
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

22

Legacy Components Stability Assessment and Ranking
using Software Maturity Index

Bassey Asuquo Ekanem
Institute of Engineering,

Technology & Innovation Management
University of Port Harcourt, Nigeria

Evans Woherem
Compumetrics Solutions

Abuja, Nigeria

ABSTRACT
Component-based software modernization is technique that is

widely accepted to have the greatest potentials in restructuring

legacy applications into modernized versions with best

qualities and maintainability attributes amongst other

modernization techniques. This technique relies greatly on

stable components extracted from the legacy system and

selected for reuse. In selecting the components, some

reusability attributes are usually considered of which

components stability is one of such. However, the task of

selecting stable components for reuse especially from legacy

applications is a very difficult one due to inadequate

techniques and models specifically designed for this. This

research therefore, presents a technique for assessing the

stability of components extracted from legacy applications

using software maturity index. It also provides a means of

ranking the assessed components with a scale comprising of

Highly Stable, Fairly Stable, Stable, Unstable, Fairly Unstable

and Highly Unstable to guide the choice of quality and stable

components for reuse in modernization. The research further

emphasizes the importance of proper software maintenance

data recording from one version to another as such is a major

requirement for legacy components reusability assessment.

General Terms
Legacy Components Reusability Assessment

Keywords
Components Stability Assessment, Components Ranking,

Software Maturity Index, Software Modernization

1. INTRODUCTION
Legacy applications in recent past have drawn so much

attention from software professionals due to their critical

nature to routine business operations and the difficulties

associated with their maintenance. The fact that software

industry experiences at least 10% annual increase in legacy

code (Denoncourt, 2011); raises further concern about

organization’s capacity to cope with their challenges.

The frequent technological changes and the dynamism of the

environment in which legacy applications operate usually

demand for regular maintenance as a requirement to extend

their usable life. However, legacy modifications are usually

difficult and expensive due to some unique characteristics of

these set of applications, namely language obsoleteness, poor

data abstraction, poor code structure, lack of qualified

engineers with experience in the obsolete tools, and

incomplete documentation (Cipresso, 2010).

Despite these challenges, organizations still find it difficult to

abandon or replace them; rather, legacy modernization aimed

at transformed the legacy application into modernized

versions with features that address the fundamental challenges

and possibly drive down maintenance cost is usually

considered as the best option (Mishra, 2009). This fact is

further affirmed in (Malinova, 2010), Comella-Dorda et al

(2010); Saarelainen et al (2006) and Khadka et al (2010)

where legacy modernization is reported as being more

profitable than outright replacement with a caution that

application must be replaced only when it can no longer be

evolved.

According to Gartner (2012) CIOs survey report, application

modernization is presently one of the top 10 IT technology

priorities of CIOs globally. This is because year-in year-out,

some application software used in organizations usually

mature into legacy application category thereby prompting the

need for their modernization to address their maintenance

challenges. Legacy modernization could take any of the

following forms, namely wrapping, migration, reengineering,

and component-oriented reengineering. However,

component-oriented reengineering technique is believed to

have the greatest potentials in restructuring legacy

applications into modernized versions with best qualities and

maintainability attributes (Mishra, 2009); Cipresso, 2010).

Successful component-oriented reengineering of legacy

applications requires the use of stable components extracted

from the legacy application (Younoussi and Roudies, 2015).

However, the task of selecting stable components from a host

of components in a legacy application could be very difficult,

hence the need for a systematic approach in this regards.

There is no doubt the fact that, information from such

assessment would serve as a guide to professionals in making

proper choice of components and providing some levels of

confidence in the components being selected for reuse.

Furthermore, existing models for components assessment,

mainly focus on measures to ensure well-planned and

controlled reuse-oriented software development process in

organizations. In other words, majority of these models are

designed mainly to support reusability assessment of

components built for software development projects with little

or no emphasis on reusability assessment of components

extracted from legacy systems for reuse in modernization

(Younoussi and Roudies, 2015; Fazal-e-Amin et al, 2011;

Jasmine and Vasantha, 2010).

In view of the above, this research proposes components

reusability assessment technique designed specifically for

components stability assessment and possible ranking using

Software Maturity Index (SMI). The practical demonstration

of this approach is based on maintenance data generated with

RANDBETWEEN function of spreadsheet package on three

legacy applications used in the demonstration.

2. REVIEW OF RELATED RESEARCH

WORKS
For a proper understanding of the research area, a review of

related research works particularly in components reusability

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

23

assessment was made and reported thus. In Rine and Nada

(2000), Reuse Reference Model (RRM) is presented with both

technical and organizational elements needed to establish a

successful practice of software reuse in organizations. The

level of reuse as defined in RRM, determines the capability of

improvements in the productivity, quality and time-to-market

of the organization. Inoue et al (2004) presents the

component rank model using digraph-based system for

computing and ranking software components selected for

reuse.

Garcia et al (2007) presents the RISE Maturity Model (RISE)

designed mainly to support organizations in improving their

software development process with respect to components

reusability assessment. It also serves as a roadmap for

software reuse adoption and implementation where reusability

attributes like stability, adaptability, completeness,

maintainability and understandability were considered.

In Jasmine and Vasantha (2010), a model called Reuse

Capability Maturity Model (RCMM) is presented with

emphasis on measures needed to ensure a well-planned and

controlled reuse oriented software development. The model

is structured into five levels with each level representing a

stage in the evolution to a mature reuse process. A set of

maturity goals for each level and the activities, task and

responsibilities are specified.

Furthermore, in Fazal-e-Amin et al (2011), a review of

software components reusability assessment approaches was

made, with the research results indicating that the majority of

the approaches (i.e. 70%) are based on metrics, and applicable

to the object oriented development projects using Java as the

target language. The research further emphasizes the need for

other approaches particularly experimental based approaches

for comparison and better results. In Subedha and Sridhar

(2012) a technique for measuring the quality of components

for reuse with functional coverage report, software metrics

and minimum extraction time is presented. The technique

also provides a means of classifying the identified set of

components into qualified and not qualified components.

Other relevant research works reviewed include the

following: In Younoussi and Roudies (2015), a detailed

literature review of recent research works in software

reusability is presented with stability, understandability,

portability, maintainability, flexibility, independence,

documentation, adaptability and interface complexity

identified as attributes that influence software components

reusability. The research further reports that studies on

maturity models of software reuse are limited and more was

needed to be done in this area to help organizations in proper

auditing of their maturity reuse level.

Kessel and Atkinson (2015) discuss some of the main issues

involved in improving the selection support for pragmatic

reuse provided by test-driven search engines. It also describes

some new metrics that could help address the issues and

presents an approach for ranking components in search

results.

3. FINDINGS FROM THE REVIEW
The reviewed works clearly indicate that existing techniques

and models were designed mainly to support reusability

assessment of components built for software development

projects with little or no emphasis on reusability assessment

of components extracted from legacy systems for reuse in

modernization. In other words, these techniques and models

were designed primarily to support and ensure that reuse-

oriented software development are well-planned and

controlled for successful software reuse practice in

organizations where they are applied. With this, existing

assessment techniques rely on software development data

from integration testing for the measurement (Fazal-e-Amin,

2011); whereas maintenance data of legacy application from

one version to another are needed in the case of legacy

components reusability assessment.

Considering the need to cope with annual increase in legacy

code in the software industry where today’s modern software

are tomorrow’s legacy applications and candidates for

modernization, there is a need to fill the gap of inadequate

techniques for legacy components reusability assessment if

the present gains in component-oriented modernization as

applicable to legacy system are to be consolidated. This

could be addressed by adapting existing models primarily

designed for components assessment in development projects

to utilize legacy maintenance data in assessing legacy

components reusability. More appropriately, new techniques

and models could be evolved specifically for legacy

reusability assessment to fill the gap.

4. DESCRIPTION OF SOFTWARE

MATURITY INDEX (SMI) MODEL
This research relies of Software Maturity Index (SMI) for

components stability computation and ranking. Software

Maturity Index, a metric in IEEE (1988), specifically IEEE

982.1-1988 was introduced to measure the maturity of

software systems as a software evolves from one version to

another. The metric is represented below:

SMI = (M – (A + C + D))/M

where

M = number of modules in current version

A = number of added modules in current version

 C = number of changed modules in current version

 D = number of deleted modules in current version

More precisely, SMI = 1 – N/M, where

M is the total number of modules in the current

version

 of the system and

N is the number of modules added, changed or

deleted

 between the previous version and the subsequent

 version.

Accordingly, SMI can be used as a measure of product

stability. Therefore, when SMI approaches 1.0 the product is

said to be stable. Also, when this is correlated with the time it

takes to complete a version of the software, an indicator of the

maintenance effort needed in maintenance is obtained.

However, a closer examination of this model reveals possible

adaption to fit into legacy component stability assessment. In

this case, the maintenance data on each component in the

recent versions of a legacy application could be collected and

used to compute the respective SMIs of each components; in

which case modules as used in the model are replaced by

legacy components in the application under study. The result

of such computation is further interpreted and used to

determine components stability. This research is based on

this concept and uses maintenance data on three legacy

applications from three organizations.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

24

5. RESEARCH METHODOLOGY

The research work was designed as experimental research

with the following processes:

i. Review of relevant documentations

ii. Randomization of the needed research data using

RANDBETWEEN function in spreadsheet Program

iii. Data Coding and Analysis

iv. Results Interpretation and discussions

A review of relevant literature was made to establish the level

of achievements in the research area and identify research

gaps. Furthermore, the needed data for the research were

generated randomly using RANDBETWEEN function in

spreadsheet program. Data generated include number of

components in current version (M), number of added

components in current version (A), number of changed

components in current version (C), and number of deleted

components in current version (D). The data were coded and

analyzed using statistical package to generate results that were

further interpreted and reported accordingly.

6. DATA SHEET AND DATA

RECORDING
Data needed in this research are the maintenance data of some

legacy application software for some versions, at least the last

four versions of the legacy application. The required data

were generated randomly on three legacy applications coded

as Legacy Applications A, B and C from the

RANDBETWEEN function in Microsoft Excel. Also, a

datasheet designed specifically for the research (see Table 1)

was used to record the generated data for further processing.

Table 1: Datasheet for Legacy Maintenance Data

Collection

C
o

m
p

o
n

en
t

Id
 I

d

Version N-3 Version N-2 Version N-1 Version N

M A C D M A C D M A C D M A C D

where M = number of modules in current version

A = number of added components in current version

 C = number of changed components in current

version

 D = number of deleted components in current

version

The datasheet has sections for recording the maintenance data

of the last four versions of the legacy application which are

denoted as Version N-3, Version N-2, Version N-1, and

Version N, where Version N is the most recent version.

In other to generate realistic data with the RANDBETWEEN

function, the following assumptions were made: For version

N-3, the range of values for M were specified as between 6

and 15 based on the assumption that the number of modules

in a component at the point of initial deployment will not be

below 6 and not above 15. Similarly, the range of values for

other operands (i.e. A, C, and D) in all versions were

specified as between 0 and 5 with the assumption that

modifications to components (i.e. addition, deletion or

change) will be between 0 and 5.

7. DATA PRESENTATION AND

ANALYSIS
The maintenance data generated on the three legacy

applications labelled Legacy Applications A, B and C from

the RANDBETWEEN function are given below with the

number of components for A, B and C randomly fixed at 15,

10 and 7 respectively:

Table 2: Maintenance Record of Legacy Application A

C
o

m
p

o
n

en
t

Id

Version N-3 Version N-2 Version N-1 Version N

M A C D M A C D M A C D M A C D

A1 11 3 3 1 14 1 1 0 15 1 0 0 16 0 1 0

A2 9 1 1 0 10 0 4 3 10 1 2 0 11 0 5 2

A3 12 0 3 2 12 3 3 1 15 0 2 2 15 1 1 0

A4 10 2 2 0 12 2 3 1 14 2 0 2 16 0 1 0

A5 7 1 1 1 8 4 2 0 12 1 1 1 13 1 5 2

A6 9 2 1 0 11 3 4 1 14 3 3 1 17 0 1 0

A7 12 3 1 0 15 1 0 0 16 0 0 1 16 0 1 0

A8 9 2 3 0 11 4 2 0 15 1 1 1 16 0 1 0

A9 8 1 1 1 9 2 3 1 11 2 2 1 13 1 0 0

A10 11 0 2 1 11 0 1 3 11 2 2 2 13 3 1 0

A11 7 1 1 0 8 1 3 2 9 1 1 0 10 1 3 1

A12 8 2 3 1 10 2 4 0 12 2 1 1 14 0 0 1

A13 10 1 4 3 11 2 2 1 13 0 0 3 13 1 0 0

A14 8 2 2 2 10 3 2 1 13 1 1 1 14 2 0 2

A15 10 1 2 1 11 4 0 3 15 2 1 0 17 0 1 0

Table 3: Maintenance Record of Legacy Application B

C
o

m
p

o
n

en
t

Id

Version N-3 Version N-2 Version N-1 Version N

M A C D M A C D M A C D M A C D

B1 11 1 2 1 12 1 2 1 13 2 2 2 15 1 2 0

B2 8 3 2 0 11 1 0 0 12 1 0 0 13 0 1 0

B3 10 0 2 2 10 2 2 1 12 0 2 1 12 1 0 0

B4 9 1 1 1 10 2 1 1 12 1 1 1 13 0 0 2

B5 10 1 1 0 11 1 4 1 12 1 2 0 13 0 1 0

B6 8 1 3 0 9 3 1 2 12 2 1 0 14 0 1 0

B7 10 2 2 1 12 1 2 1 13 1 2 1 14 1 0 1

B8 6 1 2 2 7 2 1 0 9 1 0 0 10 1 0 0

B9 7 0 1 0 7 1 0 0 8 1 0 0 9 0 1 0

B10 6 3 2 1 9 2 2 2 11 1 1 2 12 0 2 1

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

25

Table 4: Maintenance Record of Legacy Application C

C
o

m
p

o
n

en
t

Id

Version N-3 Version N-2 Version N-1 Version N

M A C D M A C D M A C D M A C D

C1 9 1 3 0 10 1 3 0 11 2 4 2 13 3 3 2

C2 11 0 2 1 11 2 2 0 13 0 2 0 13 0 1 0

C3 10 2 2 0 12 4 4 0 16 3 3 1 19 1 0 0

C4 11 4 1 1 15 2 0 1 17 1 0 2 18 0 0 1

C5 8 3 1 1 11 3 3 2 14 0 1 1 14 0 1 0

C6 10 2 3 0 12 4 1 3 16 0 0 1 16 0 1 0

C7 6 2 2 0 8 4 0 3 12 3 0 3 15 0 1 0

In other to generate the components SMIs, appropriate

formulae, (in this case the SMI model SMI = (M – (A + C +

D))/M described earlier) was entered into the statistical

package.

8. RESULTS AND DISCUSSIONS

The results of the analysis of the maintenance data using the

statistical package with appropriate formulae (i.e. SMI model)

yielded the following:

a) Software Maturity Index of Application

Components
The table below presents the SMIs of legacy components for

each application:

 Table 5: Software Maturity Index ofLegacy

Application A

Id

Ver

 N-3

Ver

N- 2

Ver

N-1
Ver N

A1 0.36 0.86 0.93 0.94

A2 0.78 0.30 0.70 0.36

A3 0.58 0.42 0.73 0.87

A4 0.60 0.50 0.71 0.94

A5 0.57 0.25 0.75 0.38

A6 0.67 0.27 0.50 0.94

A7 0.67 0.93 0.94 0.94

A8 0.44 0.45 0.8 0.94

A9 0.63 0.33 0.55 0.92

A10 0.73 0.64 0.45 0.69

A11 0.71 0.25 0.78 0.5

A12 0.25 0.40 0.67 0.93

A13 0.20 0.55 0.77 0.92

A14 0.25 0.40 0.77 0.71

A15 0.60 0.36 0.80 0.94

Table 6: Software Maturity Index of Legacy Application

B

Id
Ver.
N-3

Ver.
N-2

Ver. N-1
Ver.

 N

B1 0.64 0.67 0.54 0.80

B2 0.38 0.91 0.92 0.92

B3 0.60 0.50 0.75 0.92

B4 0.67 0.60 0.75 0.85

B5 0.80 0.45 0.75 0.92

B6 0.50 0.33 0.75 0.93

B7 0.50 0.67 0.69 0.86

B8 0.17 0.57 0.89 0.90

B9 0.86 0.86 0.88 0.89

B10 0.00 0.33 0.64 0.75

Table 7: Software Maturity Index of Legacy Application

C

Id Ver N-3 Ver N-2 Ver N-1
Ver

N
C1 0.56 0.6 0.27 0.38

 C2 0.73 0.64 0.85 0.92

 C3 0.60 0.33 0.56 0.95

 C4 0.45 0.80 0.82 0.94

 C5 0.38 0.27 0.86 0.93

 C6 0.50 0.33 0.94 0.94

 C7 0.33 0.13 0.50 0.93

b) Components Stability Assessment and

Ranking
For better understanding of the results, graphical

representation of the components SMIs were obtained.

Figures 1, 2 and 3 are the graphical representation of the

SMIs of the components in Legacy Applications A, B

and C respectively.

Fig. 2: Software Maturity Index of Components in Legacy

Application A

0
0.2
0.4
0.6
0.8

1

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1

0

A
1

1

A
1

2

A
1

3

A
1

4

A
1

5

So
ft

w
ar

e
 M

at
u

ri
ty

 I
n

d
e

x

Legacy Components

Software Maturity Index of Components
in Legacy Application A

Ver N - 3 Ver N - 2

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

26

Fig. 3: Software Maturity Index of Components in Legacy

Application B

Fig. 4: Software Maturity Index of Components in Legacy

Application C

A closer study of the data and the charts reveals some

important characteristics of the components:

i) regular and irregular SMIs increases for some

components tending to 1or not tending to 1

ii) regular and irregular SMIs decreases for some

components receding from 1

A further examination of these characteristics and careful

interpretation lead to the following ranking of components

being proposed: Highly Stable, Fairly Stable, Stable,

Unstable, Fairly Unstable and Highly Unstable. The criteria

for this ranking is given thus:

Highly Stable: A component is said to be Highly Stable

if it is characterized by regular SMI increases in

the last three application versions with all three SMIs tending

to 1

Fairly Stable:A component is said to be Fairly Stable if it

is characterized by regular SMI increases inthe last three

application versions with the last two SMIs tending to 1

Stable:A component is said to be Stable if it ischaracterized

by regular SMI increases in the

lastthreeapplicationversionswiththeSMI of the most recent

version tending to 1

Unstable: A component is said to be Unstable if it is

characterized by regular/irregular SMI increases in the last

three application versions with the SMIs not tending to 1

Fairly Unstable: A component is said to be Fairly Unstable

if it is characterized by regular/irregular SMI decreases in the

last three software Versions with the last two SMIs receding

from 1

Highly Unstable: A component is said to be Highly Unstable

if it is characterized by regular/irregular SMI decreases in the

last three software Versions with the SMIs receding from 1

For the purpose of clarity, 0.9 is fixed as a benchmark for

SMI tending to 1.

c) Application of the Proposed

Assessment and Ranking Scheme

To illustrate how the Assessment and ranking scheme could

be applied, legacy application A is used. This application has

a total of 15 components to be assessed, coded as A1 to A15.

The SMIs of component A1 for instance from version N-3 to

Version N are given as 0.36, 0.86, 0.93 and 0.94. This

presents a characteristic of a components with regular SMI

increases where the SMIs of the last two versions tend to 1.

Recall, 0.9 is fixed as the benchmark for SMI tending to 1.

This characteristics clearly fits the Fairly Stable rank hence

component A1 can be said to be fairly stable. Similarly,

applying the scheme to component A7 which SMIs are given

as 0.67, 0.93, 0.94 and 0.94 from version N-3 to version N, it

could be clearly seen that the component is characterized by

regular SMI increases where the SMIs of the last three

versions tend to 1, hence the component can be said to be

highly stable.

An interesting characteristic is observed with components A3

and A10 where SMIs of A3 indicate regular increases (0.58,

0.42, 0.73 and 0.87) while that of A10 are irregular increases

(0.73, 0.64, 0.45 and 0.69). Despite these increases (regular

or irregular) the SMIs are still far from 1; a characteristic that

fits unstable components, hence A3 and A10 can be said to be

unstable. Applying the technique for other components yields

the table given below for all components of Application A:

Table 8: Ranking of Legacy Application A

Components

C
o

m
p

o
n

en
t

Id

Software Maturity Index

(SMI)

Component

Status
Rank

Ver.

N-3

Ver.

N-2

Ver.

N-1

Ver.

N

A1
0.36 0.86 0.93 0.94

Regular

SMI

increases

with the

SMIs of the

last two

versions

tending to 1

Fairly

Stable

A2

0.78 0.30 0.70 0.36

Irregular

SMI

decreases

with the

last two

Fairly

Unstable

0

0.2

0.4

0.6

0.8

1

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

So
ft

w
ar

e
 M

at
u

ri
ty

 I
n

d
e

x

Legacy Components

Software Maturity Index of Components in
Legacy Application B

Ver N - 3 Ver N - 2 Ver N - 1 Ver N

0

0.2

0.4

0.6

0.8

1

C1 C2 C3 C4 C5 C6 C7

So
ft

w
ar

e
 M

at
u

ri
ty

 I
n

d
e

x

Legacy Components

Software Maturity Index of Components in
Legacy Application C

Ver N-3 Ver N-2 Ver N-1 Ver N

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

27

receding

from 1

A3 0.58 0.42 0.73 0.87

Regular

SMI

increases in

the last

three

versions

with the

SMIs not

tending to 1

Unstable

A4
0.60 0.50 0.71 0.94

Regular

SMI

increases

with the

SMI of the

most recent

version

tending 1

Stable

A5

0.57 0.25 0.75 0.38

Irregular

SMI

decreases

with the

SMI of the

last two

receding

from 1

Fairly

Unstable

A6
0.67 0.27 0.50 0.94

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

A7
0.67 0.93 0.94 0.94

Regular

SMI

increases

with the

SMI of the

last three

versions

tending to 1

Highly

Stable

A8
0.44 0.45 0.8 0.94

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

A9
0.63 0.33 0.55 0.92

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

A10 0.73 0.64 0.45 0.69

Irregular

SMI

increase in

the last

three

versions

with the

SMIs not

tending to 1

Unstable

A11

0.71 0.25 0.78 0.5

Irregular

SMI

decreases

in the last

three

versions

with the

Fairly

Unstable

SMIs of the

last two

receding

from 1

A12
0.25 0.40 0.67 0.93

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

A13
0.20 0.55 0.77 0.92

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

A14

0.25 0.40 0.77 0.71

Irregular

SMI

decreases

in the last

three

versions

with the

SMIs of the

last two

receding

from 1

Fairly

Unstable

A15

0.60 0.36 0.80 0.94

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

From table 8, it can be seen that component A7 is highly

stable; A1 is fairly stable while A4, A6, A8, A9, A12, A13

and A15 are stable components. The implication is that, these

nine components though with variable degrees of stability

could be selected for reuse in legacy modernization. In

contrast, the remaining six components, namely A2, A3, A5,

A10, A11 and A14 with variable degrees of instability are not

good candidates for reuse in modernization hence should not

be selected. However, to complete the modernization

process, the six components could be redeveloped and

incorporated with others in the modernized version of the

software.

Also, applying the technique to components in Applications B

and C yields the component status and ranks as presented in

tables 9 and 10 respectively.

Table 9: Ranking of Legacy Application B Components

C
o
m

p
o
n

en
t

Id

Software Maturity Index

(SMI)

C
o
m

p
o
n

en
t

S
ta

tu
s

Rank

Ver.

N-3

Ver.

N-2

Ver.

N-1

Ver.

N

B1

0.64 0.67 0.54 0.80

Irregular

SMI

increase

in the last

three

Unstable

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

28

versions

with the

SMIs not

tending

to 1

B2 0.38 0.91 0.92 0.92

Regular

SMI

increases

with the

SMI of

the last

three

versions

tending

to 1

Highly

Stable

B3 0.60 0.50 0.75 0.92

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending

to 1

Stable

B4 0.67 0.60 0.75 0.85

Regular

SMI

increases

with the

SMIs not

tending

to 1

Unstable

B5 0.80 0.45 0.75 0.92

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending

to 1

Stable

B6

0.50 0.33 0.75 0.93

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending

to 1

Stable

B7 0.50 0.67 0.69 0.86

Regular

SMI

increases

with the

SMIs not

tending

to 1

Unstable

B8 0.17 0.57 0.89 0.90

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending

to 1

Stable

B9
0.86 0.86 0.88 0.89

Regular

SMI

increases

with the

SMIs not

tending

Unstable

to 1

B10 0.00 0.33 0.64 0.75

Regular

SMI

increases

with the

SMIs not

tending

to 1

Unstable

From the above, A2 is highly stable; B3, B5, B6, B8 are

stable while B1, B4, B7, B9 and B10 are unstable. For this

legacy application B, component A2 which is highly stable

together with B3, B5, B6 and B8 which are ranked as stable

components could be selected for reuse in modernization

because of their appreciable stability status. On the other

hand, components B1, B4, B7, B9 and B10 being unstable are

not good candidates for reuse, hence should not be selected

rather they could be redeveloped with modern tools and

incorporated with others.

Table 10: Ranking of Legacy Application C Components

C
o

m
p

o
n

en
t

 I

d

Software Maturity Index

(SMI)

C
o

m
p

o
n

en
ts

S
ta

tu
s

Rank

Ver.

N-3

Ver.

N-2

Ver.

N-1

Ver.

N

C1 0.56 0.6 0.27 0.38

Irregular

SMI

increases

with the

SMIs not

tending to 1

Unstable

C2 0.73 0.64 0.85 0.92

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

C3

0.60 0.33 0.56 0.95

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending to

1

Stable

C4 0.45 0.80 0.82 0.94

Regular

SMI

increases

with the

SMI of

the most

recent

version

tending to

1

Stable

C5

0.38 0.27 0.86 0.93

Regular

SMI

increases

with the

SMI of

the most

recent

version

Stable

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

29

tending to

1

C6 0.50 0.33 0.94 0.94

Regular

SMI

increases

with the

SMI of

the last

two

versions

tending to

1

Fairly

Stable

C7 0.33 0.13 0.50 0.93

Regular

SMI

increases

with the

SMI of the

most recent

version

tending to 1

Stable

For legacy application C as indicated in Table 10, components

C6 is fairly stable; C2, C3, C4, C5 and C7 are stable while C1

is unstable. Therefore, for the purpose of reuse in

modernization, all components could be selected except C1

that is unstable. To this effect, Component C1 could be

redeveloped with modern tools and incorporated into the

system with others since it is not reusable.

9. CONCLUSION

In applying component-oriented reengineering in software

modernization, the challenging issue has always been, how to

identify and select stable components for reuse from a host of

components that make up a legacy application. To this effect,

this research was undertaken to understudy the characteristics

of legacy components as they progress from one version to

another in order to determine their level of stability and by

extension suitability for reuse in modernization. The study

through a careful analysis of the representative legacy

maintenance data randomly generated with

RANDBETWEEN function from a spreadsheet package

yielded some results that led to components ranking technique

which could be used to assess and rank legacy components to

guide their choice for reuse in modernization. The ranking

scheme comprises of the following ordered items, highly

stable, fairly stable, stable, unstable, fairly unstable and highly

unstable.

With this technique, software professionals will be able to

determine the stability status of components extracted from

legacy applications and use same to guide their decision on

whether a component should be reused in the application

modernization or not. Moreover, components ranking of this

manner is capable of providing the software engineer with

some levels of confidence in the legacy components selected

for reuse. Where some of the legacy components cannot be

selected for reuse due to their low ranking in the scale,

specifically those below the stable rank, such components

could be redeveloped with modern tools and incorporated

with others in the modernized software version.

10. RECOMMENDATIONS
Based on the findings of this research, the following

recommendations are necessary:

a) Software professionals in charge of application

modernization should always perform components

reusability assessment on legacy components and

rank them accordingly before they are selected for

reuse. For legacy components stability assessment,

the technique presented in this article is highly

recommended.

b) Since software maintenance data is the major input

for this technique, organizations should keep proper

records of their software maintenance and provide

same for components assessment whenever the need

arises.

c) There should be deliberate efforts by researchers to

conduct researches aimed at evolving models, tools

and techniques suitable for legacy components

assessment and selection for reuse in

modernization, knowing fully well that legacy

modernization will continue to remain a common

phenomenon in the software industry, as today’s

modern application is tomorrow’s legacy

application and candidate for modernization.

11. REFERENCES

[1] Denoncourt, D. 2011. Approaches to

ApplicationModernization. Scandinavian Developer

Conference 2011

(SDC2011),Goteborg.Availableat:www.scandevconf.se/

2011 accessed on: April 6, 2014.

[2] Cipresso, T. 2010. Software Reverse Engineering

Education. Master’s Theses and Graduate Research, San

Jose State University. USA [online] Available

http://scholarworks.sjsu.edu/etd_theses/3734 Retrieved

on: March 5, 2012

[3] Mishra, S. K., Kushwaha, D. S., Misra, A. K. 2009.

Creating Reusable Software Components from Object-

orientedLegacy System through Reverse Engineering.

Journal ofObject Technology, ETH Zurich.

www.jot.fm/issues/issue_2009_07/article3.pdf Retrieved

on: April 17, 2011

[4] Malinova, A. 2010. Approaches and Techniques

forLegacy Software Modernization , Bulgaria

ScientificWorks,37(2),UniversityofPlovdiv,Plovdiv,Bulg

aria.www.fmi.uniplovdiv.bg/GetResource?id=402

Retrieved on: February 15, 2013

[5] Comella-Dorda, S., Wallnau, K., Seacord, R. and Robert,

J2010. A Survey of Black-Box Modernization

Approaches for Information Systems, Proceedings

of InternationalConference on Software Maintenance pp.

173

[6] Saarelainen, M., Ahonen, J. J., Lintinen, H., Koskinen,

J., Kankaanpaa, I., Sivula, H., Juutilainen, P. and Tilus,

T. 2006. Software Modernization and Replacement

DecisionMaking in Industry: A Qualitative Study.

Available At:www.bcs.org/upload/pdf/ewic-ea06-

paper.pdf Retrieved on: August 26, 2014

[7] Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S.,

andHage, J. 2010. How Do Professionals Perceived

Legacy Systems and Software Modernization? Utrecht

University, Utrecht, The Netherlands.

www.servicifi.files.wordpress.com/2010/06/icse.pdf

Retrieved on: August 1, 2014.

[8] Gartner 2013. Gartner Survey Shows 75 Percent

ofGovernment CIO Budgets Flat or Increase in 2013;

Gartner ewsroom, 2013. Available at:

http://www.scandevconf.se/2011
http://www.scandevconf.se/2011
http://www.scandevconf.se/2011
http://scholarworks.sjsu.edu/etd_theses/3734
http://www.jot.fm/issues/issue_2009_07/article3.pdf
http://www.fmi.uni-plovdiv.bg/GetResource?id=402
http://www.bcs.org/upload/pdf/ewic-ea06-paper.pdf
http://www.bcs.org/upload/pdf/ewic-ea06-paper.pdf
http://www.servicifi.files.wordpress.com/2010/06/icse.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016

30

www.gartner.com/newsroom/id/2572815 accessed on:

April 6, 2014

[9] Younoussi, S. and Roudies, O. 2015. All About

Software Reusability: A systematic Literature Review;

Journal of Theoretical and Applied Information

Technologywww.jatit.org Retrieved on: September 10,

2015

[10] Fazal-e-Amin, Mahmood, A. K. and Oxley, A. 2011.

AReview of Software Component Reusability

Assessment Approaches; Research Journal of

Information Technology3(1) pp. 1-11

[11] Jasmine, K. S. and Vasantha, R. 2010. A New

CapabilityMaturity Model for Reuse Based Software

Development Process; IACSIT International Journal of

Engineering and Technology 2(1)

[12] Rine, D. C. and Nada, N. 2000. An Empirical Study of a

Software Reuse Reference Model, Information and

Software Technology Journal 42(1)

[13] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T.,

Matsushita, M. and Kusumoto, S. 2004. Component

Rank: Relative Significance Rank for Software

ComponentsSearch. Available at;http://sel.ist.osaka-

u.ac.jp/lap-db/betuzuri/archive/391.pdfRetrieved on:

September 10, 2015

[14] Garcia, V,. Lucredio, D. and Alvaro, A. 2007. Towards

a Maturity Model for a Reuse Incremental Adoption,

Proceedings of Simposio Brasileiro de Componentes,

Arguitetura e Reutilizacao de Software (SBCARS)

[15] Subedha, V. and Sridhar, S. 2012. Design of

DynamicComponent Reuse and Reusability Metrics

Library for Reusable Software Components in Context

Level.International Journal of Computer Applications

40(9):30-34Available at: www.ijcaonline.org Retrieved

November, 2, 2015

[16] Kessel, M. and Atkinson, C. 2015. Ranking Software

Components for Pragmatic Reuse. 2015 IEEE/ACM 6th

International Workshop. Available

atwww.ieeexplore.ieee,org/xpl/articleDetails.jspRetrieve

d on: November 2, 2015

[17] IEEE 1988. Description of Software Maturity Index.

IEEEStandards.www.standards,ieee.org/reading/ieee/std

_public/description/982.1-1988_desc.html Retrieved on:

September 10, 2015

IJCATM : www.ijcaonline.org

http://www.gartner.com/newsroom/id/2572815
http://www.jatit.org/
http://www.ijcaonline.org/
http://www.ieeexplore.ieee,org/xpl/articleDetails.jsp

