
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.16, January 2016

31

Analysis, Implementation, Comparison and Evaluation of

different Logical Techniques of Solving the Same

Computing Problem

Vimal P. Parmar, PhD
Research Scholar,
Dept. of Comp. Sci.

Saurashtra University, Rajkot. Gujarat, INDIA

C. K. Kumbharana, PhD
Head, Guide

Department of Computer Science
Saurashtra University Rajkot.

Gujarat, INDIA

ABSTRACT
Computers are considered as logic driven tools. We can have

different solutions for the same problem. How a particular

problem can be solved depends on the individual thinking and

logic. There may be multiple routes to reach from one city to

another, what the route is selected depends on the best route in

terms of distance, quality of routes and safety. Same way

parallel it can be compared with the approach for solving

computing problems. To perform task through a computer we

must require writing a program in specific language and then

converting it into its equivalent machine language program

either by an interpreter or a compiler. Also, there exist more

than one such type of solutions for the same problem. Each

may have its own advantages and disadvantages in terms of

memory requirement, time required for executing by a

computer and readability in form of understanding the logic of

solution. This research paper is discussing different basic

problems to be solved by a computer in different ways and

which is better compared to others using above

characteristics. Same type of analysis can be applied to any

complex problem by determining all possible solutions and

comparisons. The examples used are so basic to better

understand the power of programming language and the

solution itself.

General Terms
Programming, program, solution, logic, programming

language

Keywords
Analysis, comparison, evaluation, memory requirement,

execution time

1. INTRODUCTION
To solve any problem, it requires some logic applied in step

by step logical solution of a problem. A solution to a problem

can be obtained by writing a program in any programming

language. The popular programming language which is

chosen here is C programming language. C is robust and

powerful programming language with varieties of constructs

available. All the problems discussed here are implemented

in C programming language. Four problems are discussed

here and solution of each gives the correct answer. Each

problem is analyzed and implemented in various ways for

comparison. Each solution has its own merits and demerits.

Four problems discussed here are odd and even number

problem, prime number problem, the problem of determining

sign of two given numbers and a series problem. Each

problem has multiple alternative logical solutions and each

solution is characterized based on memory, time and

readability.

2. SOLUTION OF A PROBLEM

THROUGH COMPUTERS USING

PROGRAM
Computers require a program to solve any problem. We use

language for communication, same way computers also

require a language. But computer can only understand

machine language which is in binary 0 and 1 and also known

as low level language. It is difficult for human being to

understand this language, so some higher level languages

came to exist. C is such a popular language widely used for

solving general purpose problems. Compiler is a program that

converts a higher level program into machine language

program with some diagnostic and error handling facility.

Generally each program may have some inputs, some kind of

processing to obtain the solution and output as an answer. In

this paper we start with the simplest solution and then by

improving it by reducing the steps or by taking advantages of

C language. Each solution yields the correct output but the

steps required to reach to the solution are different. An

efficient solution is one which requires minimum resources

and provides fast execution. This is necessary to design any

program solution for efficient use of computing power. For

problems discussed here are implemented in C programming

language and each problem has different solutions. These

solutions are compared and evaluated and then concluded

which is more effective. At last final choice of solution

depends on programmer’s choice and not strictly necessary to

follow the said solution. Further other solutions may also be

possible not described in this paper.

3. ODD EVEN NUMBER PROBLEM
The simplest problem is to determine whether the given

number is odd or even. To solve this problem a number must

be entered through keyboard. Then steps in a program will

determine whether the given number is odd or even. A

number is said to be odd if dividing a number by 2 and

remainder of the division yield one. If the remainder of a

division is 0 then the number is said to be as an even number.

The simplest solution of this problem is listed as a C program

in following table 3.1. A number is accepted using scanf()

function and we obtain a remainder of dividing a number by 2

using a formula number – quotient * 2. Odd or even number is

determined by comparing remainder with 1 or zero. Integer

division always results in an integer number without a

fractional part.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.16, January 2016

32

Table 3.1 : Odd even number solution – 1 basic rules of

division, quotient and remainder

Here program calculates the remainder by writing an

expression. The same solution can be obtained by using

modulus operator “%” which yields the remainder of an

integer division. The listing of the code is depicted in

following table 3.2.

Table 3.2 : Odd even number solution – 2 using modulus

operator %

Third solution is more compact and instead of using if else

statement, ternary operator is used to determine the value of

remainder. The third solution is listed in following table 3.4.

Table 3.3 : Odd even number solution – 3 using ternary

operator ?:

The forth solution uses an array of string to determine the odd

or even number. The solution is as given in following table

3.4. The subscript result number%2 always results in zero or

one and that zero and one are subscripts for string elements

“even” and “odd”. This is again more compact by removing

of test condition.

Table 3.4 : Odd even number solution – 4 using string

Next solution to the same problem is by use of bit wise

operator. As in integer number the right most bit is 0 then the

number is always even and if it is 1 then the number is odd.

The listing of code is given in table 3.5.

Table 3.5 : Odd even number solution – 5 using bitwise

AND operator &

Next solution using switch statement is listed below in table

3.6.

Table 3.6 : Odd even number solution – 6 using switch

case statement

Another solution using bit wise shift operator is listed below

in table 3.7.

/* Program to determine given number is odd or even

 */

#include<stdio.h>

void main()

{

int number;

printf("Input number : ");

scanf("%d",&number);

switch(number%2)

{

 case 0 :

 printf("%d is even\n", number);

 break;

 default :

 printf("%d is odd\n", number);

 break;

}

}

/* Program to determine given number is odd or even*/

#include<stdio.h>

void main()

{

 int number;

 printf("Input number : ");

 scanf("%d",&number);

 (number & 1) ? printf("%d is odd\n", number)

 : printf("%d is even\n", number);

}

/* Program to determine given number is odd or even

 */

#include<stdio.h>

void main()

{

 int number;

 char oe[2][5] = {"even","odd"};

 printf("Input number : ");

 scanf("%d",&number);

 printf("%d is %s\n", number, oe[number%2]);

}

/* Program to determine given number is odd or even*/

#include<stdio.h>

void main()

{

 int number;

 printf("Input number : ");

 scanf("%d",&number);

 (number % 2 == 0)? printf("%d is even\n", number)

 : printf("%d is odd\n", number);

}

/* Program to determine given number is odd or even*/

#include<stdio.h>

void main()

{

 int number;

 printf("Input number : ");

 scanf("%d",&number);

 if (number % 2 == 0)

 printf("%d is even\n", number);

 else

 printf("%d is odd\n", number);

}

/* Program to determine given number is odd or even*/

#include<stdio.h>

void main()

{

 int number, quotient, remainder;

 printf("Input number : ");

 scanf("%d",&number);

 quotient = number / 2;

 remainder = number - quotient * 2;

 if (remainder == 0)

 printf("%d is even\n", number);

 else

 printf("%d is odd\n", number);

}

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.16, January 2016

33

Table 3.7 : Odd even number solution – 7 using bitwise

shift left operator

Each of the above solution finds odd or even number

correctly. It depends on the programmer’s choice to select the

desired one. The solutions using bitwise operators however

might be faster as it works on bit structure of the integer

number and the only solution with using string in which no

condition is tested at all to determine the result is more

interesting. Which solution is to select depends on individual

but this are alternative solutions for one of the simplest

problem. So it may be possible to implement similar kind of

logic in more complex problems and selecting one that suits

best. The first solution requires more memory variables and

follows exact mathematical calculations. Furthermore other

solutions may also exist which are not listed here.

4. PRIME NUMBER PROBLEM
Prime number is a number which is divisible by 1or by

number itself. 1 is a special number. The solution of

determining a prime number is implemented by dividing a

given number from 2 and onwards. If any division yields

result zero then the number is not prime number. If we reach

at number to itself following the division process then the

number is a prime number. The same technique of finding a

remainder of a division used in solution table 3.1 can be

employed but we can use modulus operator to reduce the

steps. The first solution is listed in following table 4.1.

Table 4.1 : Prime number solution – 1 dividing from 2 to

given number-1

In this program of prime number, testing for the remainder of

a division of given number begins from 2 to num – 1. If any

number in between these two numbers including divide

perfectly, then the remainder will become zero and flag is set

to 0 and loop is terminated. This process of testing continues

till loop counter variable i becomes num. In this case flag

remains unchanged as 1 and the number is a prime number. It

is wasting of computing time that if number is not divisible up

to num/2, it will never be divisible by number from num/2

onwards. So the next solution reduces the steps of loop from 2

up to num/2. The second solution with minor changes is listed

in following solution 4.2. The performance of this solution is

effective in case of a large given prime number in which half

of the loop statements are reduced and program can run faster

twice as compared to the first solution.

Table 4.2 : Prime number solution – 2 dividing from 2 to

given number/2

Program behaves same as the previous program but the

number of iterations are reduces to half of the given number.

The solution is better compared to first one but still it can be

improved. For any number it is necessary to only test from

number 2 to square root of the number, so again number of

iterations is reduced. Any number can not be divisible if it can

not be divisible from 2 to its square root. To find out square

root we require to include math.h header file. The code is

listed in following table 4.3.

Further improvement is possible as if a number is not divisible

by 2 then it also can not be divisible by any even number 4, 6,

8 and onwards. So it is necessary to first test with number

2and then start testing for all odd numbers starting from 3up

to the square root of the number. The program answers the

same output but each solution improves as execution point of

view and solutions are moving from more readable easy to

understand solution to a complex one.

Which solution is selected is again depends on nature of

programmer and the facilities available in programming

language. But when solving some other complex problem, the

solutions discussed here are helpful for obtaining the efficient

solution for the complex problem. Two terms are widely used

for algorithm analysis are time complexity and space

complexity. Time complexity refers to amount of asymptotic

time require when the input number is large enough. Space

/* Program to determine given number is prime or not*/

#include<stdio.h>

void main()

{

 int num,i, flag;

 printf("Input number : ");

 scanf("%d",&num);

 flag = 1;

 for (i = 2; i <= num/2; i++)

 {

 if (num % i == 0)

 {

 flag = 0;

 break;

 }

 }

 if (flag)

 printf("%d is prime\n", num);

 else

 printf("%d is not prime\n", num);

}

/* Program to determine given number is prime or not*/

#include<stdio.h>

void main()

{

 int num,i, flag;

 printf("Input number : ");

 scanf("%d",&num);

 flag = 1;

 for (i = 2; i < num; i++)

 {

 if (num % i == 0)

 {

 flag = 0;

 break;

 }

 }

 if (flag)

 printf("%d is prime\n", num);

 else

 printf("%d is not prime\n", num);

}

/* Program to determine given number is odd or even*/

#include<stdio.h>

void main()

{

 int number;

 printf("Input number : ");

 scanf("%d",&number);

 if(number << 15)

 printf("%d is odd\n", number);

 else

 printf("%d is even\n", number);

}

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.16, January 2016

34

complexity is related with amount of memory required during

program execution.

Table 4.3 : Prime number solution – 3 dividing from 2 to

given square root of number

Table 4.4 : Prime number solution – 4 dividing from 3 to

given square root of number using odd numbers only

5. PROBLEM OF DETERMINING SIGN

OF TWO GIVEN NUMBERS
A problem which accepts two numbers and determine whether

either of the number is zero or not, if no number is zero then

determining whether both the number have a similar sign or

different that means positive or negative. The basic solution is

applied by testing each condition described here. The program

listing is as below in table 5.1.

Table 5.1 : Solution – 1 Determining sign of the two

numbers if either of the number is nonzero

First two numbers are tested for either number is zero or not

connected with logical OR operator. If none of the number is

zero then two conditions connected with OR operator is tested

and each condition compares both numbers are positive or

negative using logical AND operator. If any one condition

from OR is evaluated to true then the numbers have similar

sign either negative or positive. If both conditions are false

then both the numbers have different signs in this case if first

number is negative then the second number is positive or if

first number is positive then second number is negative.

The solution is simple one but contains many test expression

and many logical operators. It is easy somehow to understand

but involve more processing by a computer to solve a simple

problem. To overcome this problem an alternate solution

should be obtained that must reduce the test conditions and

easy to understand with compact code. Here we use the help

of mathematics to solve the same problem and program

written using this logic is far efficient than to described in

table 5.1. A revised complete program is listed in table 5.2

which is better in point of view for user as well as for

computer.

Table 5.1 : Solution – 2 Determining sign of the two

numbers if either of the number is nonzero

/* Program to determine given number is prime or not*/

#include<stdio.h>

#include<math.h>

void main()

{

 int num1,num2, sign;

 printf("Input number 1 : ");

 scanf("%d",&num1);

 printf("Input number 2 : ");

 scanf("%d",&num2);

 sign = num1 * num2;

 if (sign == 0)

 printf("Either of the numbers is zero.\n");

 else

 {

 if (sign > 0)

 printf("Both numbers have same sign\n");

 else

 printf("Both number have different sign\n");

 }

}

/* Program to determine given number is prime or not*/

#include<stdio.h>

#include<math.h>

void main()

{

 int num1,num2;

 printf("Input number 1 : ");

 scanf("%d",&num1);

 printf("Input number 2 : ");

 scanf("%d",&num2);

 if (num1 == 0 || num2 == 0)

 printf("Either of the numbers is zero.\n");

 else

 {

 if ((num1 > 0 && num2 > 0) ||

 (num1 < 0 && num2 < 0))

 printf("Both numbers have same sign\n");

 else

 printf("Both number have different sign\n");

 }

}

/* Program to determine given number is prime or not*/

#include<stdio.h>

#include<math.h>

void main()

{

 int num,i, k, flag;

 printf("Input number : ");

 scanf("%d",&num);

 flag = 1;

 k = sqrt(num);

 if (num % 2 == 0)

 flag = 0;

 else

 {

 for (i = 3; i <= k;i+=2)

 { if (num % i == 0)

 {

 flag = 0;

 break;

 }

 }

 }

 if (flag) printf("%d is prime\n", num);

 else printf("%d is not prime\n", num);

}

/* Program to determine given number is prime or not*/

#include<stdio.h>

#include<math.h>

void main()

{

 int num,i, k, flag;

 printf("Input number : ");

 scanf("%d",&num);

 flag = 1; k = sqrt(num);

 for (i = 2; i <= k;i++)

 {

 if (num % i == 0)

 {

 flag = 0;

 break;

 }

 }

 if (flag)

 printf("%d is prime\n", num);

 else

 printf("%d is not prime\n", num);

}

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.16, January 2016

35

In this solution a variable sign is used and assigned a value of

multiplication of given two numbers. If either or both of

numbers are zero then sign will be zero. It then tests by

comparing sign with zero. If condition evaluates to false then

none of the number is zero. Now to test for the sign of both

numbers the variable sign is tested with zero again but now

using greater relation operator. Variable sign is positive if

both numbers are negative or both numbers are positive. If

this condition is false then sign contain negative that means

either of the number is negative means both the numbers have

different sign. The program listed in table 5.2 is more compact

easy to understand and require less computing processing and

that’s why is more efficient compared to program listed in

table 5.2.

6. CALUCLATING THE SUM OF

SERIES A + (A+D) + (A + 2D) … … N

TERMS
The program to calculate the sum of the arithmetic

progression series A + (A+D) + (A+2D) … … N Terms

requires input of A, D and total number of terms N. Here we

require a loop construct to add each term. The result can be

stored in variable SUM. Two solutions are discussed here.

First solution computes each term in each solution and then

added to variable SUM. This involves multiplication from 0 to

N with D and added with A to calculate current term. This

process is required more multiplications. Multiplication is the

compact process of addition. So by eliminating multiplication

and reusing the computation calculated in previous term is

more efficient. Also naturally addition is faster compared to

multiplication.

First solution is listed in following table 6.1.

Table 6.1 : Sum of series Solution – 1

In above solution each time term is calculated by adding A

and D term by multiplying 0, 1, 2 …onwards. The process

repetitively calculates each term and involves multiplication.

An efficient solution by removing multiplication is depicted in

table 6.2.

Table 6.2 : Sum of series Solution – 2

Second solution is more efficient and each time previously

calculated term is used to prepare the next term for the next

iteration by addition. First time TERM is initialized with A

and each time adding D with TERM results in A+D, A+2D

and so on. So the second solution is better for computing point

of view as well as solving other series problems by applying

the similar type of logic.

7. CONCLUSION
Any computing problem can be solved using different logic

and different kind of processing. To determine which solution

is better, analysis of algorithm is required. Algorithm analysis

calculates time complexity in form of big O notation and by

comparing this time it is concluded which is better solution.

Here for basic different types of problems with multiple

solutions are discussed each having its own characteristics. To

select the desired one depends on programmer and the

programming language in which it is implemented but the

logic point of view a solution is said to be efficient which

maximum utilize the computing power. Answer can always be

obtained correct if program is written correctly but what the

processing is involved has greater impact. It may be possible

the similar type of logic used in one problem can be extended

for other types of similar problems. It is good in programming

practice to analyze the solution, determining other possible

solutions and implementing the best one by comparing each

solution with different characteristics.

8. REFERENCES
[1] Dennis M Ritchie, Brian W. Kernighan “The C

Programming Language” Second Edition

[2] Pradip dey, Manas Ghosh “ Programming in C” Oxford

publication

[3] E. Balagurusamy “Programming in ANSI C”

[4] Yashavant Kanetkar “Let us C”

/* Sum of A + (A+D) + (A+2D) N Terms */

#include<stdio.h>

void main()

{

 int A, D, N, SUM = 0, i, TERM;

 printf("A = ");

 scanf("%d",&A);

 printf("D = ");

 scanf("%d", &D);

 printf("N = ");

 scanf("%d", &N);

 TERM = A;

 for (i = 0; i < N; i++)

 {

 SUM = SUM + TERM;

 TERM = TERM + D;

 }

 printf("SUM= %d\n", SUM);

}

/* Sum of A + (A+D) + (A+2D) N Terms */

#include<stdio.h>

void main()

{

 int A, D, N, SUM = 0, i, TERM;

 printf("A = ");

 scanf("%d",&A);

 printf("D = ");

 scanf("%d", &D);

 printf("N = ");

 scanf("%d", &N);

 for (i = 0; i < N; i++)

 {

 TERM = A + i * D;

 SUM = SUM + TERM;

 }

 printf("SUM= %d\n", SUM);

}

IJCATM : www.ijcaonline.org

