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ABSTRACT 

This paper investigates the convective flow of an 

incompressible viscous electrically conducting second grade 

fluid through a porous medium occupying a semi-infinite 

region over an oscillating porous plate in presence of a 

transverse magnetic field with suction. The field equations for 

the velocity and temperature fields are solved analytically and 

the expressions for the velocity field, temperature field, skin 

friction and heat flux are obtained. The effects of permeability 

parameter, magnetic parameter/Hartmann number, Prandtl 

number, heat source parameter and suction parameter on the 

velocity field 𝑢 are illustrated graphically. The influence of 

suction parameter, Prandtl number and heat source parameter 

𝑆 on temperature field is analyzed with the help of figures. 

Furthermore the effects of permeability parameter and 

magnetic parameter on skin friction are shown 

diagrammatically.  
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1. INTRODUCTION 
The study related to free convective flow in presence of heat 

source has  drawn considerable attention of many researchers 

during last few decades because of its wide application in 

astrophysical sciences, cosmical studies etc. These types of 

flows play vital role in chemical engineering, aerospace 

technology etc. Unsteady oscillating flows have applications 

in many fields such as paper industry and many other 

technological fields. 

Asghar et al. [1] have studied the flow of a non-Newtonian 

fluid induced due to the oscillations of a porous plate. 

Choudhury and Das [2] investigated visco-elastic MHD free 

convective flow through porous media in presence of 

radiation and chemical reaction with heat and mass transfer. 

Deka et al. [3] have discussed free convection effects on 

MHD flow past an infinite vertical oscillating plate with 

constant heat flux. Das et al. [4] have investigated mass 

transfer effects on free convective MHD flow of a viscous 

fluid bounded by an oscillating porous plate in the slip flow 

regime with heat source. A study has been done by Hayat et 

al. [5] on the flow of a visco-elastic fluid on an oscillating 

plate. Manna et al. [6] have discussed effects of radiation on 

unsteady MHD free convective flow past an oscillating 

vertical porous plate embedded in a porous medium with 

oscillatory heat flux. Shen et al. [7] investigated Rayleigh-

Stokes problem for a heated generalized second grade fluid 

with fractional derivative model. Singh and Gupta [8] have 

studied MHD free convective flow of viscous fluid through a 

porous medium bounded by an oscillating porous plate in slip 

flow regime with mass transfer. 

In present problem a convective flow of an incompressible 

non-Newtonian fluid through a porous medium over an 

oscillating porous plate in presence of transverse magnetic 

field has been considered. It is observed that an increase in the 

parameter of permeability Kp  leads to an increase in the 

velocity field u. The velocity field u decreases with an 

increase in magnetic field parameter M, Prandtl number Pr  , 
heat source parameter S and suction parameter v0 as shown in 

figures. It can be shown in the figure that the temperature field 

T decreases with an increase in suction parameter v0, Prandtl 

number Pr , heat source parameter S separately. Further it is 

observed that the period of oscillation of the stress curves 

increases with an increase in the parameter of permeability 

Kp . 

2. ANALYSIS OF THE PROBLEM 
Let us consider the convective flow of an incompressible 

viscous electrically conducting second grade fluid through a 

porous medium occupying a semi-infinite region over an 

oscillating porous plate in presence of transverse magnetic 

field B0. Let u and v are the velocity components in the x- and 

y-directions respectively and the direction of x- and y axes are 

taken respectively along and normal to the plate. Since the 

plate is infinite dimensional in x and z-directions, all the 

physical quantities are functions of y and t only. The 

Reynolds number is assumed to be very small and the induced 

magnetic field due to the flow is neglected with respect to the 

applied magnetic field. The pressure is assumed to be constant 

in the flow field. If v0 be the suction/injection velocity at the 

plate then the equation of continuity is given by                 
∂v

∂y
= 0                                           (1)  

Under the condition y = 0, v = −v0 then the governing 

boundary layer equation is given by 

∂u

∂t
− v0

∂u

∂y
=  ν + α

∂

∂t
 
∂2u

∂y2
+ gβ T − T∞ −

ν

K0
u −

σB0
2u

ρ
     (2)  

∂T

∂t
− v0

∂T

∂y
=

κ  1 + α
∂

∂t
 
∂2T

∂y2
− S T − T∞                               (3)  

Where α is normal stress moduli, κ is thermal diffusivity, ν is 

kinematic viscosity, g is acceleration due to gravity, β is the 

volumetric coefficient of expansion for heat transfer, K0 is 

permeability of the porous medium, ρ is the density, σ is 

electrical conductivity of the fluid,  S is the heat source 
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parameter,  T is the temperature, T∞ is the temperature of the 

fluid far away from the plate.  

The boundary conditions are given by 

u = U0eiωt , T = Tw   at y = 0 

u → 0, T → T∞  as y → ∞                 (4) 

The non-dimensional variables are introduced as follows 

y′ = U0

y

ν
 , u′ =

u

U0
, T′ =

T − T∞
Tw − T∞

 , t′ = U0
2

t

ν
 ,  

 v0
′ =

v0

U0
  ,ω′ =

νω

U0
2   , S′ =

νS

U0
2  , M =

B0

U0
 
νσ

ρ
 

1
2

,α′ = α
U0

2

ν2
 , 

Pr =
ν

k
  , Kp =

K0U0
2

ν2
  , Gr = νgβ

Tw − T∞

U0
3  

Where M is Hartmann number/magnetic field parameter, Pr  is 

Prandtl number, Kp  is the permeability parameter, Gr  is 

Grashof number for heat transfer. 

The governing boundary layer equations (2) and (3) in terms 

of non-dimensional variables becomes (Dropping ′  sign for 

convenience) 

∂u

∂t
− v0

∂u

∂y
=  1 + α

∂

∂t
 
∂2u

∂y2
+ GrT −  

1

Kp
+ M2 u          (5)  

∂T

∂t
− v0

∂T

∂y
=

1

Pr
 1 + α

∂

∂t
 
∂2T

∂y2
− ST                      (6)  

Then the non-dimensional boundary conditions are given by 

u = eiωt , T = 1  at  y = 0 

u → 0, T → 0 as y → ∞                         (7) 

3. SOLUTION OF THE PROBLEM  
For solving the equations (5) and (6) the velocity and 

temperature fields are assumed to be of the following forms 

u = u0 + u1eiωt                        (8) 

And T = T0 + T1eiωt                          (9) 

Where ui , Ti i = 0,1  are functions of y only. 

Substituting the expressions for u and T from (8) and (9) 

respectively in equations (5) and (6) and separating harmonic 

and non-harmonic terms the following equations are obtained 

d2u0

dy 2
+ v0

du0

dy
−  

1

Kp
+ M2 u0 = −GrT0                      (10)  

d2u1

dy2
+

v0

1 + iαω

du1

dy
−

 
1

Kp
+ M2 + iω 

1 + iαω
u1

=
−GrT1

1 + iαω
      (11) 

d2T0

dy2
+ Prv0

dT0

dy
+ PrST0 = 0                    (12) 

d2T1

dy2
+

Prv0

1 + iαω

dT1

dy
+

Pr(S − iω)

1 + iαω
T1 = 0                   (13)  

The corresponding boundary conditions are given by 

u0 = 0, u1 = 1 at  y = 0              (14) 

u0 = 0, u1 = 0 at y → ∞             (15) 

T0 = 1, T1 = 0 at y = 0               (16)                 

T0 = T1 = 0 at y → ∞                    (17) 

The solutions of the equations (10) – (13) under the boundary 

conditions (14) to (17) are obtained as 

 

𝑢0 =
𝐺𝑟

𝑚1
2+𝑣0𝑚1− 

1

𝐾𝑝
+𝑀2 

 
 
 
 
𝑒

−𝑣0− 𝑣0
2+4 

1
𝐾𝑝

+𝑀2 

2
𝑦 − 𝑒𝑚1𝑦

 
 
 
 
                 (18)                                                                          

𝑢1 = 𝑒 
 
 

 
 

−
𝑣0

1+𝑖𝛼𝜔
−
 
 

𝑣0
1+𝑖𝛼𝜔

 
2

+

4 
1
𝐾𝑝

+𝑀2+𝑖𝜔 

1+𝑖𝛼𝜔

 
 
 

 
 

𝑦

                 (19) 
𝑇0 = 𝑒𝑚1𝑦                                 20  
𝑇1 = 0                                    (21) 

Where  𝑚1 =
−𝑃𝑟𝑣0− 𝑃𝑟

2𝑣0
2−4𝑃𝑟𝑆

2
 

Therefore the equations (8) and (9) yield the velocity and 

temperature fields as 

𝑢 =
𝐺𝑟

𝑚1
2+𝑣0𝑚1− 

1

𝐾𝑝
+𝑀2 

 
 
 
 

𝑒

−𝑣0− 𝑣0
2+4 

1
𝐾𝑝

+𝑀2 

2
𝑦 − 𝑒𝑚1𝑦

 
 
 
 

  

+𝑒
−𝑣0−𝑈−𝛼𝜔𝑉

1+𝛼2𝜔2 𝑦
cos  𝜔𝑡 +

𝛼𝜔𝑣0 + 𝛼𝜔𝑈 − 𝑉

1 + 𝛼2𝜔2
𝑦              (22) 

𝑇 = 𝑒𝑚1𝑦                23  

Where 𝑈 =
1

 2
  𝑃2 + 𝑄2 + 𝑃 , 𝑉 =

1

 2
  𝑃2 + 𝑄2 − 𝑃 , 

𝑃 = 𝑣0
2 + 4  

1

𝐾𝑝
+ 𝑀2 − 𝛼𝜔2  , 𝑄 = 4  𝜔 +

𝛼𝜔

𝐾𝑝
+ 𝑀2𝛼𝜔  

The skin friction at the plate is given by 

𝜏 =  
𝜕𝑢

𝜕𝑦
 
𝑦=0

=
𝐺𝑟

𝑚1
2+𝑣0𝑚1− 

1

𝐾𝑝
+𝑀2 

 
 
 
 
 −𝑣0− 𝑣0

2+4 
1

𝐾𝑝
+𝑀2 

2
−𝑚1

 
 
 
 
 

  

−
𝑣0 + 𝑈 + 𝛼𝜔𝑉

1 + 𝛼2𝜔2
cos𝜔𝑡 − sin𝜔𝑡 

𝛼𝜔𝑣0 + 𝛼𝜔𝑈 − 𝑉

1 + 𝛼2𝜔2
     (24) 

The heat flux at the plate in terms of Nusselt number is given 

by 

𝑁𝑢 =  
𝜕𝑇

𝜕𝑦
 
𝑦=0

= 𝑚1 =
−𝑃𝑟𝑣0− 𝑃𝑟

2𝑣0
2−4𝑃𝑟𝑆

2
          (25)  

4. RESULTS AND DISCUSSION 
In present paper a study on the free convective flow of an 

unsteady incompressible electrically conducting second grade 

fluid through a porous medium occupying semi-infinite region 

over a porous oscillating plate in presence of transverse 

magnetic field with suction has been made. The constitutive 

equation for the stress considered here is related to second 

grade fluid. The expressions for velocity field, temperature 

field are obtained analytically by solving the field equations. 

The skin friction and heat flux at the plate are found out as 

partial derivatives of velocity and temperature fields 

respectively. The effects of the flow parameters 

𝐾𝑝  ,𝑀 ,𝑃𝑟  , 𝑆, 𝑣0 and 𝛼 on velocity field 𝑢 have been 

discussed with the help of Figures 1-5 and Figure 11 

respectively. The effects of 𝑣0 and Pr  , 𝑆 on temperature field 

𝑇 have been illustrated graphically with the help of      

Figures 6-8. Furthermore the influence of 𝑀 on stress field 𝜏 

is presented pictorially in Figure 9. It is observed that the 

stress field related to the flow changes with the variation of 

the flow parameters. 

In Figure 1 velocity field is depicted against y for different 

values of 𝐾𝑝 . The figure shows that velocity field sharply 
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decreases from a finite value as y increases and approaches 

zero. By comparing the velocity curves in the figure it is 

observed that a growing   permeability parameter 𝐾𝑝  leads to 

accelerate the magnitude of velocity field at all points. Figure 

2 shows that the increase in Hartmann number 𝑀 results in 

decrease in velocity field. This is expected, as the magnetic 

field has a retarding influence on the flow fields. In Figure 3 

velocity field is depicted against y for different values of 

Prandtl number 𝑃𝑟 . The figure shows that the velocity field 

decreases with increase in 𝑃𝑟 . Figure 4 discusses the effects of 

heat source parameter 𝑆 on the velocity field 𝑢. From the 

figure it can be seen that the velocity field 𝑢 sharply decreases 

from a finite value as y increases near the boundary layer. The 

figure shows that increase in the parameter 𝑆 leads to decrease 

in the magnitude of the velocity field. The velocity field is 

depicted against y for different values of suction velocity 𝑣0 in 

Figure 5. The velocity field decreases with the increase in 𝑣0. 

The velocity decreases sharply from a definite velocity with 

increase in y and becomes zero finally. In Figure 6 

temperature field is plotted against y for different values of 

suction velocity 𝑣0. The temperature decreases sharply with 

the increase in y near the boundary layer and approaches zero. 

Temperature field 𝑇 decreases with the increase in suction 

velocity 𝑣0 very near to the plate. Temperature field is 

depicted against y for different values of 𝑃𝑟  in Figure 7. From 

there it can be seen that an increase in y leads to sharp 

decrease in 𝑇 and 𝑇 approaches zero finally. As the Prandtl 

number takes higher values the temperature field  𝑇 decreases 

very near to the plate. Figure 8 shows the plot of temperature 

field 𝑇 against y for different values of heat source parameter 

𝑆. The temperature field 𝑇 decreases sharply with increase in 

y near the boundary layer and approaches zero. 𝑇 decreases as 

the heat source parameter 𝑆 takes higher values near the plate. 

The skin friction 𝛕 is depicted against 𝜔 for different values of 

 𝑀 in Figure 9. It is evident from the figure that the stress 

curves are oscillatory in nature. There are points of separation 

at which the stress 𝜏 becomes zero. The figure shows that for 

the flow of non-Newtonian fluid in presence of magnetic field 

the amplitude of the stress curve decreases with the increase 

in 𝜔 as shown in Figure 9. In Figure 10 the velocity field is 

plotted against time t for different values of y. The figure 

shows that the velocity curves are oscillatory in nature. There 

are points about which the magnitude of amplitude of 

oscillation of the velocity curve changes its direction for 

different values of 𝑦 periodically. The amplitude of oscillation 

of the velocity curve decreases for increasing values of y on 

the left of that points and then on the right of that points the 

direction of amplitude changes periodically and as 𝑦 takes 

larger values the amplitude of oscillation of the velocity curve 

becomes zero. Figure 11 shows the effects of normal stress 

moduli α on the velocity field 𝑢. There are sharp decrease in 

the velocity field 𝑢 with the increase in 𝑦. It can be observed 

that as α increases the magnitude of the velocity field 

increases. The velocity curve for the flow of Newtonian fluid 

has also been plotted in the figure. It is also seen that there are 

negative velocities in the boundary layer and for large values 

of α, there is an incipient flow reversal near the plate. In   

Table 1 the stress values for different values of magnetic field 

parameter 𝑀 and frequency of oscillation 𝜔 with 𝐺𝑟 =
1, 𝑣0 = 1,𝐾𝑝 = 10, 𝑡 = 0.4,𝑃𝑟 = 0.5, 𝑆 = 5,𝛼 = 0.0 are 

computed. From the figure it can be seen that the stress field 𝛕 

oscillates with 𝜔 for fixed values of 𝑀 and it is the case seen 

in Figure 9. It is also evident from the Table that the stress 

field is monotonic function of 𝑀 for fixed value of 𝜔. 

 

 

5. FIGURES 

 

Figure 1.  Velocity profile is depicted against y for 

different values of permeability parameter 𝑲𝒑 with 

𝑮𝒓 = 𝟏,𝑴 = 𝟏,𝜶 = 𝟎.𝟑,𝒗𝟎 = 𝟏,𝝎 = 𝟎.𝟐, 𝒕 = 𝟎.𝟒,𝑷𝒓 =
𝟎.𝟑,𝑺 = 𝟎.𝟓 

 
Figure 2. Velocity profile is depicted against y for different 

values of magnetic field parameter 𝑴  with 𝑮𝒓 = 𝟏,𝒗𝟎 =
𝟏,𝑲𝒑 = 𝟎.𝟑,𝜶 = 𝟎.𝟑,𝝎 = 𝟎.𝟐, 𝒕 = 𝟎.𝟒,𝑷𝒓 = 𝟓,𝑺 = 𝟎.𝟓 

 
Figure 3. Velocity profile is depicted against y for different 

values of Prandtl number 𝑷𝒓 with 𝑮𝒓 = 𝟏,𝒗𝟎 = 𝟏,𝑴 =
𝟏,𝜶 = 𝟎.𝟑,𝑲𝒑 = 𝟎.𝟑, 𝝎 = 𝟎.𝟐, 𝒕 = 𝟎.𝟒, 𝑺 = 𝟎.𝟓 
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Figure 4. Velocity profile is depicted against y for different 

values of heat source parameter 𝐒 with 𝐆𝐫 = 𝟏,𝐌 = 𝟏,𝛂 =
𝟎.𝟑, 𝐯𝟎 = 𝟏,𝐊𝐩 = 𝟎.𝟑, 𝛚 = 𝟎.𝟐, 𝐭 = 𝟎.𝟒,𝐏𝐫 = 𝟓 

 
Figure 5. Velocity profile is depicted against y for different 

values of suction velocity 𝐯𝟎 with 𝐆𝐫 = 𝟏,𝐊𝐩 = 𝟎.𝟑,𝐌 =

𝟏,𝛂 = 𝟎.𝟑,𝛚 = 𝟎.𝟐, 𝐭 = 𝟎.𝟒,𝐏𝐫 = 𝟓, 𝐒 = 𝟓.𝟎 

 
Figure 6. temperature 𝐓 is depicted against y for different 

values of suction velocity 𝐯𝟎 with  𝐏𝐫 = 𝟎.𝟓, 𝐒 = 𝟎.𝟓 

 
Figure 7. Temperature 𝐓 is depicted against y for different 

values of Prandtl number 𝐏𝐫 with  𝐯𝟎 = 𝟐.𝟎, 𝐒 = 𝟎.𝟓 

 
Figure 8. Temperature 𝑻 is depicted against y for different 

values of heat source parameter 𝑺 with 𝑷𝒓 = 𝟎.𝟓,𝒗𝟎 = 𝟐.𝟎 

 
Figure 9. Skin friction 𝛕 is depicted against 𝛚 for different 

values of magnetic field parameter 𝐌 with 𝐊𝐩 = 𝟎.𝟑,𝐆𝐫 =

𝟏, 𝐭 = 𝟎.𝟒 ,𝛂 = 𝟎.𝟑,𝐏𝐫 = 𝟎.𝟓, 𝐒 = 𝟓,𝐯𝟎 = 𝟏.𝟎 

 
Figure 10 The velocity field is plotted against time t for 

different 

values of  y with 𝐆𝐫 = 𝟏.𝟎,𝐊𝐩 = 𝟑,𝐌 = 𝟎.𝟓, 𝛂 =

𝟎.𝟐, 𝐯𝟎 = 𝟏.𝟎, 
𝛚 = 𝟎.𝟓,𝐏𝐫 = 𝟎.𝟓, 𝐒 = 𝟓 

 
Figure11. The velocity is depicted against y for different 

values of normal stress moduli α with 𝐆𝐫 = 𝟏,𝐌 = 𝟏,𝐯𝟎 =
𝟏,𝐊𝐩 = 𝟎.𝟑, 𝛚 = 𝟎.𝟐, 𝐭 = 𝟎.𝟒,𝐏𝐫 = 𝟓, 𝐒 = 𝟎.𝟓 
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Table 1. Shear stress at the plate 𝐲 = 𝟎 with 𝐆𝐫 = 𝟏, 𝐯𝟎 =
𝟏,𝐊𝐩 = 𝟏𝟎, 𝐭 = 𝟎.𝟒,𝐏𝐫 = 𝟎.𝟓, 𝐒 = 𝟓,𝛂 = 𝟎.𝟎 

𝜔\𝑀 0 

 

     5     10     15 

0 

 

-2.0495 -10.8809 -20.9351 -30.9563 

5 

 

4.6893 5.7143 9.3098 13.2809 

10 

 

0.4363 6.0711 13.1109 19.8460 

15 

 

-7.6599 -11.6245 -20.5679 -30.0157 

20 

 

7.4103 5.5824 5.1403 5.9020 

 

6. ACKNOWLEDGEMENTS 
We are grateful to the reviewers for their valuable 

comments to make this paper in the present format. 

7.  REFERENCES 
[1] Asghar, S., Mohyuddin, M.R., Hayat, T. and Siddiqui, 

A.M. 2004. The flow of a non-Newtonian fluid induced 

due to the oscillations of a porous plate. Math. Prob. 

Engng., 2,133-143. 

[2] Choudhury, R. and  Das, S.K. 2014. Visco-elastic MHD 

free convective flow through porous media in presence 

of radiation and chemical reaction with heat and mass 

transfer. Journal of Applied Fluid Mechanics, 7, 603-

609. 

[3] Deka, R.K., Das, U.N. and  Soundalgekar, V.M. 1997. 

Free convection effects on MHD flow past an infinite 

vertical oscillating plate with constant heat flux. Ind. J. 

Math, 39, 195-202. 

[4] Das, S.S., Tripathy, R.K., Sahoo, S.K. and Dash, B.K. 

2008. Mass transfer effects on free convective MHD 

flow of a viscous fluid bounded by an oscillating porous 

plate in the slip flow regime with heat source. J. Ultra 

Scientist of Phys. Sci. 20, 169-176. 

[5] Hayat, T., Mohyuddin, M.R.,  Asghar, S., Siddiqui, A.M. 

2004. The flow of a visco-elastic fluid on an oscillating 

plate.  Z. Angew. Math. Mech., 84, 65-70. 

[6] Manna, S. S., Das, S. and  Jana, R.N. 2012. Effects of 

radiation on unsteady MHD free convective flow past an 

oscillating vertical porous plate embedded in a porous 

medium with oscillatory heat flux. Advances in Applied 

Science Research, 3, 3722-3736.  

[7] Shen, F., Tan, W., Zhao, Y. and  Masuoka, T. 2006. The 

Rayleigh-Stokes problem for a heated generalized second 

grade fluid with fractional derivative model. Nonlinear 

Analysis: Real World Applications, 7, 1072-1080. 

[8] Singh, P. and Gupta, C.B. 2005. MHD free convective 

flow of viscous fluid through a porous medium bounded 

by an oscillating porous plate in slip flow regime with 

mass transfer. Ind. J. Theo. Phys., 53, 111-120. 

 

 

IJCATM : www.ijcaonline.org 


