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ABSTRACT 

Pipes conveying fluid  have significant applications in a wide 

range  of industrial and engineering applications .Recently, 

this topic has been crystallized into a dynamical model for 

analyzing the fluid-structure-interaction (FSI) which has vast  

applications in aerospace ,aerodynamics, ship motion , 

medical engineering ..etc 

The general solution for the vibration equation of conservative 

pipes conveying fluid is derived in this paper .From this 

solution the frequency  and critical buckling  velocity 

equations for pinned–pinned, clamped-pinned and clamped-

clamped pipes conveying fluid are obtained  semi-analytically 

in terms of the pipe parameters. 

A new experimental approach for estimating buckling critical 

velocities from measuring several natural frequencies at 

relatively small flow rates is presented. The results show good 

agreement between the estimated and theoretical critical 

velocities in case of pinned-pinned and clamped-pinned pipes 

.However for clamped-clamped pipes the accurate estimation 

requires higher flow rates .This method can serve using a 

relatively low pump discharge and simple fluid circuit instead 

of high discharge pumps which demand complication in the 

fluid circuits. 

Keywords 

Pipe conveying fluid, Critical buckling velocity, Stability 

1. INTRODUCTION 
Pipes conveying fluid are of considerable interest in many 

engineering fields. They are widely used in various industrial 

branches. Sometimes, their role is simply to transport fluids, 

as in oil pipelines, pump discharge lines, propellant lines and 

municipal water supply. In other cases, they provide basic 

structural components as in power plants, chemical plants, 

hydraulic systems, chemical plants, liquid-fuel rocket piping 

components, refrigerators, air-conditioners, heat exchangers, 

and so on. 

The problem of pipes conveying fluid belongs to the broader 

class of dynamical problems involving axially moving 

continua such as traveling strings bands, belts, magnetic tapes 

and chain saws.  

Due to its significance in science this topic may be taken as a 

new paradigm of interesting dynamical behavior to develop 

nonlinear dynamics, projecting them as a model dynamical 

problem[1,2].  

In general ,the dynamical behavior of pipes conveying fluid 

are more complicated than the corresponding structure 

without fluid .In the latter case, free vibrations for a specified 

structure (degree of freedom and boundary conditions) depend 

only on its mass and stiffness .In such structures the Eigen 

values are related to structure parameters ,hence the natural 

frequency is unique .In this case the vibrations are of 

uncontrolled type .If  however, such structures are subjected 

to an axial force ,it is seen that the Eigen values are affected 

by the amount and direction of this force .In other words if 

this force is compressive the natural frequencies decrease with 

the increasing of this force .In this case vibration is controlled 

by this force and there is a critical value of this force at which 

the fundamental frequency drops to zero leading to buckling 

state. 

When the structure interacts with a fluid media such as pipe 

conveying fluid different phenomena might occur according 

to the effects of the internal forces between the elastic 

structure and the fluid .Thus, the vibrations are of controlled 

type. 

As compared with the ordinary elastic structures (without 

fluid), the linear dynamical behavior of pipe conveying fluid 

has the following significant differences[3]; 

1. It is complex boundary-value problems. 

2. Classical normal (orthogonal) modes never exist) . 

3. The natural frequencies may become complex. 

4. The natural frequencies are controlled by the fluid-

pipe parameters. 

Housner[4] used an approximate power series for solving the 

governing equation but neglected the effect of internal 

pressure. 

Noirdson[5] studied the stability for straight pipe simply 

supported with steady flow and he reached to the same 

conclusions which were made by the above authors, that the 

natural frequency for a system reduces with the increase in the 

fluid flow velocity, and the system losses stability by 

buckling.  

Long [6] obtained the solution of the equation of motion using 

power series approximation. He studied the problem of fixed-

free ended pipes as well for simply supported pipe. 

Gregory and Paidoussis[7] and concluded, as did Benjamin, 

that the cantilever pipe loses its stability at a certain flow 

velocity by flutter rather than buckling. 

Doare and Langre [8] studied instability of fluid conveying 

pipes on Winkler type foundation. The focus in their paper 

was on instability of infinitely long fluid conveying pipes 

using wave propagation approach, wherein results are 

interpreted in terms of static neutrality as criteria for pinned–

pinned, clamped– clamped ends and dynamic neutrality for 

clamped–free ends. 
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2. DYNAMIC ANALYSIS OF PIPES 

CONVEYING FLUID 
Consider a straight uniform pipe conveying fluid of length L. 

The      following assumptions are considered in the analysis 

of the system under consideration [9]: 

1. Neglecting the effect of gravity. 

2. The pipe considered to be horizontal. 

3. Neglecting the material damping. 

4. The pipe is inextensible.  

5. Neglecting the shear deformation and rotary inertia. 

6. All motion considered small. 

7. Neglecting the velocity distribution through the cross- 

section of the pipe. 

Derivation of the equation of motion for straight pipe with 

steady flow are available in the literature Ref.[5].For a single-

span pipe conveying fluid, the equation based on beam theory 

is given by, 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+  𝑀 𝑈

2 + 𝑃𝐴 
𝜕2𝑦

𝜕𝑥2
+ 2𝑀 𝑈

𝜕2𝑦

𝜕𝑥𝜕𝑡
+  𝑀 + 𝑚 

𝜕2𝑦

𝜕𝑡2
= 0   

(1)                                                                                                                                              

where 𝐹(𝑥, 𝑡): is the external harmonic force being applied 

normally to the pipe axis in the 𝑦- direction.  

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
: Stiffness term 

 𝑀 𝑈
2 + 𝑃𝐴 

𝜕2𝑦

𝜕𝑥2
: Curvature term 

2𝑀 𝑈
𝜕2𝑦

𝜕𝑥𝜕𝑡
: Coriolis force term 

 𝑀 + 𝑚 
𝜕2𝑦

𝜕𝑡2
: Inertia force term  

The Coriolis force is a result of the rotation of the system 

element due to the system lateral motion, since each point in 

the span rotates with angular velocity [10]. 

The equation of motion Eq.(1) can be written in the following 

non-dimensional form: 

𝜂 + 2𝑀𝑟𝑢0𝜂
′ +  𝑢0

2 + 𝛱 𝜂′′ + 𝜂 4 = 0 

Where, 

 𝜉 = 𝑥/𝐿 
𝜂 = 𝑦/𝐿    

𝜂 4 =
𝜕4𝑦

𝜕𝑥 4
 ,  𝜂 2 = 

𝜕2𝑦

𝜕𝑥 2
  , 𝜂′ =

𝜕2𝑦

𝜕𝑥𝜕𝑡
 ,  𝜂 =

𝜕2𝑦

𝜕𝑡 2
  , 

 𝜏 =  𝐸𝐼/(𝑀 + 𝑀)(
𝑡

𝐿2
). 

𝑀𝑟 =  𝑀 /(𝑀 + 𝑚) , 𝑢0 = 𝑈𝐿 (𝑀 /𝐸𝐼)    (*) 

𝛱 = (
𝑃𝐴 

𝐸𝐼
)𝐿2 

𝑀𝑟 : Non-dimensional mass ratio. 

𝛱: Non-dimensional fluid pressure. 

The motion equation above is inhomogeneous, as the 

derivative coefficients of η are explicit functions of ξ and τ. 

Then we discretize Eq. (2) using the Galerkin’s method. Let 

𝜂 𝜉, 𝜏 =  𝜙𝑖 𝜉 𝑞𝑖 𝜏 
∞
𝑖=1                                              (3) 

𝑞𝑖 𝜏  is an generalized coordinate, 𝜙𝑖 𝜉  is an comparison 

function which satisfies all the boundary conditions. Selecting 

the first three orders conducts researches, which is: 

𝜂 𝜉, 𝜏 =  𝜙𝑖 𝜉 𝑞𝑖 𝜏 
3
𝑖=1 = 𝜙1 𝜉 𝑞1 𝜏 + 𝜙2 𝜉 𝑞2 𝜏 +

𝜙3 𝜉 𝑞3 𝜏                                                                     (4) 

For pinned at both ends of pipes, its vibration model function 

is: 

 𝜙𝑖 =  2 𝑠𝑖𝑛 𝜆𝑖𝜉 , 𝑖 = 1,2,3                                       (5) 

Where 𝜆1, 𝜆2 and 𝜆3 are beam eigenvalues  𝜆1 = 𝜋, 𝜆2 =

2𝜋, 𝜆3 = 3𝜋. 

For fixed at both ends of pipes, its vibration model 

function is: 
𝛷𝑖 = 𝑐𝑜𝑠ℎ 𝜆𝑖𝜉 − 𝑐𝑜𝑠 𝜆𝑖𝜉 +  

𝑐𝑜𝑠ℎ 𝜆𝑖 −𝑐𝑜𝑠  𝜆𝑖 

𝑠𝑖𝑛ℎ 𝜆𝑖 −𝑠𝑖𝑛  𝜆𝑖 
 𝑠𝑖𝑛 𝜆𝑖𝜉 − 𝑠𝑖𝑛ℎ 𝜆𝑖𝜉  , 𝑖 = 1,2,3        (6) 

Where 𝜆1 = 4.7300, 𝜆2 = 7.8532, 𝜆3 = 10.9956. 

For fixed at one end and pinned at other end of pipes, its 

vibration model function is: 

𝛷𝑖 = 𝑐𝑜𝑠 𝜆𝑖𝜉 − 𝑐𝑜𝑠ℎ 𝜆𝑖𝜉 −  
𝑐𝑜𝑠  𝜆𝑖 −𝑐𝑜𝑠ℎ 𝜆𝑖 

𝑠𝑖𝑛  𝜆𝑖 −𝑠𝑖𝑛ℎ 𝜆𝑖 
 𝑠𝑖𝑛 𝜆𝑖𝜉 − 𝑠𝑖𝑛ℎ 𝜆𝑖𝜉  , 𝑖 = 1,2,3        (7) 

Where 𝜆1 = 3.9267, 𝜆2 = 7.0686, 𝜆3 = 10.2102 

For cantilever pipe, its vibration model function is: 

𝛷𝑖 = 𝑐𝑜𝑠ℎ 𝜆𝑖𝜉 − 𝑐𝑜𝑠 𝜆𝑖𝜉 + 
𝑠𝑖𝑛ℎ 𝜆𝑖 −𝑠𝑖𝑛  𝜆𝑖 

𝑐𝑜𝑠ℎ 𝜆𝑖 +𝑐𝑜𝑠  𝜆𝑖 
 𝑠𝑖𝑛 𝜆𝑖𝜉 − 𝑠𝑖𝑛ℎ 𝜆𝑖𝜉  , 𝑖 = 1,2,3      (8) 

Where 𝜆1 = 1.87512, 𝜆2 = 4.6941, 𝜆3 = 7.85476 

Eq.(3) is changed into matrix type, supposing  𝛷 =

 

𝜙1  
𝜙2

𝑑
𝜙3

  ,𝑄 =  

𝑞1  
𝑞2

𝑑
𝑞3

 , then                                                (9)  

𝜂 𝜉, 𝜏 = 𝛷𝑇𝑄 = 𝑄𝑇𝛷 

Plugging (9) into (2), and supposing 𝐻 = 𝑢0
2 + 𝛱, then: 

𝜙𝑇𝑄 + 2𝑀𝑟𝑢0𝜙
′𝑇𝑄 + 𝐻𝜙′′ 𝑇𝑄 + 𝜙 4 𝑇𝑄 = 0          (10) 

By multiplying 𝛷 =  

𝜙1  
𝜙2

𝑑
𝜙3

   with two sides of (10) and then 

𝛷𝛷𝑇𝑄 + 2𝑀𝑟𝑢0𝛷𝛷
′𝑇𝑄 + 𝐻𝛷𝛷′′ 𝑇𝑄 + 𝛷𝛷(4)𝑇𝑄     (11) 

 

Conducting 𝜉 integral to (11) at interval [0, 1], and   

substitutions based on orthogonality of trigonometric 

function: 

 𝜙𝜙𝑇𝑑𝜉
1

0
= 𝐼 =

 

 
 
 𝜙1𝜙1

𝑇1

0  𝜙2𝜙1
𝑇1

0
  𝜙3𝜙1

𝑇1

0

 𝜙1𝜙2
𝑇1

0
 𝜙2𝜙2

𝑇1

0
 𝜙3𝜙2

𝑇1

0

 𝜙1𝜙3
𝑇1

0
  𝜙2𝜙3

𝑇1

0
  𝜙3𝜙3

𝑇1

0  

 
 
𝑑𝜉 =

 
1       

 1       
  1

 ,     

  𝜙𝜙′𝑇𝑑𝜉 = 𝐵 =
1

0

 

 
 
 𝜙1𝜙1

′𝑇1

0  𝜙2𝜙1
′𝑇1

0
  𝜙3𝜙1

′𝑇1

0

 𝜙1𝜙2
′𝑇1

0  𝜙2𝜙2
′𝑇1

0  𝜙3𝜙2
′𝑇1

0

 𝜙1𝜙3
′𝑇1

0
  𝜙2𝜙3

′𝑇1

0
  𝜙3𝜙3

′𝑇1

0  

 
 
𝑑𝜉 =

 

 b11  b12   b13  
 b21 b22  b23  
 b31 b32 b33

  , ϕϕ′′T dξ = C
1

0
=

 

 
 
 ϕ1ϕ1

′′T1

0  ϕ2ϕ1
′′T1

0
  ϕ3ϕ1

′′T1

0

 ϕ1ϕ2
′′T1

0  ϕ2ϕ2
′′T1

0  ϕ3ϕ2
′′T1

0

 ϕ1ϕ3
′′T1

0
  ϕ2ϕ3

′′T1

0
  ϕ3ϕ3

′′T1

0  

 
 

dξ =

 

 c11  c12   c13  
 c21 c22  c23  
 c31 c32 c33

  𝜙𝜙(4)𝑇𝑑𝜉 = 𝛬 =
1

0

(2) 



International Journal of Computer Applications (0975 – 8887) 

Volume 134 – No.10, January 2016 

36 

 

 
 
 𝜙1𝜙1

(4)𝑇1

0  𝜙2𝜙1
(4)𝑇1

0
  𝜙3𝜙1

(4)𝑇1

0

 𝜙1𝜙2
(4)𝑇1

0
 𝜙2𝜙2

(4)𝑇1

0
 𝜙3𝜙2

(4)𝑇1

0

 𝜙1𝜙3
(4)𝑇1

0
  𝜙2𝜙3

(4)𝑇1

0
  𝜙3𝜙3

(4)𝑇1

0  

 
 
𝑑𝜉 =

 

𝜆1
4   

 𝜆2
4  

  𝜆3
4

                                                             (12)           

𝜙1 ,𝜙2 and 𝜙3 are the first three mode functions for specific 

boundary conditions. 

For pinned at both ends of pipes, the matrix B and C are: 

𝐵 =  
0 −2.6667 0 

 2.6667 0 −4.8
 0 4.8 0

 ,𝐶

=  

−(π2) 0 0 

 0 −(2π2) 0

 0 0 −(3π2)

  

For fixed at both ends of pipes, the matrix B and C are: 

𝐵 =  
0 −3.3421 0 

 3.3421 0 −5.5161
 0 5.5161 0

 ,𝐶

=  
−12.3028 0 9.7315 

 0 −46.0501 0
 9.7315 0 −98.9047

  

For fixed at one end and pinned at other end of pipes, the 

matrix B and C are: 

𝐵 =  
0 −2.9965 0.3167 

 2.9965 0 −5.1468
−0.3167 5.1468 0

 ,𝐶

=  
−11.5126 4.2814 3.7993 

4.2814 −42.8964 7.81913
 3.7993 7.8191 −94.0376

  

For cantilever pipe, the matrix B and C are: 

𝐵 =  
2 −4.75948 3.78433 

 0.75948 2 −6.22218
 0.21566 2.22218 2

 ,𝐶

=  
0.8581 −11.7433 27.4531 
 1.8738 −13.2942 −9.04205

 1.56453 3.22935 −45.9043
  

Using equations of (12), the discretized equation after reduced 

order through (11) is showed below: 

𝐼𝑄 + 2𝑀𝑟𝑢0𝐵𝑄 +  𝐶𝐻 + 𝛬 𝑄 = 0                           (13) 

Where       𝑄 =  

𝑞 1  
𝑞 2
𝑑
𝑞 3

 ,𝑄 =  

𝑞1  
𝑞2

𝑑
𝑞3

  ,𝑄 =  

𝑞1  
𝑞2

𝑑
𝑞3

  

When     𝑄 = Ω𝑖, 𝑄 = −Ω2, and Eq. (13) become; 

 

 −𝐼Ω2 + 2𝑀𝑟𝑢0𝐵Ω𝑖 +  𝐶𝐻 + 𝛬  𝑄 = 0                  (14) 

 −𝐼Ω2 + 2𝑀𝑟𝑢0𝐵Ω𝑖 +  𝐶𝐻 + 𝛬  = 𝑆 =

 

s11  s12   s13  
 s21 s22  s23  
 s31 s32 s33

   

Where 

       s11 = 𝜆1
4 + 𝐻c11 + 2𝑀𝑟𝑢0b11Ω𝑖 − Ω2 

       s12 = 𝐻c12 + 2𝑀𝑟𝑢0b12Ω𝑖 
       s13 = 𝐻c13 + 2𝑀𝑟𝑢0b13Ω𝑖 
       s21 = 𝐻c21 + 2𝑀𝑟𝑢0b21Ω𝑖 

       s22 = 𝜆2
4 + 𝐻c22 + 2𝑀𝑟𝑢0b22Ω𝑖 − Ω2 

       s23 = 𝐻c23 + 2𝑀𝑟𝑢0b23Ω𝑖 
       s31 = 𝐻c31 + 2𝑀𝑟𝑢0b31Ω𝑖 
       s31 = 𝐻c31 + 2𝑀𝑟𝑢0b31Ω𝑖 

       s32 = 𝐻c32 + 2𝑀𝑟𝑢0b32Ω𝑖 

       s33 = 𝜆3
4 + 𝐻c33 + 2𝑀𝑟𝑢0b33Ω𝑖 − Ω2 

The natural frequency (Ω) is evaluated by setting   𝑆  equal to 

zero. Expansion of this determent  leads to the following 

characteristic equation; 

Ω6 − 𝑘5Ω
5𝑖 − 𝑘4Ω

4 − 𝑘3Ω
3𝑖 − 𝑘2Ω

2 − 𝑘1Ω
 𝑖 − 𝑘0 = 0  (15) 

Where 𝑘5, 𝑘4, 𝑘3,𝑘2, 𝑘1 𝑎𝑛𝑑 𝑘0 are constants depending on 

the boundary conditions as shown in appendix Table (1) 

 

3. EXPERIMENTAL WORK 
The aim of this work  is to measure the natural frequencies of 

PVC  pipes conveying water at different boundary conditions, 

study the effect of fluid velocity on the natural frequencies 

and estimation of critical buckling velocities . 

3.1 Test Models. 
For measuring the natural frequencies and investigating the 

effect of the fluid velocity on the natural frequencies, PVC 

pipe model was prepared.  Table (2) shows the main 

specifications of this model. 

 

Table ( 2): Specifications of the test models
 

Model 

No. 
Material  Do (m) 

Thick. 

(m) 

ρ 

kg/m3 

E 

GN/m
2
 

1 PVC 0.020 0.0018 975 6.83 

3.2  Experimental Rig 
The rig consists of two main parts; the foundation and the two 

Substrates. It was constructed from (120cmx40cmx1cm) 

rectangular section iron plate foundation and two 

(22cmx20cmx1cm) Substrates of pipe support as shown in 

appendix [Fig.(1)]. 

The two Substrates were designed to fulfill the various 

requirements for pinned and clamped conditions. They 

consisted of two main parts; the iron base and the ball bearing 

case. The ball bearing has free vertical movement, which 

leads to zero moment in pin support. 
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Table(2): The Parameters Constants of Eq.(15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
−𝟏𝟑𝟖.𝟏𝟕𝟓 𝑯 

+𝟗𝟓𝟒𝟔.𝟏 

+𝟏𝟐𝟎.𝟔𝟎𝟖 𝒎𝒓𝟐𝒖𝒐
𝟐 

−𝟏𝟓𝟕.𝟐𝟓𝟖 𝑯 

+𝟏𝟖𝟗𝟐𝟐 

+𝟏𝟔𝟔.𝟑𝟖𝟖 𝒎𝒓𝟐𝒖𝒐
𝟐 

−𝟏𝟒𝟖.𝟒𝟒𝟕 𝑯 

+𝟏𝟑𝟔𝟎𝟏.𝟖 

+𝟏𝟒𝟐.𝟐𝟕𝟓 𝒎𝒓𝟐𝒖𝒐
𝟐 

   +𝟎.𝟎𝟎𝟑 𝑻 𝒎𝒓 𝒖𝒐 

−𝟎.𝟎𝟎𝟏  𝒎𝒓𝟑 𝒖𝒐
𝟑 

  

+3436.55𝒎𝒓𝟐𝒖𝒐
𝟐𝑯 

−𝟐𝟑𝟑𝟒𝟑𝟗𝒎𝒓𝟐𝒖𝒐
𝟐 

−𝟒𝟕𝟕𝟑.𝟎𝟒𝑯𝟐 

𝟓𝟓𝟓𝟔𝟖𝟑𝑯 

−𝟎.𝟏𝟑𝟐𝟏𝟕𝟔 ∗ 𝟏𝟎𝟖 

 

+4481.05𝒎𝒓𝟐𝒖𝒐
𝟐𝑯 

−𝟕𝟏𝟒𝟎𝟐𝟗𝒎𝒓𝟐𝒖𝒐
𝟐 

−𝟔𝟐𝟒𝟑.𝟐𝟐𝑯𝟐 

𝟎.𝟏𝟑𝟒𝟖𝟓𝟒 ∗ 𝟏𝟎𝟕𝑯 

−𝟎.𝟔𝟒𝟖𝟐𝟏𝟒 ∗ 𝟏𝟎𝟖 

 

 

+4030.57𝒎𝒓𝟐𝒖𝒐
𝟐𝑯 

−𝟒𝟏𝟔𝟓𝟏𝟒𝒎𝒓𝟐𝒖𝒐
𝟐 

−𝟓𝟓𝟏𝟔.𝟒𝟑𝑯𝟐 

𝟖𝟖𝟕𝟑𝟓𝟖𝑯 

−𝟎.𝟑𝟎𝟑𝟎𝟖𝟑 ∗ 𝟏𝟎𝟖 

   

 

 

−𝟎.𝟎𝟔𝟏𝟑𝟐𝟑𝟖 𝑻 𝒎𝒓 𝒖𝒐 

+𝟎.𝟎𝟎𝟓 𝑻 𝟐𝒎𝒓 𝒖𝒐 

 −𝟑𝟒𝟔𝟎𝟗.𝟗𝑯𝟑 

+𝟎.𝟒𝟕𝟖𝟐𝟐𝟐 ∗ 𝟏𝟎𝟕𝑯𝟐 

−𝟎.𝟏𝟔𝟓𝟏𝟗𝟓 ∗ 𝟏𝟎𝟗𝑯 

+𝟎.𝟏𝟏𝟗𝟕𝟖𝟔 ∗ 𝟏𝟎𝟏𝟎 

−𝟓𝟏𝟔𝟕𝟑𝑯𝟑 

+𝟎.𝟏𝟒𝟖𝟐𝟗𝟔 ∗ 𝟏𝟎𝟖𝑯𝟐 

−𝟎.𝟏𝟐𝟎𝟗𝟑𝟑 ∗ 𝟏𝟎𝟏𝟎𝑯 

+𝟎.𝟐𝟕𝟖𝟑𝟑𝟎 ∗ 𝟏𝟎𝟏𝟏 

−𝟒𝟑𝟏𝟑𝟗.𝟐𝑯𝟑 

+𝟎.𝟖𝟕𝟕𝟖𝟗𝟔 ∗ 𝟏𝟎𝟕𝑯𝟐 

−𝟎.𝟒𝟕𝟖𝟗𝟗𝟓 ∗ 𝟏𝟎𝟗𝑯 

+𝟎.𝟔𝟒𝟓𝟎𝟐𝟗 ∗ 𝟏𝟎𝟏𝟎 

Fig.(1): Modal structure of pipe conveying fluid 

3.3 Water Circuit. 
In all tests, water was used as a flowing fluid .To measure the 

water flow rate a flowmeter was fitted at the inlet of the test 

model. The water circuit is shown in Fig.(3). The main 

components of this circuit are the collecting tank (150 Lit.), 

centrifugal pump (100 Lit/min., 25 m), control valve (gate 

type) and the test pipe model. 
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Fig.(3): Schematic diagram of water circuit 

and the test model 

3.4 Instruments and Test Procedure. 
The block diagram of the various components of the electric 

vibration instrument are shown in Fig.(4). 

The electrical vibration circuit can be divided into two main 

circuits; the first represents the "excitation side" which 

consists of: function generator, high voltage power amplifier 

and vibration exciter ( piezoelectric shaker). The second is the 

"response side" which includes: piezoelectric sensor and 

oscilloscope, as shown in   Fig.(1)  . A photograph of the 

electrical instruments is shown in Fig.(4) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(4): Block diagram of  the measuring  circuit 

 

3.4.1 High Voltage Amplifier of PZT (HVPZT).    
A power amplifier drives piezoelectric actuators through an 

applied voltage. The device used in the series of experiments 

featured in this work is a (Trek Model 2205) high voltage 

inverted operational amplifier 

 

3.4.2 Sensor and Shaker 
QUICKPACK MIDE QP20W double layer piezoelectric type 

is use as structural sensors transducers and shaker 

 

3.4.3 Function Generator 
BK model 4075, a 25 MHz arbitrary/Function generator, is a 

precision source of sine, triangle, square and pulse waveforms 

plus dc voltage. All can be externally modulated. Output can 

be continuous or can be triggered or gated by external signal 

or front panel switch. Amplitude of the waveforms is variable 

from 30 V down to 1.5 mV. DC reference of the waveform 

can be offset positively or negatively. 

 

3.4.4 Oscilloscope 
The digital oscilloscope 250MHz type GW-INSTEK 

GDS3000 is used with built-in FFT analyzer. This device is 

used to display the vibration waves and frequency results, 

which extract from the sensor, due to vibration of the 

structures. 

4. RESULTS AND DISCUSSION 

4.1 Buckling Critical Velocities of 

Conservative Pipes 
The critical velocities initiating buckling for the three 

conservative pipes are shown in Figs.(5 to 7 ) .In plotting 

these figures  the  general equations  were used when the 

natural frequency become zero value .   

At zero pressure (Π=0), Figs. (5 to 7) give the following 

values of critical velocities: π, 1.43π and 2π for pinned-

pinned, clamped-pinned and clamped-clamped pipes, 

respectively .These is identical to the Euler load of buckling 

for the corresponding beams with compressive axial force.  

As the pressure increases, these figures show that the critical 

velocities decrease linearly .This is due to the effect of 

increasing the compressive force exerted on pipe ends as the 

pressure increases. 

 

 
Fig.(5): Critical velocities of buckling at different 

pressures of p-p  pipes 

 

 
Fig.(6): Critical velocities of buckling at different pressure 

of c-p pipes 

 

 
Fig.(7):Critical velocities of buckling at different pressure 

of  c-c pipes 
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4.2 Stability Boundary 
For the purpose of illustration of this approach, a typical plot 

of the stability boundary for clamped-pinned pipes conveying 

fluid at 𝛱 = 0 and 𝑀𝑟 = 0.9 is constructed in Fig.(8).To 

construct such a figure  the roots of general  equation are 

evaluated  for various values of the dimensionless velocity 𝑢0. 

It should be noticed that the sixth order polynomial equation 

like Eq. (15) gives six roots for  Ω .However in this case each  

two of them are equal but with opposite signs .If these roots 

are squared then only  three values of  Ω2 are different . 

Finally the first two values of Ω2  and 𝑢0
2 are plotted to get 

the root locus of two modes as shown in this figure. 

 
Fig.(8):Stability boundary of c-p  pipes at 𝜫 = 𝟎, 𝑴𝒓 =

𝟎.𝟓 (St: Stable, Bk: buckling, Ft: flutter) 

 

To inspect the stability behavior the following rules are 

followed: 

1. When all the roots lie in the first quarter   (or to the 

right of the line Ω2 = 0 ) in  Ω2 − 𝑢0
2 plane ,the 

pipe is stable . 

2. If at least one of the two roots lies in the second 

quarter, the pipe is unstable.  

3. Buckling instability initiates   at the points of 

intersection of the root locus with the line Ω2 = 0. 

4. Flutter instability initiates at the maximum point of 

the root locus[11]. 

Now, referring to Fig. (8) the following sequence of the 

stability behaviors can be observed:- 

 At 𝑢0
2  [0   20], the pipe is stable since all values 

of Ω2 lie to the right of the line  Ω2 = 0. 

 At 𝑢0
2   [20   59], the pipe is under buckling 

instability since some values of Ω2 lie to the left. 

 At 𝑢0
2  [59   72], the pipe regains its stability as 

in the first case. 

 For 𝑢0
2 >72 the pipe is at flutter instability.  

 Points A and B are the critical points of buckling 

instability since they lie on the line  Ω2 = 0. 

 Point C is the critical point of flutter instability 

which is the maximum point in the plot. 

The stability boundaries for pinned-pinned, clamped-pinned 

and clamped-clamped pipes are shown in Figs.(9 to 11) .To 

investigate  the effect of the mass ratio 𝑀𝑟  on stability of these 

three pipes ,plots for 𝑀𝑟  = 0.3,0.5 and 0.9 are presented in 

these figures  .As it is clear from these figures ,the effect of 

varying 𝑀𝑟  is so significant on flutter instability since the 

maximum points on the plots are either shifted to the right as 

𝑀𝑟  increased or it may vanish as in Fig.(10) where 𝑀𝑟= 0.3. It 

should be noted here that, according to this effect the 

sequence of stability is noticeably altered. For example in Fig. 

(9) at 𝑀𝑟= 0.3 the sequence of stability is: - stable, buckling, 

and flutter while at 𝑀𝑟= 0.9 it becomes: - stable, buckling, 

stable and flutter .This is also true for the other figures 

.However 𝑀𝑟  has no effect on buckling instability since the 

critical points of buckling (the intersection points with line  

Ω2 = 0) are not changed for all values of 𝑀𝑟 . 

    To check the validity of the presented approach selected 

points from Figs.(9to 11)  will be  compared with the 

available results in the literature .For example at 𝑢0
2 = 0 

,Figs.(9 to 11) give the squarer of the first and second natural 

frequencies of corresponding beams which are 97.4 and 

1558.54 for pinned-pinned , 237.74 and 2496.51  for clamped-

pinned and 500.6 and 3803.14 for clamped-clamped 

pipes[90]. This is true since in this case, the pipe is reduced to 

a beam as the fluid velocity becomes zero. Also, in Figs.(9 to 

11) the lowest points of intersections of the plots with the line 

Ω2 = 0 for any  𝑀𝑟  are 9.61,20.25 and 40.7 ,respectively 

.These are nearly the square of π,1.43π and  2 π respectively 

,which are the critical velocities for first mode buckling of 

these   pipes. 

The fundamental natural frequencies Ω1 at 𝛱 = 0 of the three 

conservative pipes can be calculated from the following 

approximated formulas[12]:-   

Ω1 = 𝜋2 1 −
𝑢𝑜

2

𝜋2
                                      (p-p) 

Ω1 = 3.932 1 − 0.747
𝑢𝑜

2

𝜋2
                      (c-p) 

Ω1 = 4.732 1 − 0.55
𝑢𝑜

2

𝜋2
                        (c-c)                 (16)   

Eq.(15) can be used to calculate Ω2 at pre-critical fluid 

velocities. By simple calculations it is easy to verify that the 

results of Eq. 15)   coincide with those presented in Figs. (9 to 

11).  

The  effect of the fluid pressure is studied in Figs.(12 to 14) 

where 𝑀𝑟 = 0 and 𝛱 =0,2 and 3 were chosen .It is clear from 

these figures that the effect of increasing 𝛱 is to slightly shift  

the boundary of stability to lower values for all of the 

considered pipes .However the sequences of stability are not 

altered .  

It is of interesting to state that; the critical velocities of 

buckling of the three conservative pipes can be evaluated 

directly from the Eq.(15) of the root locus by considering the  

following analysis:- 

   The general form of root locus is:- 

Ω6 − 𝑘5Ω
5𝑖 − 𝑘4Ω

4 − 𝑘3Ω
3𝑖 − 𝑘2Ω

2 − 𝑘1Ω
 𝑖 − 𝑘0 = 0 (15)                                                                          

Buckling initiates at Ω = 0 , so that Eq.(15) gives the 

following condition for buckling instability  :- 

    𝑘0=0                                                                      (17)                            

Appling this condition to Table (2-1), one gets the following 

equations; 

−34609.9𝐻3 + 0.478222 ∗ 107𝐻2 − 0.165195 ∗ 109𝐻 +
0.119786 ∗ 1010 = 0    (p-p) 

−43139.2𝐻3 + 0.877896 ∗ 107𝐻2 − 0.478995 ∗ 109𝐻 +
0.645029 ∗ 1010 = 0    (c-p) 

−51673𝐻3 + 0.148296 ∗ 108 𝐻2 − 0.120933 ∗ 1010  𝐻 +
0.278330 ∗ 1011 = 0    (c-c)                  

                                                                                  (18)                                                                         

where, 𝐻 = 𝑢0
2 + 𝛱 

From Eqs.(18) the critical velocities of buckling can be 

evaluated for the three types of conservative pipes at a given  

value of  𝛱. It is clear from these equations that the critical 

velocities are independent of the mass ratio  𝑀𝑟 . 

 Flutter instability initiates when the natural frequency 

become complex with negative imaginary parts and represent 

the maximum point in the plot of stability. 
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The values of the critical velocities of buckling and flutter, for 

the three pipes at  𝛱 = 0 and 𝑀𝑟 = 0.9 are presented in Table 

(6-2). 

        Table (3) indicates that the critical velocities   coincide   

with those shown in Figs. (9 to 11) at 𝑀𝑟 = 0.9. 

 

Table(3): Buckling and flutter critical velocities of 

conservative pipes 𝜫 = 𝟎 and 𝑴𝒓 = 𝟎.𝟗. 

Boundary 

conditions 

𝑢0 
1st mode 

Buckling 

𝑢0 
2nd  mode 

Buckling 

𝑢0 
Flutter 

p-p π 2 π 6.7 

c-p 1.43 π 2.5 π 8.5 

c-c 2 π 3 π 10.3 

 

Table (6-2) indicates that conservative pipes can lose their 

stability by buckling prior to flutter as the fluid velocity 

increase. 

 

 
Fig.(9): Stability boundary of p-p  pipe at 𝜫 = 𝟎. 

 

 

 

Fig.(10): Stability boundary of c-p   pipe at 𝜫 = 𝟎. 

 
Fig.(11): Stability boundary of c-c   pipe at 𝜫 = 𝟎. 

 
Fig.(12): Stability boundary of p-p  pipe at 𝑴𝒓 = 𝟎. 

 
Fig.(13): Stability boundary of c-p  pipe at 𝐌𝐫 = 𝟎. 

 
Fig.(14): Stability boundary of c-c  pipe at 𝐌𝐫 = 𝟎. 

4.3 Estimating of the Critical Velocities 
The measured fundamental natural frequencies and the 

associated fluid flow rates for PVC pipe model , at different 

boundary conditions are given in Table (4)  . 

 

Table( 4): Measured fundamental natural frequencies 

(Hz) for 1 cm diameter PVC pipe at different boundary 

conditions 

Q(l/min) 0 10 20 30 40 50 60 

p-p 7.2 6.6 6 5.9 5.4 5 2.5 

c-p 8.1 8.2 8 7.75 7.3 6.7 6 

c-c 12 11.8 11.5 11.2 11 10.4 9.9 

The dimensionless frequencies Ω and velocities U of the 

measured data were calculated from Eqs.(15 and 18) . 
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    In Eigs (15 to 17) the values of Ω2 and U2 for  model and at 

the three considered boundary conditions are plotted and fitted 

to straight lines. Then, the equations of the fitted lines were 

evaluated and are given in Table (5). 

 

Fig.(15): Experimental plot of Ω1
2
 against U

2
 for p-p 

 
Fig.(16): Experimental plot of Ω1

2
 against U

2
 for c-p   

 
Fig.(17): Experimental plot of Ω1

2
 against U

2
 for c-c 

 

Table(5): Equations of the fitted lines of figs. (15to 17) 

Figure 

no. 
B.cs 

Equation of 

fitted line 
P1 P2 Sd 

15 p-p 
Ω2 =46.05  -

4.406  U2 
4.406 46.05 1.7521 

16 c-p 
Ω2 =67.29  -

3.604 U2 
3.604 67.29 0.5428 

17 c-c 
Ω2 =139.3  -

4.63  U2 
4.63 139.3 2.1532 

 

The estimated dimensionless critical velocities were 

calculated from Eq..(18) .Finally, from Eq.(*) the critical 

velocities were calculated.  

For comparison purpose, the results of the estimated and 

theoretical critical velocities of the two models and the 

associated errors are given in Table (6). 

Table (6): Estimated and theoretical critical velocities 

Boundary 

conditions 

Critical velocity(m/s) 
Error% 

Estimated Theoretical 

p-p 18.2238 17.7091 2.9 

c-p 24.3573 25.3664 -3.95 

c-c 30.9194 35.4182 -12.4 

Tables (6) indicate that there is generally some errors between 

the theoretical and the estimated values of critical velocities 

.These are due to experimental errors and theoretical 

assumptions. 

Also, Table (6) show that for pinned-pinned and clamped-

pinned cases, the estimated critical velocities are much closed 

to the theoretical values since the errors are small. However 

for clamped-clamped case, the errors are relatively high. This 

can be attributed to the fact that the critical velocities of 

clamped-clamped pipe are higher than those of other 

boundary conditions. This will decrease the slope of the line 

plotted in U2-Ω2 plane .The small slope means that, the 

variation in the fluid velocity leads to a small variation in the 

natural frequencies. This small variation is difficult to detect 

experimentally unless wider range of velocities is considered 

.Thus, for accurate estimation the flow rate must be increased 

for clamped-clamped case. 

Finally , the results of the experimental work give a 

reasonable  support for some of interesting theoretical results 

and phenomena  such as; the values of the natural frequencies, 

critical velocities and the effect of the fluid velocities  on the 

natural frequencies . 

5. CONCLUSIONS 
From the discussions of the theoretical and experimental 

results of vibration, stability and parametric instability for 

pipes conveying fluid, the main conclusions will be presented. 

1. The general solution for the vibration equation of 

conservative pipes conveying fluid is derived in this 

paper .From this solution the frequency equations for 

pinned–pinned, clamped-pinned and clamped-clamped 

pipes conveying fluid are obtained  semi-analytically in 

terms of the pipe parameters. 

2. In all types of conservative pipes , the natural frequencies 

decrease with increasing of fluid velocity 

3. Increasing the pressure decreases the critical velocities of 

buckling for all types of conservative pipes. 

4. The concept of stability boundary is used as an 

approximate approach for investigating the sequence of 

stability for conservative pipes conveying fluid.. This 

approach provides a simple and effective graphical 

method for analyzing stability at a wide range of fluid 

velocities .The validity of this approach is examined by 

comparing its main results with the available published 

data. The results show good agreements. 

5. A new experimental approach for estimating buckling 

critical velocities from measuring several natural 

frequencies at relatively small flow rates is presented. 

The results show good agreement between the estimated 

and theoretical critical velocities in case of pinned-

pinned and clamped-pinned pipes .However for clamped-

clamped pipes the accurate estimation requires higher 
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flow rates .This method can serve using a relatively low 

pump discharge and simple fluid circuit instead of high 

discharge pumps which demand complication in the fluid 

circuits. 
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