
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.10, January 2016

25

Tuning and Optimizing Network File System Server
Performance

Ghania Al Sadi
Sohar University,

General Foundation Program - Computing Program
Sohar, University Rd, 311

Sultanate of Oman

ABSTRACT

Network file system is one of distributed file systems that are

used over network to provide remotely access to data on the

servers. The last version of NFS has a number of features that

help in increasing server performance. However, the provided

features are limited to a specific type of operations on the

server. Therefore, finding more options may work alongside

to enhance server performances. This research is discussing

the provided features in NFSv4 and activates one of the tuning

options to tests NFS server performance.

General Terms

Network File System, NFS Features, Server Performance

Keywords

NFS, RPC, Performance, Referral, Replication, Delegation,

Block Size

1. INTRODUCTION
Network file system (NFS) is a distributed file system

protocol that was developed by Sun Microsystem Company in

1984. NFS enables users to access data remotely over network

as it is stored locally on their devices. NFS uses Remote

Procedure Call (RPC) technique as its base to execute

requests over network and manage the communication

between computers. It minimizes the need of high storage in

client devices by centralizing data on servers. NFS is built

into UNIX Kernel to be implemented on UNIX operating

systems like Linux. However, it can be implemented on

different operating systems to share data. Many organizations

that use Linux servers or mix of operating systems prefer to

use NFS as file system to manage data among computers over

network. Sun Microsystem has developed different versions

of NFS (Traeger et al. 2007). Earlier versions of NFS were

mostly implemented on LAN networks to process users’

requests over TCP/IP or UDP/IP protocols. NFSv2 and

NFSv3 are stateless where each NFS service is assigned a port

dynamically by the portmaper. Actually, these ports are not

protected by firewall filters like iptables where users are not

authenticated during remotely access to the server. Therefore,

each NFS service needs a static port numbers to be configured

by network administrators for use over firewalls that make it

difficult to be used in WANs (Chen et al. 2014). However,

last version of NFS designed to be used over the Internet that

includes stateful protocol to provide high performance and

security (Yangli et al. 2011).

NFS is considered as a transparent protocol because it enables

accessing and viewing data on clients’ computers through the

network as they are stored locally on client’s device disks.

However, data are actually stored on the server with invisible

structure to client (Chao et al. 2008). Moreover, NFS supports

virtualization by implementing Virtual File system (VFS) that

allow clients to access data transparently on different type of

devices regardless of file system type used on those devices.

Also, VFS delivers the required options to manage and handle

various requests of files on the server simultaneously.

2. NFS SECURITY
Security is the main concern in networks utilizing NFS while

it is used to share data over internet or even private networks.

Security issue mostly faced by earlier versions that eliminate

the use of NFS over the internet because NFS make use of

RPC to transmit data over network and RPC is considered as

insecure that can be only used over trusted network with

firewall. In earlier versions, it was difficult to use firewall

with NFS because NFS servers use multiple ports for each

service while firewall can control network traffic using one

defined port. This makes it difficult for clients who try to

access the NFS server where they need to find the mounted

server’s port by contacting the server’s portmapper. However,

NFSv4 make use of a single network port that is well-known

by the firewall to enable filtering traffic on the network. Using

one port eliminate the client from contacting the portmapper

to locate the mounted server. Moreover, NFSv4 enables using

some cryptographic mechanisms to encrypt RPC. In Linux,

NFS use Kerberos5 and SPKM-3 as security mechanism to

provide authentication, privacy and integrity of data while

transmitted via network (Traeger et al. 2007).

3. NFS ARCHITECTURE
The main components of NFS are NFS server and client

where both can share and exchange data remotely using

Remote Procedure Call (RPC). Setting NFS in a network

system needs to install NFS packages on both client and

server regardless of the operating system type. NFS client and

server deal with TCP/IP to send and update files. Earlier

versions of NFS used both TCP and UDP to transfer data

where UDP mostly used with applications because it is

considered faster than TCP in application side. However,

UDP is unreliable protocol since it cannot guarantee that the

data is delivered to its intended destination. Moreover, UDP

has no control over network traffic and data flow. This issue is

overcome by using TCP protocol in the last version of NFS.

NFSv4 makes use of TCP/IP to transport data for more

reliability where data transmission is managed and controlled

in Transport Layer (Yangli et al. 2011).

Exchanging data between server and clients requires

exporting shared directories from server where the clients

mount data to the mounted server. Client requests are

transmitted by RPC to the intended destination on the

network. Data transmitted using TCP/IP, UDP/IP and

Microsoft protocols that are used by both Client Redirection

and Server. Figure 1 illustrates NFS architecture that is setup

on UNIX systems.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.10, January 2016

26

Figure 1: NFS Architecture

As mentioned before, NFS supports virtualization by

implementing Virtual File system (VFS) that is setup between

the file system and the client processes. Once a node request

files from another node (server or client) in the network, VFS

passes the requests that can be (open, access, create read files.

etc.) to NFS. These requests are converted into NFS

procedures that are stored in NFS RPC to decide how to deal

within the NFS protocol. The obtained procedure then will be

executed inside the RPC layer. RPC organizes requests and its

arguments and transfer them to the intended node or

destination. In destination side, RPC controls the responds and

delivers it to the requester. RPC is also, responsible to ensure

that all NFS users are speaking the same language to be able

to understand the exchanged file’s data type between users’

machines using External Data Representation (XDR) layer.

XDR is responsible for converting data format during

exchanged over network by different type of nodes to be

understood by each other. Data is converted into XDR format

prior to transmitting to the intended node. Using XDR

eliminates convention or interpretation issues that may be

faced over network during exchanging data among

heterogeneous network computers (Yangli et al. 2011).

4. NFS ARCHITECTURE
The last version of NFS provides a number of optional

supported features that increase NFS performances by

reducing network traffic. Most used features are delegation,

referral and replication that are granted by NFS server to

reduce the workload on the server and enhance fault-tolerance

in case of server failures. However, these features may be

beneficial for specific operations with some considerations.

4.1 Referral
Referral is a global namespace feature that provides easy

distribution of data among multiple servers in the network.

NFS use referral object that is created in the server namespace

to state the location of the attached information. Actually, a

referral server does not contain the file system requested by

the client but it contains references to the requested data that

is exported on another server. Therefore, it automatically

redirects and passes the client’s request to the server that

contains the requested files system in a transparent way that

appears as it is provided by the primary server (Curylo, Joltes,

Nayar, Oesterlin 2005). NFS server using referral must enable

replication feature to maintain information location. Figure 2

illustrate the process of redirecting client’s request using

referrals.

Figure 2: Referral Feature enabled on NFSv4 Server

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.10, January 2016

27

4.2 Replication
NFS supports replication features in the servers that specify

where copies of data can be available in case of server

failures. Replication provides a replica of data on multiple

servers to improve the availability. In case of server failure,

user’s requests and application are transparently switched to a

working server that contains a replica of the requested data.

Actually, replication improves the availability of data and

enables load balancing by distributing loads among multiple

servers and thus referring clients to these servers when the

main server is unavailable. The server can export a file system

and specify the location of the replica of the file system.

While exporting the file system, the server must ensure

exporting the root of the replicated file system. Also, the

location of the replica must be the root of the file system and

the location is the attribute of the file system, not a directory

or file attribute. In this case, all mounted directories to a

replicated directory must be also replicated. Therefore,

replicas will be copies of the file system that enable the client

to access same file from replica locations when the primary

server is inaccessible. Moreover, replication must ensure the

synchronization of data copied to replicas where some

methods must be provided for the primary file system to

ensure the consistency of data in the replica. Therefore,

replication is mostly provided for read-only data to avoid

inconsistency of data. However, replication depend on a

number of factors like the number of clients accessing data,

the number of available servers, the required redundancy level

and the requirements of load balancing (Curylo, Joltes, Nayar,

Oesterlin 2005).

4.3 Delegation
NFSv4 support delegation feature as an optional mechanism

to reduce network traffic caused by the increase number of

workload. As illustrated in Figure 3, Delegation caches

requested data and attributes locally in the client device at the

first server call to reduce the interaction between the server

and client. Actually, delegation does not eliminate network

traffic completely since the client needs to contact the server

at the first activity call like open, edit or lock that will be

cached by delegation on client device. Then, all later file

activities like open, edit or lock can be done on client devices

without the need to call the server again. Using cached files

on client device, eliminate the client from finding any file’s

changes on the server. However, delegation can be cancelled

when another client request for performing edit activity on the

same file. Delegation is more beneficial with read-only files

where the client is allowed to read data only. The limitation

using delegation is that the recent changes of the file are not

provided for the client in the cached copy (Chen et al. 2014).

Figure 3: NFS Delegation

Actually, client does not request a delegation but the server

decide whether to grant the delegation for client depending on

access patterns for a requested file. Usually, client is granted a

delegation in respond to file opens. Afterward, NFS server has

the right to recall the delegation from client at any time using

back-channel connections. Moreover, NFS server can grant

read delegation for multiple users simultaneously but write

delegation can be granted to one client at a time to avoid

conflict of write operations on the same file. Therefore, server

may not grant read delegation for any client while the file is

edited by any client currently granted write delegation to

avoid any potential conflict. Generally, conflict may occur

when the file is accessed inconsistently with a current granted

delegation. For instance, if the file is currently accessed by a

write delegation and another operation occur on the file like

read access, the server will recall the first write delegation

where the second access is not granted a delegation. In case of

conflict occurrence, the server activates callback mechanism

to contact the client currently holding the delegation to send

the update of the file and returns the delegation. In case of

respond failure, the server revokes the delegation and report

the failure as I/O errors to the application. These types of

errors are recovered by closing and reopening the file (Curylo,

Joltes, Nayar, Oesterlin 2005)

5. INCREASING NFS SERVER

PERFORMANCES
As discussed previously in this research, NFS features may

improve server performance, however these performances are

limited and restricted for special type of operations. For

example, delegation is more beneficial for read operations

since data will be cached on client device. Server can grant

read delegation for a number of clients simultaneously but

only one client can be granted write delegation at a time to

avoid conflict with other write operation on the same file.

Therefore, workloads can be reduced only during read

operations. Also, considering replication, Generally, NFS

server performance based on the capability of the server to

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.10, January 2016

28

process request of clients quickly and utilizing less CPU

processing while read and write process. High performance

obtained by reducing read and writes latency and reducing

kernel CPU processing during read/writes. For high

performance, NFS server and client need to be tuned using a

number of options like changing block size setting, change

MTU size, change the time the client must take to retry same

request from the server, and changing other options available

with NFS (Lu et al. 2009).

Increasing block size will reduce the number of IP packets

exchanged in the network. On the other hand, changing

Network MTU Size may be beneficial to improve server

performance. Actually, MTU is the maximum transmission

time unit that refers to the maximum volume of passed data in

a single Ethernet. It can be changed in both client and server

to meet read/write data size transmission without the division

to portions because increasing the number of portion will

increase the number of IP Packets to be transmitted and thus

increase the work load across the server. Moreover, changing

the number of client attempts can help to increase server

performances by using timeo and retrans options. These

options are used to set the time client use to make the next

retry of the same request in case of server delay and to set the

number of attempts (Seoane et al. 2012). Along with these

options, increasing the number of NFS threads is considered

as a simple factor of server performance where this option is

done in the server to allow a high number of clients to access

the server. In this research, changing block size will be used

as an experiment to test NFS performances on Linux

environment as discussed in next section.

5.1 Change Block Size
Data block size is one factor of increasing server

performances because it specifies the amount of data that will

pass between server and client. Most versions of NFS has a

default value for block sizes, however the value can be

changed depending on the available requirements. NFS uses

RPC to exchange data over network, therefore increasing and

decreasing the size of read and write in RPC packets will

affect the number of IP packets that are transferred over the

network (Yangli et al. 2011). Decreasing the size of read and

write will increase the total number of IP packets that need to

be sent over network. Technically, decreasing the total

number of IP packets that are exchanged over network is more

beneficial to increase network performance where the network

traffic will be reduced. Therefore, increasing the number of

read and write size in RPC packets will reduce the total

number of IP packets transferred over network and thus

increasing NFS performances (Schmuck and Haskin 2002).

For example, if the 1 MB of data is divided into 32 KB of

equal chunks, then the number of the transferred IP packets

will be increased because 32 chunks will be transferred over

network. On the other hand, if 1 MB of data is divided into 64

KB of equal chunks, then the number of IP packets will be

decreased where only 16 chunks will be transferred over

network that will reduce the traffic over network and the thus

increase the speed over network. This example is illustrated in

the below Figure 4.

Figure 4: Increasing chunk size to decrease the number of IP Packet

Therefore, it is more reasonable for NFS to change the default

value of read and write size of the NFS share mounted on

client devices. As shown in Figure 5 below, the default

options of data chunk size that are transferred by RPC packets

during read and write is 131072 that are represented in by

rsize and wsize respectively. These values are set by default in

NFSv4 that may differ in other NFS versions.

Figure 5: The default value of rsize and wsize in RPC packets

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.10, January 2016

29

The default values of rsize and wsize can be tuned while

mounting to meet NFS network requirement by considering

the network capacity and power processing and performance

of both the client and the server. As shown, in Figure 6, the

rsize and wsize values are increased to 200000 that will

reduce the number of data chunk need to be sent by RPC

packets and thus decrease the total number of IP packets that

will be transferred over network.

Figure 6: Tuning rsize and wsize to reduce the total number of IP packets

However, modifying and tuning read and write size

parameters must depend on the capability of the network and

its components like ports of servers, clients and switches. For

instance, if the server and client ports are one gigabyte and as

well for network switches, then tuning these parameters to a

high value is recommended to increase network performance

(Wang and Hsu 2010).

6. CONCLUSION
Network File System is considered as a suitable protocol that

can be used over networks to access data remotely. It provides

a powerful mechanism to access data using RPC. Also, NFS

provides optional features like Delegation, Referral and

Replication to improve NFS server performance. However,

the provided features still have some limitations since they

may work with a specific type of operations only like read-

only requests. Therefore, tuning NFS server using some

optimization mechanisms is required to provide more

performances on the server. Increasing block size of data that

are mounted over NFS server can work powerfully because

the number of chunks in the RPC packets will be decreased

and thus the total number of IP packets will be reduces.

Technically, reducing the total number of IP packets

transferred over network will reduce network traffic and thus

increase the network respond speed. Testing NFS server using

different parameters like tuning block size, modifying MTU

size may be the aim for future work. A number of tools are

available to test NFS performance and speed that may be used

to compare the available optimization parameters and

mechanisms.

7. REFERENCES
[1] Chao H-C, Liu T-J, Chen K-H, Dow C-R. A seamless

and reliable distributed network file system utilizing

webspace. Web Site Evol 2008 WSE 2008 10th Int

Symp. 2008;65–8.

[2] Chen M, Hildebrand D, Kuenning G, Shankaranarayana

S, Tarasov V, Vasudevan AO, et al. Linux NFSv4 . 1

Performance Under a Microscope. 2014;

[3] Curylo, Joltes, Nayar, Oesterlin P. Front cover

Implementing NFSv4 in the Enterprise : IBM Corp.

2005;

[4] Lu J, Du B, Zhu Y, Ren L, Li D. A High Performance

Cluster File System with Standard Network File System

Interface. 2009 Int Forum Inf Technol Appl [Internet].

2009;397–400. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arn

umber=5231636

[5] Schmuck F, Haskin R. GPFS: A Shared-Disk File

System for Large Computing Clusters. Proc First

USENIX Conf File Storage Technol [Internet].

2002;(January):231–44. Available from:

http://portal.acm.org/citation.cfm?id=1083349

[6] Seoane N, Valin R, Garcia-Loureiro A, Pena TF, Zablah

I. Performance of numerical simulations on the cloud.

2012;19–21.

[7] Traeger A, Thangavelu K, Zadok E. Round-Trip Privacy

with NFSv4 ∗ . Security. 2007;1–6.

[8] Wang C-C, Hsu Y. Wofs: A Distributed Network File

System Supporting Fast Data Insertion and Truncation.

2010 Int Work Storage Netw Archit Parallel I/Os

[Internet]. 2010;43–50. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arn

umber=5571751

[9] Yangli, Li Y, Zheng L. Transparent encryption based on

network file system filtering driver. 2011 Int Conf Electr

Inf Control Eng ICEICE 2011 - Proc. 2011;6339–42.

IJCATM : www.ijcaonline.org

