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ABSTRACT 
This work reports on the finite element  method and particle 

swarm optimization method (PSO) for modeling and 

identification of delamination in composite material. A first 

order shear deformation using nine nodded isoparametric 

quadratic element with a simple multiple delamination model 

is used to develop the finite element analysis procedure. 

Delamination is the most common failure mechanism in 

composite structures. These damage causes changes in the 

physical properties by reducing the stiffness of the structure 

which leads to changes in modal parameters such as the 

frequencies, mode shapes, and modal damping factors. 

Identify the presence of damage and assess its size and 

location from a few lower frequency modes in modal test is 

the main objective of this study. Particle Swarm Optimization  

delamination detection based on the utilization of the changes 

in modal parameters as the objective function successfully 

identify the presence, location, and relative area size in 

composite laminated plates. 
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1. INTRODUCTION 
Composite materials structures have been increasingly used 

due to their high strength and stiffness to weight ratios, ease 

of manufacturing, light weight, ability to withstand fatigue 

and corrosion, and cost effectiveness that associated them 

with high performance and significant weight-saving 

compared to traditional materials.  

Despite their apparent superiority to metals, such composite 

materials in service can suffer from a number of failure 

mechanisms, such as ply or fiber breakage, matrix cracking[1] 

and delaminations of which delamination is most common, 

easily exposed to damage and it may propagate, thus reducing 

the life of the structure.  

Essentially, delamination is the greatest weakness of 

composite laminates. Delamination or interlaminar damage is 

the separation of the laminate plies as a result of low strength. 

This could lead to loss of structural integrity [2]. 

Delaminations can easily spread throughout the whole 

laminate of a composite structure upon repeated loading 

causing costly and/or disastrous failures when undetected. 

Online vibration based monitoring using shifts in natural 

frequencies can provide early warning of occurrence of 

delamination[1].  

Generally dynamic analysis of the structure can be done by 

Finite Element Method (FEM). In structural engineering, 

dynamic analysis of structures can be divided into two 

categories, one is related with the low frequency loading 

categorized as structural dynamic problems and another 

related with high frequency loading categorized as wave 

propagation problems[3]. 

Most of the structures of dynamic analysis come under 

structural dynamics. In structural dynamics problems , the 

solution can be determined either by system parameters such 

as natural frequencies and mode shapes or in terms of 

simulated response of the system to the external excitation 

such as initial displacements support motion and applied load 

etc.[3].  

Since frequency shifts can be measured more accurately and 

reliably without requiring a large number of sensors to be 

mounted on the structure. However, one of the disadvantages 

of frequency monitoring is that, while it readily indicates the 

presence of damage, identification of the location and severity 

of damage requires complex information processing using 

mathematical or intelligent inverse algorithms tools such as 

Neural Networks  and Genetic Algorithm [4] [5] [6]. Research 

on application of such techniques to detection of 

delaminations in composites is still ongoing and has so far 

yielded mixed results.[6]. Rytter, and Kirkegaard [4] 

presented a new model-based delamination detection 

methodology  for laminated composite plates and its 

performance was studied both numerically and 

experimentally. In addition to numerical demonstrations, the 

proposed novel damage detection method is experimentally 

demonstrated using the scanning laser vibrometer and a two 

dimensional E-glass/epoxy composite panel.  

In [7] The applications of the proposed methodology to an E-

glass/epoxy symmetric composite panel composed of 16 plies 

withed lamination damage were demonstrated both 

numerically and experimentally. The modal parameters are 

used in the subset selection analysis, from which the 

delamination damage is successfully detected and located.  
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Vinh[8] presented an isogeometric computational framework 

for modeling delamination of two and three dimensional 

composite laminates. Used isogeometric cohesive elements 

for modeling two and three dimensional delaminated 

composite structures. they exploit the knot insertion algorithm 

offered by NURBS (Non Uniform Rational B-splines) to 

generate cohesive elements along delamination planes in an 

automatic fashion. 

 

There are many advantages to using a frequency response  

method in a Structural Health Monitoring 

(SHM) system; they can be implemented cheaply, they can be 

light and conformal, and they can provide good insight as to 

the global condition of the system.  

The limitations are that they provide little information about 

the local damage area unless large quantities of sensors are 

used along with accurate numerical models; and then it can be 

argued that damage large enough to be detected globally may 

already be critical in many structures. [9].  

Kyoung and et al.[10]  Analytically and experimentally 

studied. A Lamb wave-based quantitative identification 

technique for delamination in composite structures. 

Propagation of Lamb waves in composite plates was 

evaluated using dynamic FEM analysis. The study was carried 

out to assess damages in composite plate by fusing 

information from multiple sensing paths of the embedded 

network. It was based on the Hilbert transform, signal 

correlation and probabilistic searching. Seth [9] For the 

purpose of the optimization problem of damage detection, a 

FE model updating based on multi-objective intelligent 

algorithm was carried out . A new multi-objective function 

defined by natural frequencies and accumulative modal 

assurance criterion (MAC) was formulated. The results show 

that the combination of the new multi-objective function and 

multi-objective differential evolution optimization (DEMO) 

algorithm has the highest calculation accuracy and efficiency. 

Doing an attempts to summarize the recent trends and 

progress of vibration signatures obtained from damaged 

structures under dynamic conditions. This study focuses on 

the identification of the presence, location, and size of 

delamination in the laminated composite plates by extracting 

the modal parameters obtained from the SLV measurement 

system(Laser Vibrometer). Oruganti [11] Use the vibration 

response of a composite plate to detect and localize 

delamination defect based on the frequency response and 

modal analysis. The features extracted are used as the input 

data in an artificial intelligence scheme to identify the severity 

of the damages. Experiments were then conducted to validate 

the developed model. Nasiri[12] their study was to applied the 

Genetic algorithm with fem delamination modeling  for the 

quantitative identification of delamination in composite 

plates. Damage assessment methods based on frequency 

changes require frequency measurements to be taken both on 

the undamaged and damaged composite plate structures. This 

is true for methods using mode shapes and their derivatives. 

Numerical test cases demonstrate that delaminations of small 

size can be identified and assessed using the present method. 

In this paper the reliability of the frequency response of a 

composite structure with the help of PSO method in a 

Structural Health Monitoring system has been investigated. 

 

 

2. FINITE ELEMENT MODELING AND 

ANALYSIS OF LAMINATED 

COMPOSITE PLATES 
The higher-order shear deformation theories have also been 

employed for buckling analysis of laminated composite 

platesThe mechanical behavior of a moderately thick laminate 

plate is described through a First order Shear Deformation 

Theory (FSDT). The theory takes into account in-plane 

deformation, bending and first-order shear effects. Laminated 

plate refers is a body, constituted by n layers of different 

mechanical characteristics, occupying the region: [13] 

 

𝑂 = { 𝑥, 𝑦, 𝑧 ∈
𝑅3

𝑧
∈  −

𝑕

2
,
𝑕

2
 , (𝑥, 𝑦) ∈ 𝐴 ∈ 𝑅2} 

where the plane z =0 identifies the mid-surface A of the un 

deformed plate. The thickness h is assumed to be small 

compared to the in-plane dimensions. Basic elements of the 

FSDT are the transverse stress in the thickness of the plate 𝜎𝑧  

is null  

and the straight lines orthogonal to the mid plane are 

inextensible and remain straight after deformation. It is 

interesting to recall that in a general three-dimensional elastic 

theory the simultaneous presence of these 

 two statements is formally correct and, in fact, they can be 

rationally introduced to obtain the FSDT for isotropic 

homogeneous plate[13]. All materials are linear, 

homogeneous, orthotropic and made of elastic laminated 

composite materials;  

This study only focus on the linear elastic behaviors of fiber 

reinforced composites of transversely isotropic type. The 

frequency response is determine through the finite element 

method formulation of fiber reinforced composites. Besides, 

each element has nine nodes comprising five degree of 

freedoms at each node.  

A rectangular Cartesian coordinate system x, y and z is used 

to describe the infinitesimal deformations of a n-layer 

laminated composite material, shown in Fig.1a, Consider a K 

layered plate of in-plane dimensions a, b and thickness h. The 

present First order Shear Deformation Theory (FSDT) is 

developed with the assumption of the displacement  model of 

the following form: The displacements u, v and w at any point 

(x, y, z) in the laminate are given by[14] 

𝑢 𝑥, 𝑦, 𝑧 = 𝑢𝑜 + 𝑧∅𝑥 𝑥, 𝑦, 𝑧 , 

𝑣 𝑥, 𝑦, 𝑧 = 𝑣𝑜 + 𝑧∅𝑦 𝑥, 𝑦, 𝑧 , 

𝑤 𝑥, 𝑦, 𝑧 = 𝑤𝑜 𝑥, 𝑦, 𝑧        (1) 

in which uo,  vo and  wo are the in-plane and transverse 

displacements of a point (x,y) on the mid-plane respectively 

and Øx, Øy are the rotations of normal to mid-plane about y 

and x axes respectively, owing to bending only. 

The strains associated with the displacement field (1) the 

strain are given by: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
,𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
, 𝜀𝑧𝑧 =

𝜕𝑤

𝜕𝑧
, 𝛾𝑥𝑦 = (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
),  

𝛾𝑧𝑥 = (
𝜕𝑤

𝜕𝑥
+ ∅𝑥),𝛾𝑦𝑧 = (

𝜕𝑤

𝜕𝑦
+ ∅𝑦)               (2) 

Using the expressions for u,v,w from eq. (1) with equation (2) 

gives:  
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𝜀𝑥𝑥 =
𝜕𝑢𝑜

𝜕𝑥
+ 𝑧

𝜕∅𝑥

𝜕𝑥
, 𝜀𝑦𝑦 =

𝜕𝑣𝑜

𝜕𝑦
+ 𝑧

𝜕∅𝑦

𝜕𝑦
, 𝜀𝑧𝑧 = 0 

𝛾𝑥𝑦 =  
𝜕𝑢𝑜

𝜕𝑦
+ 𝑧

𝜕∅𝑥

𝜕𝑦
 +  

𝜕𝑣𝑜

𝜕𝑥
+ 𝑧

𝜕∅𝑦

𝜕𝑥
 , 𝛾𝑧𝑥 = (

𝜕𝑤𝑜

𝜕𝑥
+ ∅𝑥), 

𝛾𝑦𝑧 = (
𝜕𝑤𝑜

𝜕𝑦
+ ∅𝑦)                                                            

(3) 

The above equations can be written in matrix form as[14] 

 
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑧𝑥
𝛾𝑦𝑧 

 
 

 
 

=

 
 
 
 
 

 
 
 
 

𝜕𝑢𝑜

𝜕𝑥
𝜕𝑣𝑜

𝜕𝑦

𝜕𝑢𝑜

𝜕𝑦
+

𝜕𝑣𝑜

𝜕𝑥

𝜕𝑤𝑜

𝜕𝑥
+ ∅𝑥

𝜕𝑤𝑜

𝜕𝑦
+ ∅𝑦 

 
 
 
 

 
 
 
 

+ 𝑧

 
  
 

  
 

𝜕∅𝑥

𝜕𝑥
𝜕∅𝑦

𝜕𝑦

𝜕∅𝑥

𝜕𝑦
+

𝜕∅𝑦

𝜕𝑥

0
0  

  
 

  
 

.                   

Or  in the form:  

 
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧 

 
 

 
 

=

 
 
 

 
 
𝜀𝑥𝑥
𝑜

𝜀𝑦𝑦
𝑜

𝛾𝑥𝑦
𝑜

𝛾𝑥𝑧
𝑜

𝛾𝑦𝑧
𝑜
 
 
 

 
 

+ 𝑧

 
 
 

 
 
𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

0
0  
 
 

 
 

                                               

(4) 

2.1. Constitutive Relations 
The Stress-Strain relations for a typical lamina k with 

reference to the lamina co-ordinate axes (1-2-3) are given by  

 

𝜎1

𝜎2

𝜎12

 

𝑘

=  

𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄33

 

𝑘

 

𝜀1

𝜀2

𝜀12

 

𝑘

            

 
𝜏23

𝜏13
 
𝑘

= 𝜅  
𝑄44 0

0 𝑄55
 
𝑘

 
𝛾23

𝛾13
 
𝑘

                                     

(5) 
 

The Qij’s are the plane stress elastic constants of the kth 

lamina and the following relations hold between these and the 

engineering constants. 

                      (6) 

And   𝜅 refers to the Shear Correction Factor used in FSDT. 

Normally its value is 5/6. 

2.2. Stress – Strain relations for a Lamina 

of Arbitrary Orientation  
The transformation equations for expressing stresses in 1-2 

principal coordinate system in terms of stresses in x-y 

coordinate system. [14] 

 

  

(a) 

 

(b) 
Fig 1: Plate axes and layer details. [15] 

 

 

𝜎1

𝜎2

𝜎𝑥𝑦
 =  

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

  

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

            

(7)   

Then if the principal axes of the lamina are rotated to coincide 

with the global x  

and y axes, the transformation of stiffness matrix is expressed 

in equation (7). 

(𝑄 )𝑘 =

 
𝑚2 𝑛2 −2𝑚𝑛
𝑛2 𝑚2 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚2 − 𝑛2

  𝑄𝑖𝑗  𝑘  
𝑚2 𝑛2 −2𝑚𝑛
𝑛2 𝑚2 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚2 − 𝑛2

 ,                

i,j=1,2,6                    

(𝑄 )𝑘 =  
𝑚 −𝑛
𝑛 𝑚

  𝑄𝑖𝑗  𝑘  
𝑚 −𝑛
𝑛 𝑚

 ,                i,j=4,5.  

(8)                                         

Where  𝑚 = 𝑐𝑜𝑠𝜃,  𝑛 = 𝑠𝑖𝑛𝜃 

Where ϴis the angle from the x-axis to the axis 1. 

Hence, the stress strain relationship for angle ply is obtained 

as 

 

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

 

𝑘

=  

𝑄 11 𝑄 12 𝑄 16

𝑄 21 𝑄 22 𝑄 26

𝑄 16 𝑄 26 𝑄 66

 

𝑘

 

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦

 

𝑘

                                   

(9) 

 
𝜏𝑥𝑧
𝜏𝑦𝑧

 
𝑘

=  
𝑄 44 𝑄 45

𝑄 54 𝑄 55

 

𝑘

 
𝛾𝑥𝑧
𝛾𝑦𝑧

 
𝑘

                                           

(10) 
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By integrating  the stresses in equations 9 and 10 over the 

thickness of the laminated plate the elasticity matrix of the 

undelaminated composite plate is given by 

 D =  

Aij Bij 0

Bij Dij 0

0 0 Asij

 ,           (11)                  

where A ,  B  and  D are the extension, bending-extension 

coupling, and bending stiffness coefficients of the composite 

laminate, respectively. 

 Aij Bij Dij  =    Q ij  k
 1, z, z2 

zk

zk−1

n
k=1 dz,          i,j=1,2,6.     

(12)                                                               

And 

 Asij  =   κ Q ij  k
 1, z, z2 

zk

zk−1

n
k=1 dz,           i,j=4,5.            

(13)                                              

A nine noded isoparametric quadratic plate bending element 

,fig.(2) with five degrees of freedom at each node (three 

translation and two rotations) is employed wherein the shape 

functions are as follows [1] [16] 

Corner Nodes 

    4,3,2,1
4

1
 iN iii   

Mid-Side Nodes 

    
      
8,7,6,5

11

1
2

1 22







i

N

iiii

iii





 

 

Fig 2: A nine node isoparametric element 

Middle Node  

   911 22  iNi 
                                                 

(14)                                                     
 

Where  and   are the local natural coordinates of the 

element i  and i  are the values at 𝑖𝑡𝑕  node.  

The derivatives of the shape function 𝑁𝑖  with respect to x.y 

are expressed in term of their derivatives with respect to 
and  by the following relationship 

 
𝑁𝑖,𝑥
𝑁𝑖,𝑦

 =  𝐽 −1  
𝑁𝑖,ξ

𝑁𝑖,ξ
                                                                 

(15)                                                                  

Where  J is the Jacobean. 

 𝐽 =

 
 
 
 
𝜕𝑦

𝜕

𝜕𝑦

𝜕
𝜕𝑦

𝜕𝜂

𝜕𝑦

𝜕𝜂  
 
 
 
                     (16) 

 

The linear strain can be described in term of displacements as 

follow: 

 𝜀𝑒 =  𝐵  𝛿𝑒                                  (17)                     

Where  

 𝛿𝑒 =  𝑢1𝑣1𝑤1∅𝑥1∅𝑦1𝑢2𝑣2𝑤2 …… …𝑢9𝑣9𝑤9∅𝑥9∅𝑦9 
𝑇

, 

and   𝐵  is the strain displacement matrix  

 

 𝐵 =   𝐵1  𝐵2 …  …  …   𝐵8  𝐵9              (18)              

 𝐵𝑖 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖
𝜕𝑥

0 0 0 0

0
𝜕𝑁𝑖
𝜕𝑦

0 0 0

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0 0 0

0 0 0
𝜕𝑁𝑖
𝜕𝑥

0

0 0 0 0
𝜕𝑁𝑖
𝜕𝑦

0 0 0
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0 0
𝜕𝑁𝑖
𝜕𝑥

𝑁𝑖 0

0 0
𝜕𝑁𝑖
𝜕𝑦

0 𝑁𝑖  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The element stiffness  𝐾𝑒  and consistent mass matrices  𝑀𝑒  
are given by 

 𝐾𝑒 =    𝐵 𝑇
1

−1

1

−1
 𝐷  𝐵 𝐽𝑑 𝑑𝜂             (19)                        

 𝑀𝑒 =    𝑁 𝑇
1

−1

1

−1
 𝜌  𝑁 𝐽𝑑 𝑑𝜂                             (20)                                                                         

Where  

 𝑁 =

 
 
 
 
 
𝑁𝑖 0 0 0 0
0 𝑁𝑖 0 0 0
0 0 𝑁𝑖 0 0
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖 

 
 
 
 

 

 𝜌 =

 
 
 
 
 
𝑃1 0 0 𝑃2 0
0 𝑃1 0 0 𝑃2

0 0 𝑃1 0 0
𝑃2 0 0 𝑃3 0
0 𝑃2 0 0 𝑃3 

 
 
 
 

 

 𝑃1, 𝑃2  , 𝑃3 =    𝜌 𝑘 1, 𝑧, 𝑧2 
𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

𝑑𝑧 

Assembling the element mass , stiffness and force matrices  

with respect to the common global axes, the resulting 

equilibrium equation is 

 𝑀 𝛿 +  𝐾 𝛿 =  𝐹  

For free vibration    𝑀 𝛿 +  𝐾 𝛿 = 0 
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The eigenvalue equation for the free vibration analysis of 

laminated composite plate can expressed as  

  𝐾 − 𝜔2 𝑀   𝛿 =  0                                   (21)                                                     

Where  𝑀  and  𝐾  are the global mass and stiffness matrices 

, 𝜔 is the natural frequency and 𝛿 is the corresponding 

eigenvectors. 

2.3. Delamination Modeling 
In this work a simple two dimensional single delamination 

model proposed by Gim (1994)[17] and extended by Parhiet 

al. (2000) [18] will be used for the vibration of delaminated 

composite panels. In order to satisfy the compatibility and 

equilibrium requirements at the common delamination 

boundary, it is assumed that the in-plane displacement, 

transverse displacement and rotation at a common node for all 

the three sub laminates including the original one are identical 

applying multiple constraint condition at any arbitrary 

delamination boundary. It can be applicable to any general 

case of a laminated composite plate having multiple 

delaminations at any arbitrary location. Here, the delaminated 

area is assumed as the interface of two separate sub laminates 

bonded together along the delamination surface.   

A.Two Dimensional Delamination Model 

The  two dimensional delamination model for the composite 

panels will be used in  modeling delamination crack in the 

FEM. Figure(3) represents the cross-sectional view of a 

typical delamination crack tip where nodes of three plate 

elements meet together to form a common node.  

The undelaminated region is modeled by plate element 1 of 

thickness h, and the delaminated region is modeled by plate 

elements 2 and 3 whose interface contains the delamination 

(h2 and h3 are the thicknesses of the elements 2 and 3 

respectively). The elements 1, 2 and 3 are freely allowed to 

deform prior to imposition of the constraints conditions.  

The nodal displacements of elements2 and 3 at the crack tip 

are expressed as [10] 

𝑢𝑝 = 𝑢𝑝
0 +  𝑧 − 𝑧𝑝

0 ∅𝑥𝑝  

𝑣𝑝 = 𝑣𝑝
0 +  𝑧 − 𝑧𝑝

0 ∅𝑦𝑝                                                           

(22)                                                                                    

𝑤𝑝 = 𝑤 

 

Fig 3:  Cross-sectional of delamination crack tip 

where 𝑢𝑝
0 , 𝑣𝑝

0are the mid-plane displacement of the 𝑝𝑡𝑕  sub 

laminate and 𝑧𝑝
0 the distance  between the mid-plane of the 

original laminate and the mid-plane of the 𝑝𝑡𝑕sub laminate. 

The above equation also holds good for element 1 and 

𝑧1
0equal to zero. To satisfy the compatibility condition at the 

delamination's boundary, the transverse displacements and 

rotations at a common node for all the three sub laminates 

including the original one are identical and this leads to 

asymmetric stiffness matrices. The transverse displacements 

and rotations at a common node in the delamination region 

must have values expressed as below 

𝑤1 = 𝑤2 = 𝑤3 = 𝑤 

∅𝑥1 = ∅𝑥2 = ∅𝑥3 = ∅𝑥  

∅𝑦1 = ∅𝑦2 = ∅𝑦3 = ∅𝑦                      (23)                

 

Applying constraint conditions that at any delamination 

boundary, the transverse displacements and rotations must 

have the same values at a common node, the midpoint 

displacements of any sub-laminate 𝑝𝑡𝑕can be generalized as 

 

𝑢𝑝
0 = 𝑢0 + 𝑧𝑝

0∅𝑥  

𝑣𝑝
0 = 𝑣0 + 𝑧𝑝

0∅𝑦                      (24) 

From eq(24) the midplane strain components of the 𝑝𝑡𝑕  

sublamiate are 

 

𝜀𝑥𝑥
𝑜

𝜀𝑦𝑦
𝑜

𝛾𝑥𝑦
𝑜
 

𝑝

=  

𝜀𝑥𝑥
𝑜

𝜀𝑦𝑦
𝑜

𝛾𝑥𝑦
𝑜
 + 𝑧𝑝

0  

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

              (25) 

By Combining of (22) and (25) the strain components at any 

layer within a sub laminate are  found in the form of  

 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

 =  

𝜀𝑥𝑥
𝑜

𝜀𝑦𝑦
𝑜

𝛾𝑥𝑦
𝑜
 +  𝑧 − 𝑧𝑝

0  

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

                 (26) 

and the in-plane and shear stresses for any lamina of the 𝑝𝑡𝑕  

sub laminatecan  expressed as [19] 

 

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

 =  

𝑄 11 𝑄 12 𝑄 16

𝑄 21 𝑄 22 𝑄 26

𝑄 16 𝑄 26 𝑄 66

  

𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦

 

𝑝

 

 
𝜏𝑥𝑧
𝜏𝑦𝑧

 =  
𝑄 44 𝑄 45

𝑄 54 𝑄 55

  
𝛾𝑥𝑧
𝛾𝑦𝑧

 
𝑝
                (28)  

By integrating  equations 9 and 10 over the thickness of the 

sub laminate the elasticity matrix of the 𝑝𝑡𝑕  sub laminateis 

given by 

 𝐷  
𝑝

=  

𝐴 𝑖𝑗 𝑧𝑝
0𝐴 𝑖𝑗 + 𝐵 𝑖𝑗 0

𝐵 𝑖𝑗 𝑧𝑝
0𝐵 𝑖𝑗 + 𝐷 𝑖𝑗 0

0 0 𝐴 𝑠𝑖𝑗

 

𝑝

         (29) 

Where  [A], [B], and [D] are the extension, bending extension 

coupling, and bending stiffness coefficients of the composite 

laminate, respectively.  

[𝐴𝑖𝑗 ]𝑝 =  [𝑄 ]
+𝑕/2+𝑧𝑝

0

−𝑕/2+𝑧𝑝
0

𝑑𝑧 
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[𝐵𝑖𝑗 ]𝑝 =   𝑄  (𝑧 − 𝑧𝑝
0)

+𝑕/2+𝑧𝑝
0

−𝑕/2+𝑧𝑝
0

𝑑𝑧

=   𝑄  𝑧
+𝑕/2+𝑧𝑝

0

−𝑕/2+𝑧𝑝
0

𝑑𝑧 − 𝑧𝑝
0[𝐴𝑖𝑗 ]𝑝  

[𝐷𝑖𝑗 ]𝑝 =   𝑄  (𝑧 − 𝑧𝑝
0)2+𝑕/2+𝑧𝑝

0

−𝑕/2+𝑧𝑝
0 𝑑𝑧       ,i,j=1,2,6 

[𝐴𝑠𝑖𝑗 ]𝑝 =  [𝑄 ]
+𝑕/2+𝑧𝑝

0

−𝑕/2+𝑧𝑝
0 𝑑𝑧                        i,j=4,5 

3. PARTICLE SWARM OPTIMIZATION 

METHOD 
Optimization is the mechanism by which one finds the 

maximum or minimum value of a function or process. Inverse 

problems often occur in many branches of engineering where 

the values of some physical model parameters must be 

obtained from observed data. System identification  for 

structural damage detection and health monitoring comes 

under the category of inverse problems[20]. The Particle 

swarm optimization (PSO) is a population based continuous 

optimization technique developed by Eberhart and Kennedy, 

can be used for solving such  inverse problems. The system is 

initialized with a population of random solutions that 

constitute a swarm moving around in the search space looking 

for optima by updating generations. During each iteration of 

the algorithm, individual, or particle (the candidate solution) 

is evaluated by the objective function being optimized to 

determining the fitness of that solution.  

At each iteration of the search procedure, the particle moves 

and updates its velocity and its position in the swarm based on 

experience and the results found by the particle itself, its 

neighbors and the swarm. It therefore combines three 

components ; its own current velocity, its best position 𝑃𝑖𝑑  

and the best position obtained by its informants or by the 

swarm 𝑃𝑔𝑑 . The research process is based on two rules: 

- Each particle has a memory which can store the best position 

in which it has already passed and it tends to return to that 

position. 

- Each particle is informed by the best known position within 

its neighborhood and it will tend to 

move towards this position. The basic PSO algorithm consists 

of  the velocity and position equation[21]. 

 

𝑉𝑖𝑑
𝑘+1 = 𝑊𝑖 . 𝑉𝑖𝑑

𝑘 + 𝐶1. 𝑟𝑎𝑛𝑑1
𝑘 .  𝑃𝑖𝑑 − 𝑋𝑖𝑑  

+ 𝐶2. 𝑟𝑎𝑛𝑑2
𝑘 .  𝑃𝑔𝑑 − 𝑋𝑖𝑑  

𝑋𝑖𝑑
𝑘+1 = 𝑋𝑖𝑑

𝑘 + 𝑉𝑖𝑑
𝑘+1                                                                

(30) 

 

where the superscript i denotes the particle and the subscript k 

denotes the iteration number, 𝑊 is the inertia weight, C1 and 

C2 are the acceleration constants, both taking values around 2 

in general cases, constants rand1
k  and  rand2

k  are random 

values in the range [0,1]; Pid  is the neighboring best position 

occupied by the particle i, and Pgd  is the global best position 

of the whole group. 

 

Large values for 𝑊 favor exploration, which is the ability to 

explore regions of the search space, whereas small values 

promote (enhance, confirm, reinforce, sustain) exploitation, 

defined as the ability to concentrate the search around a 

promising area to refine a candidate solution. Besides, low 

values for c1 and c2 promotes a smooth particle trajectories, 

whereas high values favor more acceleration and abrupt 

movements. Therefore, small values for these optimization 

parameters can yield a slow convergence, while high values 

can yield a premature convergence[22]. 

The inertia term w is adjusted dynamically during the 

optimization (decreased over the run),  this will provide a 

balance between exploration and exploitation, [23]. 

𝑊𝑖=𝑊𝑚𝑎𝑥 − 𝑘 (𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛 ) 𝑘𝑚𝑎𝑥                                     

(31) 

Where 

 𝑊𝑚𝑎𝑥  is the initial weight factor, 

  𝑊𝑚𝑎𝑥  is the final weight factor, 

k  is the current iteration number, and  

𝑘𝑚𝑎𝑥  is the maximum allowable number of iterations. 

A large initial value of  W  result in a greater diversity of 

population at the beginning of the optimization so as to 

promote global exploration of the search space. In the present 

work, the parameters used in the PSO were: P = 50 (number 

of particles); wmax = 0.9; wmin = 0.4; c1 = 0.7 and c2 = 0.7. 

Fig.4 shows Flow chart of PSO and FE code optimization 

process  

 

Fig 4: Flow chart of PSO and FE code optimization 

process. 

3.1. The Objective Function 
The damage assessment problem is reduced to a minimizing 

optimization problem by suitably assuming an objective 

function. 
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For problems in which the variables are a combination of 

discrete and continuous variables, it is difficult to use 

conventional optimization algorithms such as the gradient 

based method, since they rely on the use of continuous 

variables. Natural frequencies are easier to measure than mode 

shapes and the error associated with its measurement is 

comparatively less. Hence, they are used. The objective 

function for the PSO optimization is formulated as follows: 

𝑓𝑜𝑏𝑗 =  𝑎𝑏𝑠(𝜔𝑚𝑒𝑎𝑠
2 −𝜔𝑛𝑢𝑚

2)𝑖
𝑖=𝑛
𝑖=1        (32) 

where n is the number of modes considered, 𝜔𝑚𝑒𝑎𝑠  is the 

measured modal frequencies obtained either from 

experimental validation or from FE test cases (numerical 

validation) and 𝜔𝑛𝑢𝑚  is frequency determined by the fem 

model. 

4. RESULTS AND DISCUSSION 

4.1. Evaluation 
The objective is to evaluate the feasibility of the proposed 

methods to identify and localize and quantities of  damages in 

numerical models of the laminated composite plates with 

different boundary conditions. 

A laminated composite plate made from glass fiber (E-Glass) 

is used as reinforcement in the form of woven fibers with 

epoxy resin as matrix for the composite plate. The numerical 

results for free vibration are presented for a laminated 

composite plate with delaminates have different locations and 

sizes.  

The laminated composites considered for the present analysis 

are Simply supported boundary (SSSS), Clamped supported 

boundary conditions (CCCC), Clamped-Simply-Clamped-

Simply conditions (CSCS), and Clamped free clamped free 

conditions (CFCF). The boundary conditions are described as 

follows: 

For Simply supported boundary, S where 

 u=v=w=𝜃𝑦=0 at x=0,a, and u=v= w=𝜃𝑥=0 at y=0, b 

and for Clamped boundary C: u=v=w=𝜃𝑥= 𝜃𝑦=0 at x=0, a or  

at  y=0, b 

Based on the finite element formulation described earlier, the 

results are compared with  the results of those published by 

other researchers and then study the influences of embedded  

delamination at different position and interface on the free 

vibration of composite structures.  

To check the present delamination model, a composite plate 

made of E-glass fiber and epoxy resins has been considered 

for the comparison study. It has a total of eight layers of equal 

thickness which are arranged as [0°/90°/0°/90°/90°/0°/90°/
0°].  

The test plate has a size of 400 mm x 400 mm and total  

thickness 3.5mm. The composite plate has the delamination of 

40 mm x 40 mm size between 3rd and 4th layers from the top 

surface and its center located at the coordinate of (275mm, 

275mm) from the one corner of the plate.  

The material properties of the plate are the density, 𝜌 =
1185𝑘𝑔/𝑚3, the elasticity constants, 𝐸1 = 55𝐺𝑃𝑎, 𝐸2 =
𝐸3 = 9.5𝐺𝑃𝑎, 𝐺12 = 𝐺13 = 5.5𝐺𝑃𝑎, 𝐺23 = 3.21𝐺𝑃𝑎, and the 

Poisson ratio 𝑣12 = 𝑣13 = 0.33, 𝑣12 = 0.23. 

The results of the natural frequency for healthy and 

delaminated composite plates are shown in Table 1. From 

table, it can be found that an excellent agreement can obtained 

between the present method and those in [24]. These results 

indicate that the present FEM delamination model scheme is 

quite efficient. 

Table 2. shows the results for frequency parameter of 

composite plate with different layer stacking sequences. From 

this table, it can be found that the present FEM can yield an 

acceptable level of agreement with those results obtained from 

ref[25], the first-order shear deformation theory (FSDPT) and 

the  results from classical plate theory (CLPT) are listed. 

Table 1. Validation of FEM for plate with free boundaries 

Mode 

no: 

Healthy Plate Delaminated Plate 

present ABAQUS[24] present ABAQUS 

[24] 

1 50.2628 50.03 Hz 49.8571 49.96 

2 102.6525 101.42 101.2209 100.97 

3 135.8067 134.61 132.2840 134.21 

4 145.0167 143.55 143.0338 143.26 

5 168.8343 166.83 165.3161 166.80 

6 268.9648 265.87 265.0106 265.55 

Table 2. Comparison of frequencies from present study and 

FE model of a simply supported laminated panels 

𝝎 = 𝝎𝒉 𝝆/𝑬𝟐 

stacking present Ref[25] 
FSDPT[2

6] 

CLPT[2

6] 

[0 90 0 90] 

0.0698 

0.1639 

0.1639 

0.2264 

0.06826 

0.15747 

0.15747 

0.21400 

0.06791 

0.16066 

0.16066 

0.22097 

 

0.07474 

0.20737 

0.20737 

0.29824 

 

[0 90] 

 

 

0.0619  

0.1483 

0.1669 

0.2077 

0.06082 

0.14379 

0.14379 

0.19820 

 

0.06038 

0.14545 

0.14545 

0.20271 

0.06513 

0.17744 

0.17744 

0.25814 

 

[0 90 0] 

 

0.0713    

0.1329 

0.1670 

0.2265 

 

0.06882 

0.12823 

0.17532 

0.20835 

0.06931 

0.12886 

0.18674 

0.22055 

 

0.07769 

0.15185 

0.26599 

0.31077 

4.2. Effect of delamination position and 

interface location on natural frequencies 
Presence of an embedded delamination leads to degradation in 

structural stiffness, which does not affect the mass distribution 

but reduces the stiffness of the structure and causes changes in 

modal parameters (frequencies, mode shapes, and modal 

damping factors). From the point of view of severity of a 

delamination, it is important to know, the size of the 

delamination, its shape and where it has occurred. So, in the 

present work, effect of these parameters on the natural 

frequencies has been studied in order to use for damage 

detection. It is clear that the natural frequencies are sensitive 

to damage and consequently to delamination five of the 

natural frequencies as features were chosen. 
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Figure 5. explored the relations between the first five natural 

frequencies with different interface locations at a constant 

position (at center of plate) with 𝛼 =
𝐴𝑑

𝐴
= 0.04 of total area 

of plate where 𝐴𝑑  and A are the plate and delamination areas. 

Values of the material and geometric properties are as 

follows: The material properties of the plate are the density, 

𝜌 = 1185𝑘𝑔/𝑚3, the elasticity constants, 𝐸1 = 55𝐺𝑃𝑎, 

𝐸2 = 𝐸3 = 9.5𝐺𝑃𝑎, 𝐺12 = 𝐺13 = 5.5𝐺𝑃𝑎, 𝐺23 = 3.21𝐺𝑃𝑎, 

and the Poisson ratio 𝑣12 = 𝑣13 = 0.33, 𝑣12 = 0.23. 

The results shown that the natural frequencies decreased with 

the existing of delaminate due to decreasing of the stiffness of 

the plate. And the amount of  decrements varies with the 

fixing conditions,  position of defect and the mode number. 

The maximum difference in frequency is in case CCCC at the 

position 3 and delaminate located at interface between layers 

3 and 4. In SSSS, CCCC, and CSCS the 5th mode  is more 

effected with the presence of delamination while in case 

CFCF the 4th is more effected. 

 

 
(a) SSSS                                                     (b) CCCC 

 
(c) CSCS                                                          (d) CFCF 

Fig 5: Effect of delamination interface location  on relative natural frequencies for 1st–5th mode of SSSS, CCCC, CSCS, and 

CFCF BC's     of 8 layer composite plate 

The effect of delamination position on natural frequencies for 

1st to 5th mode of SSSS, CCCC, CSCS, and CFCF BC's of 

eight layer composite plate are shown in fig.6. The delaminate 

is embedded at interface between layer 3 and 4. This 

delaminate is placed at position related to the element number 

as explained in figure7. In all cases studied, its found that 

delamination has more effect on the first  

natural frequency especially for the case of  CCCC. And also, 

it's found these effect varies with position and mode number. 

From figures its can conclude that, the changes of the modal 

frequencies after delamination initiation, compared to those of 

a non-delaminated plate, gave a good indication of the 

existing of damage, demonstrating the feasibility of using 

measured changes in the vibration characteristics to detect 

damage. 
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c)CSCS 

 

  
d)CFCF

Fig 6: Effect of delamination position on natural frequencies for 1st–5
th

 mode of SSSS, CCCC, CSCS, and CFCF BC's of 8
th

 

layer composite plate. 

 

Fig 7: Delaminate position numbering. 

A further analysis, which results in terms of variation of the 

first four natural frequencies on the delamination area are also 

summarized in figure(8). In first frequency the variation is 

more depended on the supported ends while for higher modes, 

second, third, and fourth the variations are differing. 

 

 

 

 

 

 

 

 
a) First mode                                                                b) Second mode 

 
c) Third mode                                                                         d) Fourth mode 

Fig 8: Effect of delamination area on relative natural frequencies for the first four mode of SSSS, CCCC, CSCS, and CFCF 

BCs of of 8th layer composite plate. 
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4.3. Delamination Detection and 

Localization using PSO 
In this section, detection of the delamination, its position and 

its interface location using the natural frequencies is 

considered. The way to determine the occurrence of a 

delamination in the composite plate is discussed and 

explained in fig.(4).  

A simple method for the delamination localization based on 

the PSO method is developed and applied to the delaminated 

plates of various boundary conditions.  

As it is known, delamination results mainly in bending 

stiffness reduction then it can be expected to reduce the 

flexural natural frequencies of the structure [27] and in order 

to account this variation the first five natural frequencies is 

using in the evaluating (minimizing) of the objective function 

equation(32). 

An eight-ply [0/90/90/0]s  E-Glass/Polyester of size 240 mm 

x 240 mm x 2.2mm  with the following material properties is 

used: 𝜌 = 1200𝑘𝑔/𝑚3, the elasticity constants, 𝐸1 = 𝐸2 =
17.250𝐺𝑃𝑎, 𝐸3 = 9.5𝐺𝑃𝑎, 𝐺12 = 2.91𝐺𝑃𝑎, 𝐺13 = 𝐺23 =
2.795𝐺𝑃𝑎, and the Poisson ratio 𝑣12 = 𝑣13 = 0.43, 𝑣12 =
0.14. 

From table 3. it can be seen that for all boundary conditions 

the PSO success in predict the damage parameter  𝑋𝐴𝐶𝑇=[pos, 

layer, 𝛼] after using the round command to get the nearest 

integers for X, where pos represent the delaminate position, 

layer  define the interface layer for delamination location and 

𝛼 area ratio. 

Table 3. Damage identification, position and interface location for composite plates using PSO 

 𝑋𝐴𝐶𝑇=[pos,layer, 𝛼] Predicted(𝑋𝑃𝑆𝑂 ) Round(𝑋𝑃𝑆𝑂 ) 𝑓𝑜𝑏  

SSSS [1  3  0.08] [1.12  3.40 0.08] ] [1  3 0.08]  

 [1  1 0.08]] [1 1 0.08]] [1  1  0.08] 4.62e-05 

 [3  4  0.16] [3.00  3.88 0.16] [3  4 0.16] 4.58e-05 

 [8  5 0.16] [8.01  4.54 0.16] [8  5 0.16] 6.36e-05 

 [13  4 0.16] [12.56   3.73 0.16] [13  4 0.16] 1.30e-04 

CCCC [1  3  0.08] [1.01  3.00  0.08] [1  3  0.08] 2.97e-05 

 [1  1  0.08] [1.06  1.00  0.08] [1  1  0.08] 2.38e-05 

 [3  4  0.16] [3.19  4.07  0.16] [3  4  0.16] 1.71e-05 

 [8  5  0.16] [7.52  5.32  0.16] [8  5  0.16] 1.79e-05 

 [13  4  0.16] [13.09 4.30 0.16] [13  4  0.16] 3.67e-05 

CSCS [1  3 0.08] [1.08   2.97  0.08] [1  3  0.08] 7.41e-05 

 [1  1  0.08] [1.24   1.22  0.08] [1  1  0.08] 2.46e-05 

 [3  4  0.16] [3.43   4.22  0.16] [3  4  0.16] 3.81e-05 

 [8  5  0.16] [8.23   3.48  0.16] [8  5  0.16] 1.93e-04 

 [13  4  0.16] [13.08  3.57  0.16] [13  4  0.16] 6.51e-05 

CFCF [1  3  0.08] [1.00  3.27  0.08] [1  3  0.08] 3.28e-05 

 [1  1  0.08] [1  1  0.08] [1  1  0.08] 2.96e-05 

 [3  4  0.16] [2.94   4.44  0.16] [3  4  0.16] 2.16e-05 

 [8  5  0.16] [7.72   5.31  0.16] [8  5  0.16] 3.27e-05 

 [13  4  0.16] [13.44  3.87  0.16] [13  4  0.16] 7.36e-05 

 

5. CONCLUSIONS 
This investigation considered the problem for delamination 

detection, localization and quantification in a composite plate. 

Parametric study on the effect of boundary conditions and 

interlaminate location and position of damage on a composite 

laminated plate was also investigated. It is found that the 

stiffness decreases with the increase of delamination area 

providing a reduction in natural frequencies. The analyses of 

results for different boundary conditions and damage location 

show that  the delamination induced changes of the plate 

parameters are mode-dependent and the effect of damage 

appears in earlier mode shapes. 

Particle Swarm Optimization algorithm was used for 

identification of the presence of delamination and it is 

possible to locate and quantify its area. 

Results show the procedure incorporating the FEM modeling 

of damage and PSO methods is an effective in the damage 

assessment of plate structures. Particle Swarm algorithm was 

found to be superior in convergence and accuracy. 

The investigation shown that the localization was possible 

with a high confidence in all cases studied where no 

localization error. 

PSO with a two dimensional FEM  delamination model  can 

be used as a reliable model/tool in  estimating of  the severity 

of damage. 

This again permits the development of an automatic process, 

using the response vibration signal, to locate and quantify the 

fault. 

It is a very good achievement, because it is possible, with  a 

few vibration modes can answer all the assessment questions 

mentioned above.  

From the outcome of the present work, it is felt that the use of 

PSO in detecting embedded delamination size, position and 

interlaminar damage location in an FRP composite laminated 

structure is a promising area. 

Finally, it is concluded that PSO method and FEM 

delamination model to composite  plate provides sensitive, 

reliable and accuracy on damage assessments. 
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