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ABSTRACT
In this work, a mathematical model for studying the impact of
awareness programs on HIV/AIDS outbreak is proposed. The main
idea is that people who are susceptible to infection can prevent it, if
they are aware how the disease spreads and its consequences, and
also the measures to control it. Various forms of communication
media, educational, heath institutions and non-governmental orga-
nizations play a significant role to promote HIV/AIDS awareness
amongst the most concerned people, namely couples and senior
secondary school children. The developed HIV model is inspired
from the classical SIR epidemic model where a control function
is introduced to represent the effectiveness of an awareness pro-
gram. The obtained optimal control, is characterized in terms of
the optimality system, based on Pontryagin’s maximum principle,
and it is simulated using the Forward-Backward Sweep Method
with a progressive-regressive Runge-Kutta fourth order scheme,
which is adapted to solve a two-point boundary value problem.
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1. INTRODUCTION
Since their discovery at the beginning of the 1980s, human immun-
odeficiency virus infection and acquired immune deficiency syn-
drome (HIV/AIDS), have been reported by many researchers, as
an epidemic representing a global threat to humans, particularly to

people living with HIV in the sub-Saharan African regions that ac-
count for almost two thirds of the global total number of infected
people with HIV worldwide, and the HIV/AIDS statistics are still
staggering in those regions since that time [1]. In fact, based on a re-
cent report of the Joint United Nations Programme on HIV/AIDS
(UNAIDS) in 2014 [2], it is estimated that the number of people
newly infected with HIV has decreased worldwide from the peak
of 3.6 million in 2001 to an estimated 2.1 million in 2013. Simi-
lar conclusions about the newly infected with HIV among children
have been observed by a decline of 58% since 2001. Such declines
could be understood by the increased availability of the antiretro-
viral therapy for 13.6 million of people living with HIV in June
2014 after it was 12.9 million in 2013 [2]. However, fewer than
half of people living in Africa, who are having the opportunity to
receive treatment, which could unfortunately imply a stability or
less important decrease regarding the number of infected people
with HIV in the future next years [1]. In this context, UNAIDS
aimed by its new program HIV/AIDS started in September 2014, to
diagnose, facilitate access to antiretroviral therapy, and achieve vi-
ral suppression for 90% people infected with HIV by 2020 [3], but
that will require about US$ 32.8 billion to be invested by low- and
middle-income countries [2]. Thus, HIV/AIDS epidemic alone, can
cause a serious financial problem to governments of those countries
for funding such UNAIDS programs. UNAIDS publishes annually
other reports and provide some plans and guidelines for all health
and political international communities to ensure the statistics used
in the data analysis for their better employment and aiming to ad-
vance the HIV/AIDS prevention operations as soon as possible to-
wards the elimination of new HIV infections [4, 5, 6].
HIV/AIDS does not only threaten the human global health and
economy, but has also an impact on the sector of education par-
ticipating in the decline of school enrolment in the sub-Saharan
African countries due to AIDS at the beginning of the millennium
and also to the illness and deaths of teachers by HIV [7]. It was
observed that HIV/AIDS affects the normal life of students in rural
schools more than in urban areas due to lack of basic needs and
health services accessibility [8]. In spite of that, the relationship
between education and HIV/AIDS is actually circular. More con-
cretely, education can not be regarded only as a mean of passing in-
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formation, but could equally play a major psychosocial role against
HIV/AIDS spread [8, 9, 10, 11], based on different forms of aware-
ness strategies, in an attempt to change attitudes and behaviors of
the more concerned individuals such as senior secondary school
children who will likewise warn their parents from the danger of
HIV/AIDS. Heath institutions and some associations can also par-
ticipate in HIV/AIDS prevention, explaining to their societies how
the disease can spread and how they could control it.
Many published books focused on treating educational workshops
and awareness programs as powerful plans and strategic actions
in the war on HIV/AIDS in the middle east, and sub-Saharan and
north African countries [12, 13]. In an other work [14], José Catálan
et al. discussed some problems that meet some condoms and drugs
users, and presented different alternatives forms of HIV/AIDS pre-
vention based on reports of many papers where their authors high-
lighted the role of awareness programs that can be led by educa-
tional institutions and also the media, to intervene as psychoso-
cial factors encouraging more actions and much efforts in the fight
against HIV infection.
In order to show and prove the influence of awareness strate-
gies on reducing the number of HIV/AIDS infectives, a three-
compartmental SIR mathematical model is proposed with a control
function representing the effectiveness of awareness programs on
susceptible population when meeting infected people with HIV in
an attempt to help them to recognize the danger that pursues them
when they behave wrongly during their sexual life. In section 2., the
different components of the suggested model are described, and the
stability is studied when the control process function is only in the
form of a constant parameter, and in section 3., the characteriza-
tion of that control is sought for showing its impact on S,I and R
functions as it is done in numerical simulations presented in section
4.

2. PRESENTATION OF THE MODEL
Consider an SIR model for HIV transmission in a population of in-
dividuals. The model sub-divides the total human population into
three separate classes, S(t) susceptible individuals, I(t) infected
individuals and R(t) individuals removed from the disease, i.e.
people who are sexually inactive, or they take their precautions and
they are no longer infecting susceptibles. It is assumed that sus-
ceptible individuals not yet infected with HIV but can be infected
through the sexual contacts with infectives, or become aware and
transfer to the removed class. Note that S, I,R ≥ 0 because they
represent numbers of people. It is also assumed that the recruited
individuals (by birth and immigration), are constant and enter the
susceptible compartment, that is, Γ � 0. Further, assuming that the
number of people removed from each class due to natural causes
such as death (not HIV or AIDS related), is proportional to the
number of individuals in the compartmant, µS, µI and µR, where
µ � 0 will be called the natural death rate for historical reasons,
which is constant. Additionally, the number of individuals removed
from the infective class into the removed class (they are no longer
sexually active by health conditions), is proportional to the number
of individuals in the infective class, γI , where γ � 0 is the removal
rate which is a constant. The proportion of infected individuals to
sexually active individuals, I

S+I
, and β � 0, is the infection rate,

and which is a constant. Then, the disease transmission is modeled
using standard incidence, given by

βI

I + S
S

The following system of ODEs describes this SIR model

dS

dt
= Γ− βI

I + S
S − µS − θS (1)

dI

dt
=

βI

I + S
S − γI − µI (2)

dR

dt
= γI − µR+ θS (3)

Since R does not affect S or I , consider the equivalent system

dS

dt
= Γ− βI

I + S
S − µS − θS (4)

dI

dt
=

βI

I + S
S − γI − µI (5)

3. STEADY STATES
3.1 Disease-free equilibrium
Consider the case where there is no infection, then I = 0, thus by
setting dS

dt
= 0, it is obtained that

Γ− βI

I + S
S − µS − θS = 0

It follows that

S =
Γ

µ+ θ

then the disease-free equilibrium here is

E0 =

(
Γ

µ+ θ
, 0

)
Thus, in the absence of infectives the susceptibles have an equilib-
rium value of Γ

µ+θ
. To investigate the stability of this equilibrium ,

the reproductive number is defined by,

R0 =
β

µ+ γ
(6)

Proposition 2.1.1. The disease-free equilibrium E0 =
(

Γ
µ+θ

, 0
)

is
locally asymptotically stable if and only if R0 ≺ 1.

Proof. At E0, the Jacobien is

J(E0) =

(
−µ− θ −β

0 −γ − µ+ β

)
which has eigenvalues {−µ− θ,−γ − µ+ β}. All eigenvalues are
strictly negative if and only if −γ − µ+ β ≺ 0, which means that
R0 ≺ 1.

Proposition 2.1.2. If R0 ≺ 1, then I(t)
t→∞→ 0.

Proof. R0 ≺ 1 implies that β − (γ + µ) ≺ 0. Then

dI

dt
≺ (β − (γ + µ)) I ≺ 0

thus by positivity of I , I(t)
t→∞→ 0.

Theorem 2.1.1. The disease-free equilibrium E0 is globally
asymptotically stable if R0 ≺ 1.
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Proof. From Proposition 2 it suffices to show that S → Γ
µ+θ

. Let
ε � 0, then there is tε � 0 such that for t � tε, I(t) ≤ ε. Then

dS

dt
≥ Γ− βεS − (µ+ θ)S

Let Sε(t) be the solution of the differential equation

dSε
dt

= Γ− βεSε − (µ+ θ)Sε

, which has the steady state given by S∗ε = Γ
βεS+(µ+θ)

.

Since S
′′
ε = −βεS − (µ+ θ) ≺ 0 is strictly negative, then

Sε → S∗ε

and since Sε
ε→0→ S, then

S → Γ

µ+ θ

which complete the proof.

3.2 The Endemic Equilibrium
Now consider the case where R0 > 1 so that the system has an
endemic infection. Then by proposition 1 E0 is unstable.
By setting

dS

dt
= 0 and

dI

dt
= 0

then
βI

I + S
S = Γ− µS − θS (7)

βI

I + S
S = (γ + µ) I (8)

or

Λ− µS − θS = (γ + µ) I

S =
Γ

µ+ θ
− I (γ + µ)

µ+ θ
(9)

And by (8)

βS

I + S
= (γ + µ)

βS

γ + µ
= I + S

I =
βS

γ + µ
− S

thus

I = (R0 − 1)S (10)

Finally substituting (10) into (9) and solving for S it is obtained;

S∗ =
Γ

µ+ θ + (R0 − 1) (γ + µ)
(11)

I∗ =
(R0 − 1) Γ

µ+ θ + (R0 − 1) (γ + µ)
(12)

thus the endemic equilibrium point is

Ee = (S∗, I∗) (13)

Theorem 2.2.1. The endemic equilibrium Ee = (S∗, I∗) is locally
asymptotically stable if and only if R0 � 1.
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Fig. 1. The states of system (1-3) with (a) E0 = (2439, 0) , R0 = 0.4

(b) Ee = (880, 1594) , R0 = 2.8114

Proof. Finding the eigenvalues of the Jacobian matrix atEe results
in the characteristic equation

λ2 + (θ + β − γ)λ+
(−β + γ − µ) (γ + µ) (−θ − β + γ)

β
= 0

Since R0 � 1, thus by (6) it follows that

θ + β − γ � θ + µ � 0

so in order for the real part of both eigenvalues to be negative,

(−β + γ − µ) (γ + µ) (−θ − β + γ)

β
� 0 (14)

using the fact that R0 � 1, then

−β + γ − µ ≺ 0 and − θ − β + γ ≺ 0

then (14) holds. Thus, both eigenvalues of the Jacobian at Ee for
R0 > 1 have negative real part, so Ee is asymptotically stable.

Figure 1 depicts the two equilibria of the model, where the left side
of this figure (a), shows the disease-free equilibrium with R0 =
0.4, while the right one (b) shows the endemic equilibrium with
R0 = 2.8114.

4. OPTIMAL AWARENESS PROGRAM
In this section, it is considered θ as a function of time t. Our main
goal is to minimize the functional J given by

J(θ) =

ˆ tf

0

(
A1I(t)−A2R(t) +

K

2
θ2(t)

)
dt (15)

subject to

dS

dt
= Γ− βI

I + S
S − µS − θS (16)

dI

dt
=

βI

I + S
S − γI − µI (17)

dR

dt
= γI − µR+ θS (18)

The first terms represent the crucial goal of the awareness program,
that is of reducing the number of the infected people, and increasing
the removed ones. The other term is systemic cost of the awareness
program. The positive constants A1, A2 and K balance the size of
terms. Also the reason behind considering a finite time horizon is
that such control program is usually restricted to a limited time
window.
An optimal control θ∗ is sought such that

J(θ∗) = min {J(θ) | θ ∈ Θ}
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Where

Θ = {θ measurable, 0 ≤ θ(t) ≤ 1, , t ∈ [0, tf ]}

The necessary conditions that an optimal control problem must sat-
isfy come from Pontryagin’s maximum principle [15]. This princi-
ple converts (15)–(16-18) into a problem of minimizing pointwise
a Hamiltonian H , with respect to θ

H = A1I(t)−A2R(t) +
K

2
θ2(t)

+ λ1(t)

[
Γ− βI(i)

I(i) + S(i)
S(i)− µS(i)− θ(i)S(i)

]
+ λ2(t)

[
βI(i)

I(i) + S(i)
S(i)− γI(i)− µI(i)

]
+ λ3(t) [γI(i)− µR(i) + θ(i)S(i)]

By applying Pontryagin’s Maximum Principle [15] and the exis-
tence result for the optimal control from [16], The following theo-
rem is obtained:
Theorem 3.1. There exists an optimal control θ∗ and corresponding
solution, S∗, I∗ and R∗ that minimizes J(θ) over Θ Furthermore,
there exists adjoint functions, λ1(t), λ2(t) and λ3(t), such that

λ̇1 = −[
βI∗

2

(I∗ + S∗)2
(λ2 − λ1)− (µ+ θ∗)λ1 + θλ3] (19)

λ̇2 = −[A1 +
βS∗

2

(I∗ + S∗)2
(λ2 − λ1)

− (γ + µ)λ2 + γλ3] (20)

λ̇3 = − [−A2 − µλ3] (21)

with transversality conditions

λi(tf ) = 0, i = 1, 2, 3 (22)

The following characterization holds

θ∗(t) = max

{
min

{
(λ1(t)− λ3(t))

S∗(t)

K
, 1

}
, 0

}
(23)

Proof. Corollary 4.1 of [16] gives the existence of an optimal con-
trol due to the convexity of integrand of J with respect to θ, a priori
boundedness of the state solutions, and the Lipschitz property of the
state system with respect to the state variables. Applying Pontrya-
gin’s Maximum Principle, the following adjoint system is obtained

λ̇1 = −dH
dS

= −[
βI∗

2

(I∗ + S∗)2
(λ2 − λ1)− (µ+ θ∗)λ1 + θλ3],

λ1(tf ) = 0,

λ̇2 = −dH
dI

= −[A1 +
βS∗

2

(I∗ + S∗)2
(λ2 − λ1)

− (γ + µ)λ2 + γλ3],

λ2(tf ) = 0,

λ̇3 = −dH
dR

= −[−A2 − µλ3],

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

time (in days)

N
u
m

b
e

r 
o
f 

p
e

o
p

le

(a)

 

 
S(t)
I(t)
R(t)

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500
(b)

time (in days)

N
u
m

b
e

r 
o
f 

p
e

o
p

le

 

 
S(t)
I(t)
R(t)

(c)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

time (in days)

C
o
nt
ro
l
θ
(t
)

 

 
θ(t)

Fig. 2. The optimal control of the awareness strategy with K = 1× 106,
A1 = A2 = 1 S(0) = 1000, I(0) = 200 and R(0) = 0 (a) States of
system (16-18) without control (b) States of system (16-18) with control (c)
Control θ(t) as a function of time.

λ3(tf ) = 0,

evaluated at the optimal control θ∗ and corresponding states S∗, I∗
andR∗, which results in the stated adjoint system (19-21) and (22),
[17]. By considering the optimality conditions,

dH

dθ
= 0

and solving for θ∗, it follows

dH

dθ
= Kθ − λ1S + λ3S = 0

Taking into account the bounds on θ∗ in Θ, it is deduced that

θ∗(t) = max

{
min

{
(λ1(t)− λ3(t))

S(t)

K
, 1

}
, 0

}

Due to the priori boundedness of the state and adjoint functions
and the resulting Lipschitz structure of the ODEs, the uniqueness
of the optimal control is obtained for small tf . The uniqueness of
the optimal control follows from the uniqueness of the optimal-
ity system, which consists of (16-18) and (19-21), (22) with char-
acterizations (23). There is a restriction on the length of the time
interval in order to guarantee the uniqueness of the optimality sys-
tem. This smallness restriction on the length on the time interval is
due to the opposite time orientations of (16-18) and (19-21), (22),
the state problem has initial values and the adjoint problem has
final values. This restriction is very common in control problems
[18, 19, 20, 21, 22, 23, 24].

5. NUMERICAL RESULTS AND DISCUSSIONS
In this section, the numerical solutions of the optimality system
and the corresponding optimal control, the parameter choices, and
the interpretations from various cases are discussed. The optimal
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Fig. 3. States of system (16-18) with and without control
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Fig. 4. (a) The control function θ(t). (b) The function I(t). (c) The func-
tion R(t). For different values of K with R0 = 2.8114

program strategy is obtained by solving the optimality system. An
iterative method is used for solving the optimality system. The res-
olution of the state equations is started with a guess for the con-
trols over the simulated time using a forward fourth order Runge-
Kutta scheme. Because of the transversality conditions (22), the ad-
joint equations are solved by a backward fourth order Runge-Kutta
scheme using the current iteration solution of the state equations.
Then, the controls are updated by using a convex combination of
the previous controls and the value from the characterizations (23).
This process is repeated and iteration is stopped if the values of
variables at the previous iteration are very close to the ones at the
present iteration.
Figure 1 depicts the numerical simulations of the differential sys-
tem (1)-(3) where it can be seen that for a reproductive number
R0 = 0.4 and a disease-free equilibrium E0 = (2439, 0) (case a),
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Fig. 5. The control θ(t) is plotted as a function of time for different values
of β with K = 1× 104
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Fig. 6. The control θ(t) is plotted as a function of time for the 4 different
values of S(0) with I(0) = 200, R(0) = 0 and K = 1× 105
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Fig. 7. The control θ(t) is plotted as a function of time for the 4 different
values of I(0) with S(0) = 100000, R(0) = 0 and K = 2× 103

it results a very small number of infected and removed people, and
a big number of susceptible people because there is yet no infec-
tion and no strategy is needed in this case to fight against any dis-
ease (case b),. In contrast, for a reproductive number R0 = 2.8114
and a disease-free equilibrium Ee = (880, 1594) (case b), it is
observed that the number of infected people is increasing towards
Eey = 1594. By the introduction of the control θ(t) which rep-
resents the effectiveness of the awareness program, the number of
infected people has decreased in the case (b) compared to the case
(a) when there was yet no control. The impact of the control θ(t) on
the number of removed people can be understood by the increase of
the number of removed people for about 800 days once the control
θ(t) is introduced to the differential system (16)-(18) until it takes
values around 0.1, and when it begins closer to zero between 800
to 1200 days (see Figure 2), R variable decreases and I variable
increases simultaneously between that period.
It should also be noted that the final time is taken enough large
(about 3 years) because an awareness program aiming to prevent
HIV from spread, could often be observed successful only after a
long period. Figure 3 shows more clearly the relationship between
the control function and the variables S, I and R, and finally it can
be deduced that the followed control strategy succeed to reduce
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the number of infected people by HIV and increase the number of
the removed people. By taking other values of the control sever-
ity weight K in Figure 4, it can be concluded that the more K is
big, the more it is obtained lesser number of infected people and
larger number of removed people, because the more K is small,
the control θ(t) is big (see the control characterization (23)). The
reproductive number R0 and the infection rate beta have both also
an impact on the behavior of control θ(t) in Figure 5, and it is ob-
served that the more R0 and β are big, the more the values of the
control θ(t) becomes important. In addition, for different values of
the initial condition associated to the variable S(t) in Figure 6, the
values of the control θ(t) do not change, but change only and be-
come more important whenever the initial condition associated to
the variable I(t) are taken bigger as it is observed in Figure 7.

6. CONCLUSION
Education could help international societies to gain more time in
the fight against epidemics, particularly HIV/AIDS here, and be-
cause it is believed that collaborations between health institutions
are needed more today to face the danger of that disease, aware-
ness programs can be seen as optimal strategies or preferable plans
in this subject rather than treatments. A mathematical model for
studying the impact of awareness programs on HIV outbreak was
therefore proposed and analyzed. A control function was intro-
duced to the SIR model to represent the effectiveness of the aware-
ness programs. Optimal control strategies were identified for sev-
eral values of the control severity weights as well as the infection
rate and initial conditions of susceptibles and infectives, to show
the importance and the effectiveness of the approach in controlling
the infection spread. Control programs that follow these strategies
can effectively reduce the number of infected cases and increase the
number of people who are mindful of the danger of HIV. Thus, peo-
ple can change their sexual behaviors and/or take their precautions
by using for instance condom or by having regular blood tests.
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