
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

43

Natural Language Query Parser using First Order Logic

for Querying Relational Databases

B. Sujatha

Assistant Professor
Department of CSE
Osmania University
Hyderabad, India

S. Viswanadha Raju

Professor
Department of CSE
JNTUH University

Jagtial, India

ABSTRACT
Relational database management systems are mostly used for

effective representation and retrieval of data. For the user, it is

hard to learn the database interface language to deal with

various operations on databases. Hence there is a need to

construct a bridge between natural language query and

database understandable query which is a major challenge. In

this paper, we have proposed a Natural Language Parser for

Natural Language Interface to customer database. The parser

converts the Natural Language query into First order Logic

and then the First order logic query is converted into

structured query. This paper also addresses the word sense

disambiguation problem using ontologies and n-grams. The

lexical meaning of the natural language query can be captured

with n contiguous characters or words of the query. The

proposed system is able to handle extraction, insertion,

deletion and updation queries. It is also able to process join,

conditional, single and multiple column retrieval queries. The

performance of the system is measured using precision, recall

and F-measure. The results are progressive.

Keywords

Natural Language Query, First Order Logic, Structured

Query, Precision, Recall, F1-measure

1. INTRODUCTION

Database systems are used since 1970s for the storing various

kinds of data for different purposes such as commercial and

personal needs. Though there are many types of architectures

for database design like object oriented, object based, file

based, hierarchical based and network based, the predominant

designing of databases follow relational database architecture

to store the data by using various types of storage devices. In

relational databases, the data is stored using tables. The table

contains set of rows and columns. Each column represent and

attribute and each represents the instance of the data for a set

of attributes. The data can be manipulated using various

operators with fixed set of keywords by following a set syntax

rules. By learning this structured query language one can

extract the required data from the whole set of data, can also

perform various operations such as update, manipulate and

deletion of the data.

The Relational database management systems are more

popular based on the characteristics like its robustness and

flexibility, high performance, scalability, data security and

protection and flexible data maintenance. Above all these

advantages, it allows to index, perform aggregation, filtering

and sorting can be done on the data using structured query

language.

There are some disadvantages with relational databases. To

perform operations on the data which is stored on databases, it

is required to learn the structured query language. Hence , the

naive user who knows only the natural language can not

directly access the required information from the databases.

To come out from these limitations, it is required to design a

tool which can understand the requirements of the naive user

through natural language query, convert the natural language

query into an equivalent structured language query. Then the

obtained structural query is used to access the required

information from the databases. This kind of tool ins termed

as Natural Language Interface to Databases or NLIDB

system. Thus, the NLIDB system take the input as natural

language query and converts it into a structures language

query and returns the desired information to the naive user.

The designing of a NLIDB system for various languages and

for different underlying databases is attempted by various

researchers since five decades. But, designing of an most

suitable NLIDB systems with high accuracy, precision and

recall is still an open research problem which need to be

addressed. The various earlier developed NLIDB systems

focused on particular databases. There is need of designing a

generic NLIDB system which can address the robustness and

scalability of the applications. It is required to attempt the

problem of portability to customize a NLIDB system to a

other language and to other set of datasets designed for

various domains. The efficiency of conventional NLIDB

systems depend mostly on domain experts capabilities and

linguistic features of the natural language.

In this paper, it is focused on designing a NLIDB system to

overcome the various issues such as portability to different

languages and to access the required information independent

of the underlying database. It also required maintains the

scalability and robustness of the system. To achieve this

objective, the system is designed with general purpose

syntactic parser. In this paper, it is proposed a system in

which the natural language query is parsed using First Order

Logic and the parsed query is converted into SQL query. The

designed system maintains a high accuracy 84% for customer

database.

2. RELATED WORK

There are many designing models are proposed in the

literatures in the field of NLIDB such as pattern matching

systems, syntax based systems, semantic based grammar

systems and intermediate representation of languages system.

The pattern matching systems takes input as a set of rules and

sample set of pattens. Based on the inputted word of sentence

with natural language, it will be compared with the predefined

patterns [1]. If there is a match between the input and

predefined pattern then an action will be generated and these

generated actions will be stored in the database. The response

given to the user is based on the action generated. This kind of

systems are limited to specific databases. The accuracy of the

system is depend on the complexity of the patterns used to

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

44

train and based on the set of rules used to train the system [2].

The NLIDB system SANVY is a good example for pattern-

matching systems [3].

The syntax based systems takes the user query as input and

parse the given input syntactically. The parse tree generated

for the input query is overlapped with the one structured query

of the database expressed using structured query language.

LUNAR is a best example for syntax based NLIDB systems

[4]. In these systems, the grammar rules are derived to match

the various user questions with syntactic structures [5]. This

system is used to answers the questions on rocks which were

collected from the moon. With the corrections in the

dictionary errors, the performance of the system has increased

[8].

In the semantic grammar system, the parse is simplified by

eliminating unimportant nodes or by combining two or more

nodes into one node. The complexity of structured query can

be reduced in semantic grammar system. Semantic grammar

systems are more simpler when compared with syntax based

systems. But these systems need to be trained with a prior

knowledge of the various elements of a domain. PLANES and

LADDER are the good examples for Semantic grammars

systems [6,7].

In many NLIDB systems, the natural language query is

transformed into an intermediate logical query. The logical

query is represented using a meaningful representative

language such as first logic language or Boyce codd normal

form. This kind of representative languages, represents the

meaning of the users queries in high order level of concepts.

These concepts are independent from the structure of the

database. This representative query is then transformed into

an expression in the structured query language which can

extract the relevant data from the databases.

In the intermediate representation of natural language

systems, the natural language query is inputted to the system.

This query is processed for syntax rules using a parser. Based

on the set of syntax rules of a natural language, it generates a

parse tree. By using the semantic rules of semantic interpreter

module, the generated parse tree is translated into an

intermediate logic query. In the semantics rule, left hand side

of the syntax rule contains the logic expression of the

constituent where as right-hand side of the syntax rule is a

function of the logic expressions of the constituents. The logic

expressions represents the words which are corresponds to

lexicon. To get the required information from the database,

the logic query is to be transformed into a structured query

which is supported by the underlying Database Management

System. MASQUE/SQL is an example of intermediate

representation language systems [7].

By using semantic grammar techniques which interleaves

semantic and syntactic processing in distributed databases,

LADDER system is used to parse natural language questions

to database understandable queries [7]. The another NLIDB

system implemented using the language called Prolog was

CHAT-80. This system transforms the natural language

inputted English queries into Prolog expressions. These

Prolog expressions are evaluated using the Prolog database.

ROBOT which was a prototype of a NLIDB system named

INTELLECT which was a commercial natural language

interface to database systems [9]. ASK is the another NLIDB

system which allows the users to train the system with new

words and concepts while inter actioning with the system. By

using the system, it is possible to make interactions with

various external sources such as external databases, chating,

Facebook, twitter, email programs and many other

applications.

Generic Interactive Natural Language Interface to Databases

(GINLIDB) was designed by the using UML and developed

using Visual Basic.NET. The system was a generic system

and it works for underlying suitable database and knowledge

base [10]. SynTactic Analysis using Reversible

Transformations (START) is also another Natural Language

System. It was the first Web-based question answering

system. It was available online and continuously operating till

now [11]. It utilizes various language Dependant functions

such as parsing, semantic analysis, word sense dis-ambiguous,

natural language annotation for appropriate information

segmentation and presentation for the user [12].

JUPITER was a NLIDB system to know the weather

information worldwide. The user can pose a question to the

system in their native language to forecast the weather

information over the telephone. The Oracle Structured Query

Language SQL can be learned by the students using the

NLIDB system called SQL-Tutor. If the student asked the

new questions by typing at terminal then also, the SQL-Tutor

can answer the question by using the existing knowledge [13].

KUQA system divides the query based on possible answer

and after that it uses NLP techniques and also WorldNet to

identify the answers which suitable to its corresponding

category. But, this system can not handle any linguistic

information [11]. QuALiM another NLIDB system designed

based on complex syntactic structure which were based on

certain syntactic description question patterns [11].

3. NATURAL LANGUAGE QUERY

TRANSLATION
The database query specified by the user is gone through

several stages of processing to ultimately get convert into

SQL query. The obtained SQL query is forwarded to the

Database Management Systems for the query execution and

the results are presented to the user. All of the conversion

process is abstract to the user whose only job is to specify the

natural language query to the system. The system then

responds to the user with the acquired results.

The flowchart for Natural Language Query Translation is as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

45

The natural language query goes through the following

phases:

A. Stop words Removal and Stemming

B. POS tagging and Resolving Disambiguation

C. Parsing

D. Converti Natural Language query to First Order Logic

E. FOL to SQL transformation.

This section covers the first three phases such as stopword

removal and stemming, POS tagging and resolving dis-

ambiguous and Parsing the natural language query. The

remaining two phases are covered in sections 4 and 5.

3.1. Stopword removal and Stemming

A stop word is a word which is of little value in a user‟s

request statement. Stop words when ignored does not affect

the search and also saves time in unnecessary processing. The

words from the user defined request statement are discarded if

they belong to stop list. Stop words removal saves both time

and space at the preprocessing stage.

Stemming is one of the important features of information

retrieval. The main idea is to remove any additionally attached

suffixes or prefixes to a word. Words have different

morphological variants, reducing the variants to its root form

is done through stemming. The stemming operation is

optionally applied as per need to target the root word.

Stemming can be achieved using any of the stemming

algorithms such as dictionary look up stemmers, porter

stemming algorithm.

 3.2. POS tagging and Resolving

 Disambiguation
The tagging is the process of automatic allotment of

descriptors. A descriptor is also knows as a tag. A tag may be

used to identify part of speech, semantic information etc. Thus

tagging can also be said as a form of classification of

information.

Part of Speech tagging can be defined as the task of assigning

parts of speech to the words in a given text. It is simply knows

as POS Tagging. Parts of speech are nouns, pronouns, verbs,

adjectives, adverbs, preposition, conjunction, and interjection.

Interjections are rarely found in the database query and if

occurred, it is ignored since it is a member of stop list. A POS

tagger is a program that does its job using information from

the dictionary, lexicon or rules.

After POS tagging, the system is left with the information of

the words that may relate either to the CPVbase tables or

attributes or fields. Any other word that does not relate to any

of it may be resolved by mapping with the ontology for

start

Read NL statement

Stopword Removal

Disambiguation

Semantic analysis

Parsing

NL to FOL Translator

SQL Query Generator

stop

N-Grams

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

46

CPVbase. When disambiguation arises then the preceding or

succeeding words are analyzed with the candidate word or the

other aspects such as linguistic features of the word are

examined.

The words are divided using N-grams and when complexity to

interpret increases the level of N-grams is increased and the

words in the group are analyzed. The synonymous words may

also occur that can be replaced with the system‟s terminology

by finding its correct mapping using the ontology.

3.3. Parsing

The query containing only the keywords meant to be

processed is parsed. The grammar rules that are applied for

parsing are explained below. The main aim is to convert the

user‟s database query into First Order Logic. To achieve this

parsing need to be done using few of the grammar rules. The

First order Logic statement can be then converted to SQL

Query. The following grammar defines when the predicate is

a mathematical operation:

If the phrase is of the form : <p1> M <p2>

where <p1>, <p2> denotes preceding and succeeding

predicates respectively. M indicates a scientific measure.

4. PARSER USING FIRST ORDER

LOGIC FOR CUSTOMER DATABASE

The conversion process of Natural language to First Order

Logic is carried out using the formula

[<S1>] [→] [<QEXP>]<S2>

S1 indicates the natural language statement and S2 denotes

the First order Logic statement containing Quantifiers given

by QEXP. The problem in converting the natural language

statement to FOL rises at the NL side, since it does not follow

any clear semantic. The conversion is an ad-hoc process. The

main format of the conversion algorithm can be simply stated

as it follows the syntax of FOL and incorporates the natural

language statement such that the intention of the statement is

retained.

The FOL formulas rely on the following set:

1) Variables: The semantics of an FOL depends on a

Domain D. The set of variables represents elements

of D.The set of variables can be denoted symbols

such as {x, y, z,..., x1, x2,…}.

Mathematically it can be stated as, If there is an Assignment

function A, then A: V→D. That is, the assignment functions

maps every variable to an element of the domain D.

2) Quantifiers: The most quantifiers used are „∀ ‟ read

as “for all” and „∃ ‟ called as “there exists”. The

“for all” is a universal quantifier and “there exists”

is an Existential quantifier. The quantifiers are used

to quantify what assignments can be used for the

variables.

3) Predicate Symbols: The predicates represent the

characteristics of the elements or relation among

element of D.

4) Function Symbols: They denote function in the

Domain D, denoted as f, g, h, or can be as plus,

multiply etc.

5) Constant Symbols: They represent the specific

element from D.

6) Connectives: The connectives used to connect the atomic

formulas constructed using above element. The commonly

used connectives are ˄ (AND), ˅ (OR), ⇒ (IMPLIES), ~

(negation: NOT).

The functions and predicates can define their ARITY that

specifies how many arguments it can take. Arity is specified

below a predicate or a function. For example a function

defined as fn indicates that the function has arity of „n‟,

meaning that it can have n arguments.

According to FOL a term is defined as a

(I) If T is a family of terms such as {t1, t2,…..tn }, then every

Variable is a term, represented as x ∈ V → x ∈ T

x is any entity and V is a set of variables.

(ii) Every Constant is a term, such that c∈ C→ c ∈ T

c is any element and C is the set of Constants.

(iii) For every „f‟ of arity „n‟, that is fn ∈ F, where F is a set of

function symbols and the set {t1, t2,…..tn }∈ T then the

following expression also holds true: fn (t1, t2,…..tn) ∈ T

The mapping of predicates, constants and function sets is done

by a function called as Interpretation function (I). The

interpretation specifies what does each of the constituent

stands for in the domain. The mapping by the interpretation

function is done as follows,

p∈ P → pI

f∈ F → f I

c∈ C → cI∈ D

where p, f, c are elements from the sets of Predicate (P),

functions (F) and Constants (C). All of the above

specifications define the vocabulary of the first order logic

system.

FOL formulas can de denoted as P(t1, t2,…..tn) , also called

as atomic formulas , (M˅N), M⇒N, ~M , where M and N are

FOL formulas constructed using functions, predicates or

constants. The following specifies the algorithm to convert the

NL Query into FOL:

Step 1: Identify the nouns, verbs, adjectives from the given

NL query. And denote the predicates or functions symbols.

Step 2: Indicate the arity of each of the symbols.

Step 3: Specify the quantifiers of the variables.

Step 4: Build the Atomic formulas for the predicates.

Step 5: Classify the atoms that belong to the same group that

will be joined using Connectives.

Step 6: Join the atoms of each group using the logical

connectives.

Step 7: State the left and right hand side of the implications.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

47

Step 8: Designate the connectives between the formulas of

the group and spot the next level of formulas if any and go to

step 7.

Step 9: Assign the quantifiers at the right places in the

obtained formula to generate the FOL formula.

 The FOL formulas obtained thus can be further forwarded to

the process of converting it to the SQL query that is examined

in the next section.

5. FOL TO SQL TRANSFORMATION

The NLIDB system constructed intends to solve natural

language queries based on the select statement of the SQL

language. If the syntax of the SQL‟s Select statement is

observed then it requires column list to be displayed from the

specific table list based on some given condition. Hence the

elements that are needed to form a SQL select statement is:

(1) Column List

(2) Table List

(3) Condition

The obtained FOL formula specifies all the above elements in

its Statement. Thus the SQL query can be formulated using

the information interpreted using the FOL statement. All the

theoretical concepts shown are applied on few natural

language queries taken into consideration as sample queries

and the working of the above algorithms is illustrated below.

The NL statements are randomly selected querying the

customer database. The flowchart constructed presented

above show the complete course of Natural language query

translation to SQL query formulation.

6. EXPERIMENTAL RESULTS AND

DISCUSSIONS

6.1. Database Description

The database consists of customer, product, vendor, invoice

table for illustration. All of the tables are related to each other,

pertaining to a relational database model. So, CPVbase can be

defined as:

CPVbase = (Customer, Invoice, Product, Vendor). Customer

table can be defined as

C= {∀ n/ ∃ ck, w(n), x(n), y(n),z(n),}

where n represents a customer entity and ck is unique to

every, primary key of customer table and w, x, y and z are the

functional variables of n, representing information related to

n, as name, area code, phone and balance respectively. A

product table is given as

P= {∀m/ ∃ pk, pi(m), where 1≤ i ≤ s ,vk }

„m‟ is a product entity . pk is the primary key and pi(n)

denotes product‟s free variables, s represents the field size of

the product. vk illustrates foreign key from Vendor table.

Vendor table can be defined as below

V={∀ d/ ∃ vk, vi(d), where 1≤ i ≤ s }

„d‟ is a vendor entity. vk is the primary key and vi(n) denotes

vendor table‟s free variables, s represents the field size of the

vendor. An entry into invoice table represents that a purchase

transaction is at execution and is given by:

I={∀ e/ ∃ Ik, Ii(e), where 1≤ i ≤ s , pk , ck }

„e‟ is an invoice entity . Ik is the primary key and Ii(n) denotes

Invoice table‟s free variables, s represents the field size of the

Invoice. pk , ck are the foreign key references from the Product

and the Customer table.

6.2. Evaluation measures

The attainment of relevant information by the user as per the

natural language query in English gives the retrieval efficacy.

The precision is the measure of retrieved results that are

relevant to the need, evaluated using the fraction of relevant

documents retrieved to the total number of documents

retrieved. Mathematically it can be expressed as

Precision=
CorrectlyAnsweredQueries

AnsweredQueries
(5.1)

Recall measures the relevant results retrieved as per the user

statement. That is the fraction of relevant documents retrieved

to the total number of relevant documents present in the

system.

Recall=
CorrectlyAnsweredQueries

TotalNumberofQueries
(5 .2)

based on the precision and recall measurements, the system

was tested for a random of 100 queries, giving the result

tabulated displayed in table 5.1

Table 5.1 Implementation Results

Total Queries : 100

Answered Queries: 97

Unanswered Queries: 3

Correct Results: 84

Wrong Results: 13

Precision: 84/97 = 86.5%=0.86

Recall: 84/100 = 84.0%=0.84

The results shows that the system offers a recall rate of 0.84

which means that it has 84% Probability of generating correct

responses to the user queries. This proves the effective and

optimal working of the system. The result is determined by

taking portion of queries and is obtained as presented in the

table 5.2.

The table 5.2 contains system data generated by testing using

different amount of queries and obtained the counts of

correctly answered queries (correct_q), wrongly answered

queries(wrong_g) and unanswered queries due to improper

mapping or no corresponding record (unans_q) with their

respective measures of precision and recall. The precision and

recall is decreasing if irrelevant queries are observed. Thus the

precision and recall can be well defined if the data search is

acquired with maximum relevant terms in the query.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.11, January 2016

48

Table 5.2: Precision and Recall for varying number of

Queries

No. of

queries

Correct_q Wrong_

q

Unans_q Precision Recall

20 18 2 0 0.9 0.9

40 35 3 2 0.92 0.875

60 52 6 2 0.89 0.866

80 70 9 2 0.897 0.875

100 84 13 3 0.86 0.84

7. CONCLUSIONS AND FUTURE

SCOPE

The research aimed at developing an interface that eases the

work of the naive user to formulate a database request and

generate appropriate responses. The system vitally uses the

ontology constructs, Parsing rules and FOL logic to extract

the requisite information in forming a standard database

Query. The system is flexible and can be adapted to any of the

Database management systems or a relational database

management system. EFFCN is a domain independent and

highly portable system. It uses the semantics and syntactic

knowledge to generate the correct match of the input

statement‟s SQL query. Using the power of ontology and

enhanced parsing mechanisms to filter query up to a refined

level where it incorporates needed information as per the user.

Compared to which the EFFCN system gives a success rate of

84% and high precision of 86.5%.

The NLIDB system future growth is directed towards

improving the success rate by applying concepts of neural

networks, machine learning parsing techniques and the use of

SQL standard aggregate functions such as average, min and

max along with the operator precedence concepts. The

analysis of the system from the perspective of abbreviations

and the temporal queries also needs careful interpretation

along with the complex restrictions of FOL logic.

8. REFERENCES
[1] Mrs. Neelu Nihalani, Dr. Sanjay Silakari and Dr. Mahesh

Motwani, “Natural Language Interface for Database: A

Brief Review”, IJCSI International Journal of Computer

Science Issues, vol. 8, no. 2, pp. 600-608, Mar. 2011.

[2] T. Johnson, “Natural Language Computing-The

Commercial Applications”, The Knowledge Engineering

Review, vol. 1, no. 3, pp. 11-23, 1984.

[3] Androutsopoulos, G.D. Ritchie and P. Thanisch,

“Natural Language Interface to Databases-An

Introduction”, Department of Computer Science,

University of Edinburgh, King‟s Buildings, Mayfield

Road, Edinburgh EH9 3JZ, Scotland, U.K. , Mar. 1995.

[4] W.A. Woods, R.M. Kaplan and B.N. Webber, “The

Lunar Sciences Natural Language Information System:

Final Report”, BBN Report 2378, Bolt Beranek and

Newman Inc., Cambridge, Massachusetts, 1972.

[5] C.R. Perrault and B.J. Grosz, “Natural Language

Interfaces”, Exploring Artificial Intelligence, Morgan

Kaufmann Publishers Inc., San Mateo, California, 1988,

pp. 133-172.

[6] D.L. Waltz, “An English Language Question Answering

System for a Large Relational Database”,

Communications of the ACM, pp. 526-539, 1978.

[7] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum,

“Developing a Natural Language Interface to Complex

Data”, ACM Transactions on Database Systems, pp. 105-

147, 1978.

[8] W. Woods, “An experimental parsing system for

transition network grammars in Natural Language

Processing”, Algorithmic Press, New York, USA, 1973.

[9] L.R.Harris,“Experience with INTELLECT: Artificial

Intelligence Technology Transfer”, The AI Magazine,

pp. 43-50, 1984.

[10] Faraj A. El-Mouadib, Zakaria S. Zubi, Ahmed A.

Almagrous and Irdess S. El-Feghi, “Generic Interactive

Natural Language Interface to Databases (GINLIDB)”,

International Journal of Computers, vol. 3, no. 3, 2009.

[11] “START Natural Language Question Answering

System”. [Online].Available: http://start.csail.mit.edu/

[12] M. Joshi, R. A. Akerkar, “Algorithms to improve

performance of Natural Language InterfaceInternational

Journal of Computer Science & Applications, vol. 5, no.

2, pp. 52-68, 2008.

[13] Seymour Knowles and Tanja Mitrovic, “A Natural

Language Interface For SQL-Tutor”, Nov. 5, 1999.

IJCATM : www.ijcaonline.org

