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ABSTRACT 
Using convolution theory of the dunkl transform, discrete 

dunkl wavelet transform is defined. A reconstruction formula 

for the discrete dunkl wavelet is obtained. Important 

properties of the discrete dunkl wavelet are presented. Frames 

and Riesz basis involving dunkl wavelets are studied. 
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1. INTRODUCTION 

The wavelet transform of a function 
 2f L R

 with 

respect to the wavelet 

 2L R 
 is 

 2L R 
defined by  

       , , , 0,ψ b aW f   b,a f t  t  dt,  a b R a



  

     (1) 

where 

  1/2

, .b a

t b
t a

a
   

  
   (2) 

In terms of translation b defined by  

 
( ) ( ),   bb t t b    R 

and dilation Da defined by  

 

1/2( ) ,    a 0a

t
D t a

a
   

  
  . 

we can write , ( )   ( )b a b at D t  
 (3) 

From (1) and (3) it is clear that wavelet transform of the 

function f on R is an integral transform for which the kernel is 

the dilated translate of 


. 

We can also express (1) as the convolution:  

    o,a (b,a) g bW f f  
 (4) 

where   
.)()( ttg 

 

For 2/1  and C , the initial value problem 

      , 0 1,f x f x f x R    
, (5) 

where 

 
  f x =

 
   2 1

2

f x f xd
f x

dx x

   
  

  . 

called Dunkl Operator has a unique solution
 E x 

, 

called Dunkl kernel and given by 

   
 

 1 ,
2 1

x
E x j i x j i x  


  


 


 

Rx ,     (6) 

where j  is the normalized Bessel function of the first kind 

and order   defined by 

2

0

( ) ( 1) ( / 2)
( ) 2 ( 1) ( 1)

! ( 1)

n n

n

J z z
j z

z n n

 
 

 







     

  


, Cz .    (7) 

We can write for Rx  and C  

 
 

   
1 1/2

2

1

( 1)
1 1

1/ 2

i xtE i x t t e dt









 





 
   

 


(8) 

Let 1/ 2    be a fixed number and   be the 

weighted Lebesgue measure on R, given by 

    
1 2 11: 2 1d x x dx



 
   

.  (9) 

For every
 p1

, we denote by
 ,p pL L d 

, 

the space of complex-valued functions f, measurable on R 

such that 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%2242C40%22)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%2265T60%22)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%2244A35%22)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=keywordsfield%3A(%2265R10%22)
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     

1

,
1,

p
p

p

R

f f x d x if p


 
     
 


     (10) 

The Dunkl kernel gives rise to an integral transform, called 

Dunkl transform on R, which was introduced and studied in 

[5]. 

The Dunkl transform 
F  of a function 1, ( ),f L R

 is 

given by 

   

     

ˆ

;
R

F f f

E i x f x d x R



 

 

  



  
. 

    (11) 

An inversion formula for this transform is given by  

     
       

1 ˆ ˆ

ˆ

R

F f f

f x E i x f d



 

 

   


 

  
.  

   (12) 

An Parseval formula for this transform is given by 

       ˆ ˆf x g x dx f g 
 

 
   d  

. 

    (13) 

2. DUNKL TRANSLATION AND 

CONVOLUTION 
In this section following [5] we define Dunkl translation and 

associated convolution and discuss their important properties. 

To define Dunkl convolution   we need to introduce a 

special type of translation, called Dunkl translation. For this 

purpose we need the basic function  

     , , , , , ,, , 1 , ,x y z z x y z y xW x y z x y z       

     (14) 

Where 

2 2 2

, ,

, , \ 0
2

0

x y z

x y z
if x y R

xy

otherwise



  


 

 . 

And   is the Bessel kernel given by 

 
    

1/2
2 22 2

2
, ,, ,

0 ,

xy

x y z z x y

d if z Ax y z
xyz

otherwise



 

                 



 

where

  
2 1 1

1 / 2 ( )
2

d 

    
     

  , 

and  
 , ,x yA x y x y  

. 

Also  

   , , 4.
R

W x y z d z  
 

    (15) 

The Dunkl translation 
 x f y

 of
 ,pf L R

, 

 p1
 is defined as follows  


R

x zdzyxWzfyxfyf )(),,()(),()(  

.

     (16) 

Lemma 1.  For all x R  and
)(, RLf p 

, 1p
 




,,
4

ppx ff 
.  (17) 

        


 fxiEfx . (18) 

Let 
  ,1,, rqp

 and

1
111


qpr
. Then Dunkl 

convolution of 
)(, RLf p 

 and 
)(, RLg q 

 is 

defined by  

  

     ( ) x

R

f g x f y g y d y    
. 

    (19) 

Lemma 2. Let 
  ,1,, rqp

 and 

1
111


qpr
, 

 ,pf L R
 and 

 ,qg L R
. Then convolution 

 *f g x  satisfies 

the following norm inequality  

(i) 
, , ,

* 4
r p q

f g f g   


, (20) 

Moreover for all 
 1,f L R

 and 
 2,g L R

, we 

have 

(ii) 
       

^ ^ ^*f g f g   
 (21) 

3. DUNKL WAVELET TRANSFORM 

For a function 
   

 ,pL R , define the dilation Da is 

given by  

 
   ,   a RaD x ax  

. (22) 

Using the Dunkl translation and the above dilation, the Dunkl 

wavelet 
 ,b a x

 is defined as follows 
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     , b b a b ax D x ax     

 

 
 b ax 

 

 =

     , ,
R

az W b x z d z  
, Rb .

 (23) 

The integral is convergent by virtue of (18). Now, using the 

wavelet ,b a
 the Dunkl wavelet transform (DWT) of 

,1
1

p

1
 ,, 

q
Lf q 

 is defined as follows:  

       b,a b,a   x , D f f x 
 

   , b af x x d  



 

 

 

          , ,f x az W b x z d z d x    
 

 
  
    (24) 

Provided the integral is convergent. Since by (17) and (18) 

   , ,b a px L R 
whenever , ( )pL R 

. By 

virtue of Lemma, the integral is convergent for

1
11


qp
, Lf q,α

. 

4. THE DISCRETE DUNKL WAVELET 

TRANSFORM 
In the continuous Dunkl wavelet transform (25), if we 

discretize only the dilation parameter a by assuming that aj  = 

2-j, j Z, and the translation parameter b is allowed to vary 

over all of R, then the transform so obtained is called semi-

discrete Dunkl wavelet transform. If we discretize the 

translation parameter b also by restricting it to the discrete set 

of points:  

 
0, 0 , ,,

2
   j k j

k
b b j k  Z N

 

where b0 > 0 is a fixed constant, we get the discrete Dunkl 

wavelet transform. We shall use the notation:  

).b  k2  ,t2()t(      )t(
0

-jj

k,j;b
ja;k,jb0



     (25) 

Then the discrete Dunkl wavelet transform of any 

2, (R)f L 
can be expressed as  

 

j 0 0j,k,a ; , ,  (D ) (b ) , ,  b j kf j kf    Z N
 . 

    (26)  

The stability condition for this reconstruction takes the form  

0

0

2 2 2

2 b ; , 2 2,|| ||     | f, |    B||f|| ,  f (R)j k

K N

A f L 


    

     (27)  

In what follows we assume that 1, 2,L L   
 satisfies, 

the so called, “stability condition”  

 a.e.  B  |2(|  A
-j

2j  







  (28)  

for certain positive constants A and B, 0 BA    . 

The function 1, 2,L L   
 satisfying (29) is called 

dyadic wavelet. Using the definition (25) we define the semi-

discrete Dunkl wavelet transform of any 1, 2,f L L  
 

by 

 

-j(D )  (b)     (D ) (b, 2 )j f f


 

 

,2
( ) ( )  d (t)jb

f t t  





 
 (29) 

( ) (2 , )  d (t) (30)jf t t b  






 

 Zjj ) * (f 
,   (31) 

where 

-j( )  (2 ),   j  Zj z z  
. 

Theorem1. Assume that the semi-discrete Dunkl wavelet 

transform of any 1, 2,f L L  
 is defined by (32). Let 

us define another wavelet * by means of its Dunkl 

transform,  

 

















k

2k |)2(|

)(
     )( *

. 

Then  

 -j

j

j -

( )  (D ) (b)  *  (2 ) E ( ) ( ).f t f i t b d b

    

 

  

 
  

 
 

 
    (32) 

Proof.  For any 1, 2,f L L  
 we have  

  ( )  *(2 ) E (i ) ( ) d  (b) j

j

j

D f b t b





   
 



 

 
 
 

 
 

  ( )  *(2 ) E (i )  d  ( ) j

j

j

D f t

      
 



 

  
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-j( )  (2 )  *  (2 ) E (i )  ( )j

j

f t d        
   



 

  
 

2

(2 )
( )  (2 )   E (i )   ( )

(2 2 )

j
j

j k j

k

f t d 

 
     

 


   



 
   



  


 

  f ( )  E (i )  d  ( )t    
 



 
 

 = f(t).  

The above theorem leads to the following definition of dyadic 

dual.  

Definition1.  A function 
 

~

2,L R 
 is called a dyadic 

dual of a dyadic wavelet , if every f 2, (R)L 
 can be 

expressed as  

   j

j -

( )  ( ) (2 )E (i ) ( ) ( )jf t D f b t b d b

   





  

   

.     (33)  

Theorem2. Assume that the discrete Dunkl wavelet transform 

of any f 2, (R)L 
 is defined by (27) and stability 

condition (28) holds. Let T be a linear operator on 2, (R)L 

defined by 

 

kj,;bkj,;b

NK

Zj
00

0

  f,      Tf 







(34)  

Then  

 0 0

,

; ,, ,j k

b j k bf f     
 (35) 

where 0 0

, 1

; , ;j k

b b j kT j Z  
. 

Proof. From the condition (28), it follows that the operator 

defined by (35) is a one-one bounded linear operator. Set  

 g = T f,    2, (R)f L 
 

Then, we have  

 

 | f, |     f,Tf 2

kj,;b

NK

Zj
0

0









. 

Therefore,  

1 2 2

2 2

-1 1

2 2

|| || || ||     

Tf,f g,T || || || ||

A T g A f

g g T g





 

  
, 

so that 

2

1 ||g||
A

1
    ||gT|| 

. 

Hence every f ∈ L2,∝(R) an be reconstructed from its discrete 

Dunkl wavelet transform given by (27). Thus  

k,j;b

1

k,j;b

Nk

Zj

1

00

0

T,f   f TTf  









 .

    (36) 

Finally, set  

0 0

, 1

; , 0; ,  j k

b b j k kT j   Z N
 . 

Then, the reconstruction (37) can be expressed as follows:  

 

k,j

bk,j;b

Nk

Zj
00

0

,ff 







. 

5. FRAMES AND RIESZ BASIS IN 

2, (R)L   

In this section, using 
k,j;b0


a frame is defined and Riesz 

basis of 2, (R)f L 
is studied.  

Definition 2. A function 
)(L2 

is said to generate a 

frame 
 ; , 2,     f (R)bo j k of L  

 with sampling rate 

b0 if (28) holds for some positive constants A and B. If A = B, 

then the frame is called a tight frame.  

Definition3. A function 2, (R)L  
 is said to generate a 

Riesz basis 
 

k,j;b0


with sampling rate b0 if the following 

two properties are satisfied.  

 (i) The linear span

0 ; , 0 2,:  is  dense in (R)b j k j N L   
 

    (37) 

(ii) There exist positive constants A and B, 

with  BA0 such that  

   
2

k,j

2

2
Nk
Nj

kj,;bk,j

2

k,j 2

0

0

02
cB ccA


 




   (38)  

for all 
   2 2

, 0j kc N
. Here A and B are called the 

Riesz bounds of 
 .k,j;0b

 

Theorem3. Let 2, (R)L  
 and b0 >0, then the 

following two statements are equivalent. 
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(i)   
k,j;bo  is a Riesz basis of 2, (R)L  ;  

(ii)  
k,j;b0

  is a frame of 
2, (R)L  and is also an 𝑙2 

linearly independent family in the sense that if 

0b ;j,k ,

2

j,k j,k

 0  and 

{c }   ,   then c 0

j kc 

 
. 

Furthermore, the Riesz bounds and frame bounds agree.  

Proof. It follows from (39) that any Riesz basis is l2- linearly 

independent. Let 
 

k,j;bo
be a Riesz basis with Reisz 

bounds A and B, and consider the “Matrix operator”  

 
 

00 N x N)k,j(),m,(k,j,m,M





, 

where the entries are defined by  

 
kj,;bm,;bk,j,m, 00

 , 
. (39)  

Then from (39), we have  

2

2

2

,

2

, , ; , , j,k

,m,j,k

|| { } ||   

c    B||{c } ||

j k

m m k j k

A c

c






   
  

so that M is positive definite. We denote the inverse of M by  

 
  2

0N)k,j(),m,(k,j,m,

1M


 


, (40)  

which means that both  

, , , , , , , m,k 0

,

   ,m, j, k  m r s r s j k j

s

N


       
 

    (41)  

and 

2

2

1 2

,

1 2
,,m , , , , ,

,m,j,k

||{ }||  

c   ||{ }||

j k

j km m j k j k

B c

c A c 










   
  

    (42)  

are satisfied. This allows us to introduce  

)x()x( k,j;bo

k,j

k,j,m,

m,   


. (43) 

Clearly,  

,

2, (R)m L  

and it follows from (40) and (42) 

that  

0

,

; , , m,k 0;    , m, j, k m

b j k j N    
 

 

which means that 
}{ m,

 is the basis of 2, (R)L  which is 

dual to 
}{ k,j;b0


. 

Furthermore, from (42) and (44); we conclude that  

 
k,j,m,

k,jm, , 
 

 

and the Riesz bounds of 
}{ m,

 areB−1 and A−1 

In particular, for any 2, (R)f L 
 we may write  

 

 
k,j

k,j

k,j;b )x(,f)x(f
0

 

and  

  

k,j k,j

2

k,j;b
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2

2

k,j;b

1 .| ,f|A   ||f||   |,f|B
00

     (44) 

Since, (45) is equivalent to (28) therefore, statement (i) 

implies statement (ii). To prove the converse part, we recall 

Theorem 2 and we have for any 
-1

2, (R) and f   ,g L T g 
 

 
k;jbk;j,b 00

,f)x(g 
. 

Also, by the l2 linear independence of 
},{

k;jb0


 this 

representation is unique. From the Banach-Steinhaus and open 

mapping theorem it follows that 
}{

k;j,b0


 is Riesz basis of 

2, (R)L   
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