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ABSTRACT 
The short-term hydrothermal scheduling is a daily planning 

proposition in power system operation, a task which is usually 

more complex than the scheduling of all-thermal generation 

system. The classical   iteration method involves time 

consuming three iterative loops for obtaining the optimal 

solution. This paper presents an analytical method for 

eliminating the two iterative loops of the classical   iteration 

method with a view of enhancing the computational 

efficiency. It includes the simulation results of four test cases 

with a view to highlight its computational efficiency, 

irrespective of the problem size. 
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1. INTRODUCTION 
One of the most significant issues in power systems is short 

range hydrothermal scheduling (SHTS) that determines the 

hourly scheduling of available hydro and thermal generating 

units over the planning horizon, usually one day or one week. 

Due to insignificant operating cost of hydro plants, the most 

common objective function in SHTS intends to minimize the 

total fuel cost of thermal units, while satisfying various 

hydraulic and electric system constraints such as generation 

limits, available water and the energy balance equivalence 

over a scheduling horizon. It is a large-scale, dynamic, non-

linear and complicated constrained optimization problem [1]. 

Over the years, numerous mathematical methods with various 

degrees of near-optimality, efficiency, ability to handle 

difficult constraints and heuristics are suggested in the 

literature for solving the SHTS problems, such as gradient 

search technique [1],    iteration method, dynamic 

programming [1], Lagrange relaxation [2], decomposition and 

coordination method [3], mixed integer programming [4], 

Newton’s method [5].  linear programming [6], network flow 

programming [7,8],  non-linear programming [9] etc. 

Dynamic programming among these approaches has been 

found to tackle the complex constraints directly but suffers 

from the curse of dimensionality. The other methods have 

necessitated simplifications in order to easily solve the 

original model, which may lead to sub-optimal solutions with 

a great loss of revenue. Generally, these classical methods can 

be efficiently applicable for the SHTS problems with 

differentiable fuel cost function and constraints.   

Recently artificial intelligence based methods , simulated 

annealing approach  [10], evolutionary programming  [11], 

genetic algorithm [12], artificial immune system  [13], tabu 

search  [14], ant colony optimization [15], particle swarm 

optimization [16], differential evolution [17], quantum-

inspired evolutionary algorithm [18] and artificial bee colony 

[19] are suggested for SHTS. These methods are able to 

provide good solution and deal with complicated nonlinear 

constraints more simply and effectively. Moreover, these 

algorithms do not depend on the first and second differentials 

of the objective function. However, the above mentioned 

methods require a large amount of computation time 

especially for large-scale SHTS problems.  

In the light of the fact that each of these methods has its own 

merits and drawbacks, there is always a need for developing 

newer methods with a view of obtaining the global best 

solution at minimum computational efforts. A simple 

mathematical technique for solving fixed-head SHTS problem 

is suggested in this paper. This method eliminates the  -

iterations through an analytical approach in the classical 

   iteration method with a view of enhancing the 

computational speed. The proposed algorithm is tested on 

three SHTS problems and the results are presented.  

2. PROBLEM FORMULATION 
The main objective of SHTS problem is to determine the 

optimal schedule of both hydro and thermal plants of a power 

system in order to minimize the total system operating cost, 

represented by the fuel cost required for the system’s thermal 

generation. It is intended to meet the forecasted load demand 

over the scheduling period, while satisfying various system 

and unit constraints. The SHTS problem is formulated as  
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2.1 Classical    iteration method  [1] 
The augmented Lagrangian function for the SHTS problem is 

written as 
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The co-ordination equation from the above function can be 

obtained as  
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The above co-ordination equations along with constraint Eqs. 

2, 3 and 4  are iteratively solved to obtain optimal SHTS. 

3. PROPOSED METHODOLOGY 

The solution process of the    iteration method involves 

time consuming three iterative loops, in which the                           

 -iterations itself accounts for two iterative loops in each 

-iteration. The computational speed can be enhanced, if  -

iterations are eliminated, thereby avoiding two iterative loops. 

An analytical non-iterative approach is developed instead of 

 -iterations in the proposed approach.  

The co-ordination equation of the conventional    

iteration method, neglecting the losses can be written as, 
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Let the fuel cost and hydel discharge coefficient are redefined 

for the available (known) values of     as, 
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Eqs. 12 and 13 can be written using the newly defined 

coefficients of  Eqs. 14 and 15  as 
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(16) 

Where  is a set of generators, initially it contains all the 

generators as  

 ngntntnt ,,2,1,,,2,1                   (17) 

Rearranging Eq. (16) for optimal generation at interval-k as 
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
DkP  is the power demand to be supplied by all the generators 

in the set of  . Initially it equals DkP . 

Eq. (19) provides optimal generations for the available values 

of     and minimizes the following cost function that 

involves the fuel cost of the thermal plants and the fictitious 

cost of the hydel plants. 


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Substituting Eq. (19) in Eq. (21) and rearranging 
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Eq. (22) does not include the transmission loss. It can be 

included by altering the equation as 
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The LkP  can be calculated by Eq.(7) through substituting the  

generations obtained by Eq.(19) for the set of generators in 

  and the generations of limit violated generators.  

Differentiating and equating Eq. (24)  to zero yields the 
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The individual unit generation can be obtained by 
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Though Eq. (27)  provides the optimal generation ikGP  at 

interval-k for the available   values, it may not satisfy the 

water availability constraint of Eq.(3). The SHTS problem 

may be solved iteratively for optimal   values that satisfy the 

water availability constraint. The algorithm is obtained below: 

1. Read the system data 

2. Choose initial  -values for all hydel plants.  

3. Set the interval 1k  

4. Set DkDk PP 
 and 

 ngntntnt ,,2,1,,,2,1    

5. Evaluate the constants  ρ, σ, А, В and С for the 

generator in the set   

6. Compute the generation GikP  using Eq. (19) and 

then calculate LkP

 

and 


GkP  by Eqs. 7 and 25 

respectively.  

7. Evaluate 
o  using Eq. (26) and then solve Eq. (27) 

for all the generators in the set  . 

8. Check for limit violation of generators. If any of the 

generation violates, then set the respective limit as 

the generation by 
maxmin

GiGiGik PorPP  ,  

eliminate the violated generator from the set  , 

reduce the power demand as GikDkDk PPP  
 

and go to step (5).  

9. Repeat steps 4-8 for all the intervals in the 

scheduling period.  

10. Check for convergence through water availability 

constraints. If the algorithm converges, go to step 

10; else, project new values for    and go to step 3 

11. Optimal solution is obtained.  Print the optimal 

generations and their cost 

12. Stop          

4. NUMERICAL RESULTS 
The proposed method (PM) is tested on four SHTS problems, 

whose data comprising the cost characteristics of thermal 

plants, the discharge characteristics of hydel plants, their loss 

coefficients and water storage for each hydel plant are 

available in [20]. The first system under study comprises of 

one thermal and one hydel plant, the second unit has one 

thermal and two hydel plants, the third is made up of two 

thermal and two hydel plants and the last one contains of one 

thermal and one hydel plant. As the PM is an enhanced 

version of the classical    iteration method, the results 

are compared with that of classical    iteration method 

in order to exhibit the computational efficiency of the 

developed algorithm.  The fuel costs obtained by the PM for 

all the test problems are presented in Table 1, which also 

includes the fuel costs of the    iteration method. It is 

very clear from the results that the PM gives the same result 

of the    iteration method, thereby indicating that the 

PM is as reliable as    iteration method. The normalized 

execution time (NET) of the PM is compared with that of the 

   iteration method for all the test problems in Table 2. 

This table clearly indicates that the PM is much faster than 

that of the    iteration method, thereby illustrating that 

the PM is computationally efficient. The optimal generations 

obtained by the PM for all the test problems are graphically 

presented in Fig.1.  
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Fig.1 Optimal Generations obtained by the PM 

Table-1 Comparison of Fuel cost 

Test Problem    iteration method PM 

1 96024.413 96024.413 

2 848.359 848.359 

3 53053.791 53053.791 

4 169637.597 169637.597 

 

Table-2 Comparison of NET  

Test Problem 
   iteration method 

(s) 
PM (s) 

1 0.68 0.36 

2 0.87 0.54 

3 0.92 0.59 

4 0.62 0.33 
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5. CONCLUSION 
SHTS is one of the most important issues in the economic 

operation of power system. The objective of SHTS is to 

determine the optimal amount of water discharges of hydro 

plants and power generations of thermal plants over a 

scheduling horizon so as to minimize the total fuel cost of 

thermal plants while satisfying various hydraulic and electric 

system constraints. The classical    iteration method 

involves time consuming three iterative loops for obtaining 

the optimal solution. An analytical method for eliminating the 

two iterative loops of the classical    iteration method 

for SHTS with a view of enhancing the computational 

efficiency has been presented. The simulation results of four 

test cases clearly illustrated its computational efficiency.  
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