – The factor of the sum is equal to the

sum of the factors.

6. Gunitasamuchyah – The product of the sum is equal to the

sum of product.

7. Nikhilam Navatashcaramam Dashatah – All from 9 and

the last from 10.

8. Paraavartya Yojayet – Transpose and adjust.

9. Puranapuranabyham – By the completion or non-

completion.

10. Sankalana-vyavakalanabhyam – By addition and by

subtraction.

11. Shesanyankena Charamena – The remainder by the last

digit.

12. Shunyam Saamyasamuccaye – When the sum is the same,

that sum is zero.

13. Sopaantyadvayamantyam – The ultimate and twice the

penultimate.

14. Urdhva-Tiryagbyham – Vertically and crosswise.

15. Vyashtisamanstih – Part and whole.

16. Yaavadunam – Whatever the extent of its deficiency

2.1 Vedic Multiplications
Vedic multiplication is banked on the Vedic multiplication

sutras/algorithms. Multiplications of two decimal/binary

numbers are performed using these algorithms/sutras. This

multiplication technique will result in computational power

saving. Here Vedic multiplier is designed using Urdhva-

Tiryagbyham sutra to perform the parallel multiplication.

2.2 Urdhva-Tiryagbyham sutra
It is a conventional multiplication algorithm applicative to all

types of multiplication/division of one large by large numbers.

Urdhva-Tiryagbyham means vertical and crosswise

multiplication. This multiplication is depends on the novel

idea, that will first generates all the partial products and then it

will add these partial products concurrently. Figure 1, depicts

the multiplication using Urdhva-Tiryagbyham sutra method.

Figure 2, illustrates the example of multiplication of two

decimal numbers 3451 and 6723 using vertical and crosswise

method. The main advantage of this multiplication technique

when compared with other multiplier is, has the number of

bits increases, area and gate delay increases moderately. This

multiplier is independent of clock frequency since parallel

computation of partial products and their sums are done. Thus

it is power, space and time efficient multiplier technique.

Fig 1: 4X4 Urdhava-Tiryabyham Sutra method

Cross-products are obtained as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

36

Fig 2: Example of multiplication of two decimal numbers

3451 and 6723 using vertical and crosswise method

2.3 Variable-Latency Design
Author Contemporary multipliers architecture uses the critical

path cycles as an execution cycle period. Therefore significant

timing waste will occur due to this critical path delay. Hence

variable latency method is used in proposed multiplier design

to minimize the timing waste present in the conventional

multiplier circuit. Depending upon the number of cycles

required by the multiplier, the variable latency method will

divide the circuit into two paths namely: (1) Shorter path and

(2) Longer path. Shorter path can execute exactly using one

cycle, whereas longer path requires two cycles to execute.

Thus when shorter paths are frequently activated, the

latency‟s average of the variable-latency technique is more

appropriate than that of conventional multiplier design which

makes use of critical path as an execution period. In bypassing

multipliers such as Column and Row-Bypassing technique,

the path of the system is completely depends on the number of

zero‟s present in the multiplicand and multiplicator bits. In the

Column-Bypassing multiplier, delay distribution is left shifted

as the number of zeros in the multiplicand bit increases there

by reducing the average delay. This is because select line of

the 2:1 multiplexer uses multiplicand bit to determine whether

the input patterns needs one/two cycles to complete an

operation. If more numbers of zeros are inserted in the

multiplicand bit, which will reduce the number of switching

activities of full adders used in the multiplier. Thus more

number of full adders will be neglected and sum bit from the

upper full adder is passed to lower full adder thus minimizing

the delay in path. Similarly in case of Row-Bypassing

multiplier, select lines of the 2:1 multiplexers use the

multiplicator bit to decide one or two cycles are required by

the input patterns to complete the operation. Therefore this

will makes the bypassing multipliers as superior candidates

for the design of variable latency technique.

3. DESCRIPTION OF THE PROPOSED

METHODOLOGY

3.1 Low Power Vedic Multiplier with

Adaptive Hold- logic
The basic block diagram of low-power Vedic multiplier with

Adaptive Hold Logic (AHL) is shown in Figure 3. It consists

of one Vedic multiplier, 1-bit Razor flip-flop and an Adaptive

Hold Logic (AHL) circuit.

Fig 3: Low-Power Vedic Multiplier with AHL

3.2 Working of the propose multiplier
When the input pattern appears, the AHL circuit and the

Vedic multiplier simultaneously execute their operations. The

AHL circuit determines the number of clock cycles needed for

the present input pattern according to the number of zero‟s in

the multiplicand or multiplicator bits of the Vedic multiplier.

If input pattern needs one cycle to complete, AHL outputs „1‟

for normal operation and AHL outputs„0‟ to disable the clock

signal of the input flip-flops, if the input pattern needs two

clock cycles to complete the operation. When Vedic

multiplier completes its operation, the output of the multiplier

block is fed to the Razor FF block. The Razor flip-flops (FF)

block will examine the presence of timing violations for path

delay. If timing variations present, which inform the system

that the cycle period is not sufficient to complete the current

operation and operation result of the multiplier block is

inaccurate. Thus, it will inform the system that the current

operation requires two cycles to run correctly, and thus Razor

flip-flops will result an error signal to guarantee the operation

is correct.

3.3 Adaptive Hold Logic (AHL)
The Adaptive Hold Logic (AHL) is the most essential part of

the variable-latency multiplier design. Figure 4 depicts the

block diagram of Adaptive Hold Logic.

Fig 4: Adaptive Hold Logic (AHL)

The AHL circuit consists of two judging blocks, aging

indicator, one 2:1 multiplexer and a D flip-flop. The main use

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

37

of the aging indicator in AHL block is to display, whether the

design has affected by remarkable performance reduction

because of aging consequence. The simple counter is used to

construct aging indicator, which computes the number of

errors throughout a certain amount of operation and at the end

it is reset to zero. The Vedic multiplier is inefficient to

execute its operation if cycle period is too short, thereby

causing timing violations. The Razor Flip-Flops will generate

the error signals by capturing these timing violations. If errors

occur regularly and rise above the predefined threshold

voltage, which means that the design has affected by

remarkable performance reduction because of aging

consequence and therefore the aging indicator block will

output signal 1, or else aging indicator block will output

signal 0 to notify that aging consequence is still not important,

and therefore no operations are required. Out of two judging

blocks in the AHL architecture, first judging block will result

signal 1 if the number of zero‟s in the multiplicand bits or

multiplicator bits of the Vedic multiplier is considerably

larger than „n‟ (where „n‟- positive number), and second

judging block will result signal 1 if the number of zero‟s in

the multiplicand or multiplicator bits of the Vedic multiplier is

lesser than „n‟. These two judging blocks are selected to

determine if an input pattern needs one/two cycles to

complete the operations, but out of two judging blocks 2:1

multiplexer will select only one at a time. In the beginning

first judging block is used because, the aging consequence is

not remarkable, and aging indicator will output signal zero.

Over an extent of time when aging consequence becomes

remarkable and produces output signal 1, the second judging

block is selected. In contrast to first judging block, the second

judging block enables a smaller number of patterns to get one-

cycle pattern, because it requires more number of zero‟s in the

multiplicand or multiplicator bits.

4. DESIGN OF ALU USING PROPOSED

MULTIPLIER ARCHITECTURE
ALU stands for Arithmetic and Logic Unit; it is a digital

circuit and performs all type of mathematical and logical

functions hence it is referred as a fundamental building block

of Central Processing Unit-CPU. Current generation CPU‟s

are frequently operated at higher frequencies with minimized

transistor size. Arithmetic and Logic Unit - ALU is one of the

most critical and efficient block in CPU. Hence it is

requirement to have fast and efficient ALU.

In this work, ALU is designed using two modules namely,

multiplier module and addition and subtraction module as

shown in the Figure 5. The16-bit Vedic multiplier is used

which performs the parallel multiplication and conventional

adder and subtractor module is used to perform addition and

subtraction which is also 16-bit. In the above figure signals A

and B are two 16-bit inputs and which is given as input to the

Proposed Vedic Multiplier as well as Adder & subtractor

module. Product is the output signal from multiplier module

which is 32-bit. Similarly Sum and Difference are the two

output signals from Adder & Subtractor module which is 17-

bit.

Fig 5: ALU Design using Proposed Vedic Multiplier

5. EXPERIMENTAL RESULTS
The experiments are conducted in a Xilinx ISE design suite

13.4 where Verilog code can be used for design

implementation. Figure 6, shows the simulation result.

System-level testing may be performed with the ISIM logic

simulator, and such test programs must also be written in

HDL languages. Test bench programs may include simulated

input signal waveforms, or monitors which observe and verify

the outputs of the device under test.

Figure 7, shows the delay comparison chart of existing and

proposed multipliers. Table 1, shows the Comparison between

16x16 existing multipliers architecture and 16x16 proposed

multipliers architecture.

Fig 6: Simulation waveform of 16X16 Vedic Multiplier with AHL

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

38

Figure 8, shows the Delay and Logic Levels comparison chart

of existing and proposed ALU. Table 2 gives the Comparison

between existing and proposed ALU using 16x16 Vedic

Multiplier architecture. Figure 9 Shows the FPGA

Implementation of ALU using 16x16 Vedic Multiplier with

AHL, which is implemented on Virtex 5 using Chipscope.

The table and graph shows that, the total logic and route

delays are efficient for Proposed Vedic multiplier than other

multipliers. Hence, the hardware implementation of ALU is

performed using Proposed Vedic multiplier.

Table 1. Comparison between 16x16 existing multipliers architecture and 16x16 proposed multipliers architecture

Parameters Existing

Array

Multiplier

Proposed

Array

Multiplier

Existing

Row-

Bypassing

Multiplier

Proposed

Row-

Bypassing

Multiplier

Existing

Column-

Bypassing

Multiplier

Proposed

Column-

Bypassing

Multiplier

Existing

Vedic

Multiplier

Proposed

Vedic

Multiplier

Total Delay (ns) 26.878 14.126 19.263 11.297 18.925 9.979 12.852 6.441

Logic Delay (ns) 5.246 2.546 4.730 1.858 4.644 1.772 2.667 2.025

Route Delay (ns) 21.632 11.580 14.533 9.439 14.281 8.207 10.185 4.415

Logic Levels 30 25 24 17 23 16 27 22

Total Memory

Usage

311972

Kilobytes

345380

kilobytes

307940

kilobytes

341348

kilobytes

305316

kilobytes

341348

kilobytes

299684

kilobytes

338276

kilobytes

Fig 7: Delay comparison chart of various 16x16 Multipliers

Table 2.Comparison between existing and proposed ALU using 16x16 Vedic Multiplier architecture

Parameters 16x16 existing Vedic Multiplier 16x16 Proposed Vedic Multiplier

Total Delay (ns) 12.855 6.441

Logic Delay (ns) 2.667 2.025

Route Delay (ns) 10.188 4.415

Logic Levels 27 22

Total Memory Usage 303572 kilobytes 342228 kilobytes

Power Utilization 1.210W 1.224W

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

39

 Fig 8: Delay and Logic Levels comparison chart of existing and proposed ALU

Fig 9: FPGA Implementation of ALU using 16x16 Vedic Multiplier with AHL

6. CONCLUSION
The design of 16-bit Array Multiplier, Row and Column-

Bypassing multiplier, Vedic Multiplier using Urdhva

Tiryakbhyam Sutra (Algorithm) and Arithmetic and Logic

Unit has been realized on Virtex5 XC5VLX110T-2-FF1136

device. The computation delay for the existing ALU module

is 12.855ns and Proposed ALU module with AHL technique

is 6.441ns respectively, which clearly shows improvement in

performance and speed. FPGA implementation using Virtex5

XC5VLX110T-2-FF1136 device demonstrates the hardware

realization of ALU using proposed Vedic Multiplier with

AHL technique. The proposed multiplier with Variable-

Latency technique is able to adjust AHL to minimize the

performance degradation. To reduce the delay and to increase

the circuit speed, an extra modules such as Razor flip-flops

and AHL module are added, which results in increase in area.

In this work Vedic Multiplier is designed using Urdhva

Tiryakbhyam Sutra (Algorithm) this sutra results in

generation of large number of partial products. To solve this

problem multiplier can be designed using Toom Cook

algorithm, which results in generation of fewer partial

products.

In this work ALU is designed to perform multiplication,

addition and subtraction. So future work can include logic

functions and Multiply Accumulate Unit-MAC there by

increasing the speed of the ALU.

7. REFERENCES
[1] H. Abrishami, S. Hatami, B. Amelifard, & M. pedram,

(2008) “NBTI-Aware Flip-Flop Characterization and

Design”, in Proc. 44th ACMGLSVLSI, pp.29-34.

[2] K. C. Wu & D. Marculescu, (2011) “Aging-Aware

Timing Analysis and Optimization Considering path

Sensitization”, in Proc. DATE, pp.1-6.

[3] Y. Lee & T. Kim, (2011) “A Fine-Grained Technique of

NBTI-Aware Voltage Scaling and Body Biasing for

Standard Cell Based Designs”, in Proc ASPDAC,

pp.603-608.

[4] M. Basoglu, M. Orshansky, & M. Erez, (2010) “NBTI-

Aware DVFS: A New Approach to Saving Energy and

Increasing Processor Lifetime”, in Proc.

ACMIEEEISLPED, pp.253-258.

[5] K. Du, P. Varman, & K. Mohanram, (2012) “High

performance Reliable Variable Latency Carry Select

Addition”, in Proc. DATE, pp. 1257-126.

[6] A.K. Verma, P. Brisk, & P. Ienne, (2008) “Variable

Latency Speculative Addition: A New Paradigm for

Arithmetic Circuit Design”, in proc DATE, pp. 1250-

1255.

[7] D. Baneres, J. Cortadella, & M. Kishinevsky (2009)

“Variable-Latency Design by Function Speculation”, in

Proc. DATE, pp. 1704-1709.

International Journal of Computer Applications (0975 – 8887)

Volume 133 – No.6, January 2016

40

[8] Y. S. Su, D. c. Wang, S. C. Chang, & M. Marek-

Sadowska (2011) “performance Optimization using

Variable-latency Design Style”, IEEE Trans. Very Large

Scale Integr. (VLSI) Syst, vol. 19, pp.1874-1883.

[9] M. Olivieri, (2001) “Design of Synchronous and

Asynchronous Variable-Latency Pipelined Multipliers”,

IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol.9,

pp.365-376.

[10] M. C. Wen, S. J. Wang & Y. N. Lin, (2005) “Low Power

Parallel Multiplier with Column Bypassing”, in Proc.

IEEE ISCAS,pp.1638-1641.

[11] J. Ohban, V. G. Moshnyaga, & K. Inoue, (2002)

“Multiplier Energy Reduction through Bypassing of

Partial products”, in proc. APCCAS,pp. 13-17.

[12] A Debasish Subudhi, Kanhu Charan Gauda, Abinash

kumar Pala & Jagmohan Das, (2012) “Design and

Implementation of High Speed 4x4 Vedic Multiplier”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 4, No.

11,pp.362-366.

[13] Anvesh kumar et al, “Low Power ALU Design by

Ancient Mathematics” (2010), The 2nd International

Conference on Computer and Automation Engineering

(ICCAE), Vol.5, pp. 862-865.

[14] Ing-Chao Lin, Member, IEEE, Yu-Hung Cho, & Yi-

ming Yang,(2014) “Aging-Aware Reliable Multiplier

Design with Adaptive Hold Logic”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems,

Vol.23, No. 3 pp.1063-8210.

IJCATM : www.ijcaonline.org

