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ABSTRACT
Let G = (V,E) be a connected graph. A subset S of V (G)
is called a boundary dominating set if every vertex of V − S is
boundary dominated by some vertex of S. The minimum taken
over all boundary dominating sets of a graphG is called the bound-
ary domination number of G and is denoted by γb(G). We define
the boundary domatic number in graphs. Exact values of of Wheel
Graph Families are obtained and some other interesting results are
established.
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1. INTRODUCTION
For graph-theoretical terminology and notations not defined here
we follow Buckley [2] and Haynes et al.[4]. Let G be a nontrivial
connected graph. The distance between two vertices u and v is the
length of a shortest path joining them. The eccentricity e(u) of a
vertex u is the distance to a vertex farthest from u. A vertex v is
called an eccentric vertex of u if e(u) = d(u, v). A vertex v is an
eccentric vertex of G if v is an eccentric vertex of some vertex of
G. Consequently if v is an eccentric vertex of u andw is a neighbor
of v, then d(u,w) ≤ d(u, v). A vertex v may have this property,
however, without being an eccentric vertex of u. Let G be a simple
graph G = (V,E) with vertex set V (G) = {v1, v2, ..., vn}. For
i 6= j, a vertex vi is a boundary vertex of vj if d(vj , vt) ≤ d(vj , vi)
for all vt ∈ N(vi) [3].
A vertex v is called a boundary neighbor of u if v is a nearest
boundary of u. If u ∈ V , then the boundary neighbourhood of u
denoted by Nb(u) is defined as Nb(u) = {v ∈ V : d(u,w) ≤
d(u, v) for all w ∈ N(u)}. The cardinality of Nb(u) is denoted by
degb(u) in G. The maximum and minimum boundary degree of a
vertex in G are denoted respectively by ∆b(G) and δb(G). That is
∆b(G) = maxu∈V |Nb(u)|, δb(G) = minu∈V |Nb(u)|.
A vertex u boundary dominate a vertex v if v is a boundary
neighbor of u. KM. Kathiresan, G. Marimuthu and M. Sivanandha
Saraswathy [5] introduced the concept of Boundary domination in
graphs. Puttaswamy and Mohammed Alatif [6] introduced the con-
cept of Boundary edge domination in graphs. All graphs considered
in this paper are finite and contains no loops and no multiple edges.
For a real number x; bxc denotes the greatest integer less than or

equal to x and dxe denotes the smallest integer greater than or equal
to x.
Line graph L(G) of a graph G is defined with the vertex set E(G),
in which two vertices are adjacent if and only if the corresponding
edges are adjacent in G.
Middle graph M(G) of a graph G is defined with the vertex set
V (G) ∪ E(G), in which two elements are adjacent if and only if
either both are adjacent edges in G or one of the elements is a ver-
tex and the other one is an edge incident to the vertex in G. We
need the following theorems.

THEOREM 1. [6] If G is a connected graph of sizem ≥ 3, then
d m

∆
′
b
+1
e ≤ γ ′b(G) ≤ m−∆

′
b(G).

THEOREM 2. [6] For any (n,m)-graph G, γ
′
(G) + γ

′
b(G) ≤

m+ 1.

THEOREM 3. For any gear graph Gn with n > 3, γ(Gn) =
dn

2
e+ 1.

THEOREM 4. [1] For any helm graph Hn with n > 3,
γ(Hn) = n.

THEOREM 5. For any connected graph G, db(G) ≤ b n
γb(G)

c.

2. RESULTS
2.1 Boundary Domination In Graphs

DEFINITION 6. A subset S of V (G) is called a boundary dom-
inating set if every vertex of V −S is boundary dominated by some
vertex of S. The minimum taken over all boundary dominating sets
of a graph G is called the boundary domination number of G and
is denoted by γb(G), γ

′
b(G) for the line graph of G and γb(M(G))

for the middle graph of G.

2.1.1 Wheel Graph. The wheel graph Wn on n + 1 vertices is
defined as Wn = Cn +K1 where Cn is n− cycle. Let V (Wn) =
{vi : 1 ≤ i ≤ n} ∪ {v} and E(Wn) = {ei = vivi+1, 1 ≤ i ≤ n ,
subscripts modulo n} ∪{e′i = vvi, 1 ≤ i ≤ n}, where v is an
external vertex adjacent to every other vertex.

THEOREM 7. For any wheel graph Wn, γb(Wn) = 1

PROOF. Let Wn be a wheel graph of order n + 1. Since
d(v, v1) = d(v, v2) = ... = d(v, vn) = 1, then Nb(v) =
{v1, v2, ..., vn}, δb = ∆b = n so that S = {v} and |S| = 1. Hence
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Fig. 1. Wheel graph Wn

γb(Wn) ≤ 1 . Further since γb(Wn) ≥ d n+1
∆b+1

e = dn+1
n+1
e = 1.

Thus γb(Wn) = 1.

THEOREM 8. For a wheel graph Wn, n ≥ 3, γ
′
b(Wn) = 3.

PROOF. Let L(Wn) be the line graph of Wn of order 2n .
Since d(ei, ei+1) ≤ d(ei, ei+2), d(ei, ei−1) ≤ d(ei, ei−2) for all
ei+1, ei−1 ∈ N(ei) and ei+2, ei−2 ∈ Nb(ei), also d(ei, e

′
i) ≤

d(ei, e
′
i−1), d(ei, e

′
i+1) ≤ d(ei, e

′
i+2) for all e

′
i, e

′
i+1 ∈ N(ei) and

e
′
i−1, e

′
i+2 ∈ N

′
b(ei) so that δ

′
b = n − 2,∆

′
b = n, and for 1 ≤

i ≤ n, the cycle C3 = {ei, e
′
i, e

′
i+1} or {ei−1, ei, e

′
i} is a boundary

edge dominating set of Wn. Hence |S| = γ
′
b(Wn) = 3.

THEOREM 9. For a wheel graph Wn, n ≥ 3, γb(M(Wn)) =
3.

PROOF. The proof is similar to the proof of Theorem 2.3.

2.1.2 Gear Graph. The gear graph is a wheel graph with vertices
added between pair of vertices of the outer cycle. The gear graph
Gn has 2n+ 1 vertices and 3n edges. Let V (Gn) = {vi : 1 ≤ i ≤
n} ∪ {ui : 1 ≤ i ≤ n} ∪ {v} and E(Gn) = {ei = viui, 1 ≤ i ≤
n}∪{e′i = viv, 1 ≤ i ≤ n}∪{e

′′
i = uivi+1, 1 ≤ i ≤ n, subscripts

modulo n} , where v is an external vertex adjacent to every other
vertex vi for 1 ≤ i ≤ n .

THEOREM 10. For any gear graph Gn, γb(Gn) = 2.

PROOF. Let X , Y be a bipartition of Gn, with X =
{v1, v2, ..., vn} and Y = {u1, u2, ..., un}∪{v}. Let vi ∈ X . Then
d(vi, vj) = 2 for all vj ∈ X − {vi}; i 6= j and every vertex vj in
X is a boundary neighbour of vi except vi. Similarly d(v, ui) = 2
, then every vertex of Y −{v} is a boundary neighbour of ui except
v and δ

′
b = ∆

′
b = n therefore S = {v, vi}, is a boundary dominat-

ing set of Gn for all i so that |S| = 2. Hence γb(Gn) ≤ 2. Further
since ∆b = n, γb(Gn) ≥ d 2n+1

∆b+1
e = d 2n+1

n+1
e, then γb(Gn) ≥ 2.

Hence γb(Gn) = 2.

THEOREM 11. For a gear graph Gn, γ
′
b(Gn) = 3.

PROOF. Let L(Gn) be the line graph of Gn of order 3n . Since
d(ei, e

′
i) ≤ d(ei, e

′
i+1),

d(ei, e
′′
i) ≤ d(ei, ei+1) for all e

′
i, e

′′
i ∈ N(ei) and e

′
i+1, ei+1 ∈

Fig. 2. Gn

Nb(ei), similarly ei, e
′′
i ∈ N

′
(e
′
i) and ei+1, e

′′
i+1 ∈ N

′
b(e

′
i) so

that δ
′
b = n + 1,∆

′
b = 2n − 2, and for 1 ≤ i ≤ n, the cy-

cle C3 = {ei, e
′
i, e

′′
i} = S is a boundary edge dominating set of

Gn and |S| = 3. Hence γ
′
b(Gn) ≤ 3. Further since the collec-

tion {ei, e
′
i, e

′′
i : 1 ≤ i ≤ n} contains n-cycles of order 3 then

|S| ≥ d 3n
n
e = 3 so that γ

′
b(Gn) ≥ 3. Thus γ

′
b(Gn) = 3

Fig. 3. L(G8)

THEOREM 12. For a gear graphGn, γb(M(Gn)) = dn
2
e+1.

PROOF. Let M(Gn) be the middle graph of Gn of order
5n + 1. Since d(ei, e

′
i) ≤ d(ei, e

′
i+1), d(ei, e

′′
i) ≤ d(ei, ei+1),

for all e
′
i, e

′′
i ∈ N(ei), e

′′
i+1, and e

′
i+1, ei+1 ∈ Nb(ei). Sim-

ilarly e
′
i, e

′′
i , ei ∈ N(vi) and e

′
i+1, e

′′
i+1, ui ∈ Nb(vi) so that

δb = n + 4,∆b = 3n and for 1 ≤ i ≤ n the set S = {e′i :
i = 2k + 1, k < dn

2
e} ∪ {v1} is is a boundary dominating set

of M(Gn) and |S| = dn
2
e + 1. Hence γb(M(Gn)) ≤ dn

2
e + 1.

Further any boundary dominating set of M(Gn) must contains at
least one of e

′
i, vi for all i and hence |S| ≥ n ≥ dn

2
e + 1 so that

γb(M(Gn)) ≥ dn
2
e+ 1. Thus γb(M(Gn)) = dn

2
e+ 1.
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2.1.3 Helm Graph. The helm graph Hn is the graph obtained
from an n−wheel graph by adjoining a pendant edge at each node
of the cycle. The helm graph Hn has 2n+ 1 vertices and 3n edges
and V (Gn) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n} and
E(Gn) = {ei = vivi+1, 1 ≤ i ≤ n − 1} ∪ {e′i = viv, 1 ≤ i ≤
n− 1} ∪ {ei = viui, 1 ≤ i ≤ n− 1. where v is an external vertex
adjacent to every other vertex vi for 1 ≤ i ≤ n

Fig. 4. Hn

THEOREM 13. For any helm graph Hn, γb(Hn) = 3.

PROOF. Let (X,Y ) be a bipartition of Hn, with X =
{v1, v2, ..., vn} and Y = {u1, u2, ..., un}∪{v}. Let ui ∈ Y . Since
d(v, ui) = 2 , then every vertex of Y −{v} is a boundary neighbour
of ui except v and ∆b = n. Similarly since d(vi, v) ≤ d(vi, vi+2)
for all v, vi+1 ∈ N(vi), then every vertex vj inX for i+2 ≤ j < n
is a boundary neighbour of vi except vi, also vi+1 is a boundary
neighbour of vi−1 except vi, vi+1 and δ

′
b = 2, so that for all i the

set S = {v, vi, vi+1} is a boundary dominating set of Hn where
S = {v, v1, v2} or {v, v2, v3} or ...{v, vn−1, vn} and |S| = 3.
Hence γb(Hn) = 3.

THEOREM 14. For any helm graph Hn,

γ
′
b(Hn) =

{
2 if n = 3 or 4
3 otherwise

.

.

PROOF. The result is obvious if n = 3 or 4. Suppose n ≥ 5,
Since d(ei, e

′
i) ≤ d(ei, e

′
i+2), d(ei, e

′′
i) ≤ d(ei, ei+2) for all

e
′
i, e

′′
i ∈ N(ei) and e

′
i+2, ei+2 ∈ Nb(ei), similarly ei, e

′′
i ∈ N

′
(e
′
i)

and ei+1, e
′′
i+1 ∈ N

′
b(e

′
i) so that δ

′
b = n+ 2,∆

′
b = 2n− 3, and for

1 ≤ i ≤ n, the set S = {e′i, ei, e
′
i+1} is a boundary edge dominat-

ing set of Hn and |S| = 3. Hence γ
′
b(Hn) ≤ 3. Further since the

collection {e′i, ei, e
′
i+1 : 1 ≤ i ≤ n} contains n-cycles of order 3

then |S| ≥ d 3n
n
e = 3 so that γ

′
b(Hn) ≥ 3. Thus γ

′
b(Hn) = 3

THEOREM 15. For a helm graphHn, γb(M(Hn)) = dn
2
e+1.

PROOF. The proof is similar to the proof of Theorem 2.7.

Fig. 5. L(H6)

2.2 Boundary Domatic Number
The maximum order of a partition of the vertex set V of a graph
G into dominating sets is called the domatic number of G and is
denoted by d(G). For a survey of results on domatic number and
their variants we refer to Zelinka [7]. In this section we present a
few basic results on the boundary domatic number of a graph.

DEFINITION 16. Let G = (V,E) be a connected graph. The
maximum order of a partition of V into boundary dominating sets
of G is called the boundary domatic number of G and is denoted by
db(G).

THEOREM 17. , db(Wn) = db(Gn) = db(Hn) = 1.

THEOREM 18. For a wheel graph Wn, n ≥ 3, d
′
b(Wn) =

d 2n
3
e.

PROOF. By the definition of line graph, V (L(Wn)) =
E(Wn) = {ei = vivi+1, 1 ≤ i ≤ n , subscripts modulo n}
∪{e′i = vvi, 1 ≤ i ≤ n}. Let

C = {eie
′
ie
′
i+1 : i = 3(k − 1), 1 ≤ k ≤ d2n

3
e}.

and

C
′
= {eiei+1e

′
i+1 : i = 3k − 2, 1 ≤ k ≤ d2n

3
e}.

be a collection of 3-cycles of L(Wn). Clearly the cycles of C and
C
′

are vertex disjoint and if V (C) and V (C
′
) denotes the set of

vertices belonging to the cycles of C and C
′

respectively then
V (C) ∩ V (C

′
) = φ. Hence d

′
b(Wn) ≥ |C| + |C ′ | = 2dn

3
e. If

n ≡ 0 or 1 (mod 3), then 2dn
3
e = d 2n

3
e and d

′
b(Wn) ≥ d 2n

3
e.

If n ≡ 2(mod 3), then d 2n
3
e = 2dn

3
e + 1. In this

case e
′
n−2, e

′
n−1, en−2, en−1 /∈ V (C) ∪ V (C

′
) and the set

{e′n−2, e
′
n−1, en−2} induces a 3-cycle. Hence if n ≡ 2(mod 3)

d
′
b(Wn) ≥ 2dn

3
e + 1 = d 2n

3
e. Therefore in both the cases

d
′
b(Wn) ≥ d 2n

3
e. Also since V (L(Wn)) = 2n and γ

′
b(Wn) = 3,

we have d
′
b(Wn) ≤ 2n

γ
′
b

≤ d 2n
3
e. Hence d

′
b(Wn) = d 2n

3
e.

THEOREM 19. For a wheel graph Wn and its middle graph
M(Wn),
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db(M(Wn)) =

{
2 if n = 3,
n otherwise

.

.

PROOF. The result is obvious if n = 3, Suppose n ≥ 4 by the
definition of middle graph V (M(G)) = V (G) ∪E(G), and since
|V (M(Wn))| = 3n + 1, γb(M(Wn)) = 3, then db(M(Wn)) ≤
3n+1
γb
≤ b 3n+1

3
c ≤ n . Further let C = {Pi = vie

′
ie
′
i+2 : 1 ≤

i ≤ n} be the collection of paths of M(Wn). Clearly the paths of
C are vertex disjoint and |C| = n, then db(M(Wn)) ≥ n. Hence
db(M(Wn)) = n.

THEOREM 20. For a gear graph Gn, d
′
b(Gn) = n.

PROOF. let L(Gn) be a line graph of gear graph of order 3n,
since γ

′
b(Gn) = 3, it follows that d

′
b(Gn) ≤ b 3n

γ
′
cb

c = b 3n
3
c = n.

To prove the reverse inequality, let Γ = {ei, e
′
i, e

′′
i : 1 ≤ i ≤ n} be

a partition of the set of cycles of L(Gn). It is clear that the cycles
of Γ are vertex disjoint and |Γ| = n therefore d

′
b(Gn) ≥ n. Hence

d
′
b(Gn) = n.

Fig. 6. M(G5)

THEOREM 21. For a gear graph Gn,

d
′
b(M(Gn)) =


n+ 1 if n ≤ 5
n if n = 6 or 7
4 if n = 8 or 9
2 otherwise

.

PROOF. The result is obvious if n ≤ 9. In otherwise,
by the definition of middle graph, V (M(Gn)) = V (Gn) ∪
E(Gn), |V (M(Gn))| = 5n + 1 in which the set {e′i : 1 ≤
i ≤ n} ∪ {v} induces a clique Kn+1 of order n + 1 and for each
i, (1 ≤ i ≤ n), the set of vertices {e′′i , e

′
i+1, ei+1, vi+1 : subscript

modulo n} induce a clique of order 4. Also Since degb(ui) = 4

and |Nb(ui) : 1 ≤ i ≤ n| = 4n, then d
′
b(M(Gn) ≤ d 5n+1

4n
e = 2.

To prove the reverse inequality, we consider the following cases.

Case 1 n is even.
Let S1 = {vi : i = 2k+1, 0 ≤ k < bn

3
c}∪{en−3, e

′
n−2, e

′′
n−2}

and S2 = {vi : i = 2k, 1 ≤ k ≤ bn
3
c} ∪ {en−2, e

′
n−1, e

′′
n−1}.

Clearly {S1, S2} is a boundary domatic partition of M(Gn) so
that d

′
b(M(Gn) ≥ 2.

Case 2 n is odd.
Let S1 = {vi : i = 2k+1, 0 ≤ k ≤ bn

3
c}∪{en−3, e

′
n−2, e

′′
n−2}

and S2 = {vi : i = 2k, 1 ≤ k ≤ dn
3
e} ∪ {en−2, e

′
n−1, e

′′
n−1}.

Clearly {S1, S2} is a boundary domatic partition of M(Gn) so
that d

′
b(M(Gn) ≥ 2. Thus d

′
b(M(Gn) = 2

THEOREM 22. For a helm graph Hn, d
′
b(Hn) = n.

PROOF. The proof is similar to the proof of Theorem 2.15.

Fig. 7. M(H7)

THEOREM 23. For a helm graph Hn,

d
′
b(M(Hn)) =

{
5 if n = 5
3 if n = 7 or 9
2 otherwise

.

.

PROOF. The result is obvious if n = 5, 7 or 9. In other-
wise, by the definition of middle graph, V (M(Hn)) = V (Hn) ∪
E(Hn), |V (M(Hn))| = 5n+ 1 in which for each i, (1 ≤ i ≤ n),
the set of vertices {ei, ei+1, e

′
i+1, e

′′
i+1, vi+1 : subscript modulo

n} induce a clique of order 5. Also {e′i : 1 ≤ i ≤ n} ∪ {v} in-
duces a clique of order n+ 1 (say Kn+1). Since degb(ui) = 4 and
|Nb(ui) : 1 ≤ i ≤ n| = 3n+ 1, then d

′
b(M(Hn) ≤ d 5n+1

3n+1
e = 2.

To prove the reverse inequality, we consider the following cases.

Case 1 n is even.
Let S1 = {ei : i = 2k+ 1, 0 ≤ k ≤ dn

2
e+ 1}∪{e′n−1, vn} and

S2 = {ei : i = 2k, 1 ≤ k ≤ n−2}∪{v1, e
′
n}. Clearly {S1, S2}

is a boundary domatic partition ofM(Hn) so that d
′
b(M(Hn) ≥

2.
Case 2 n is odd.

Let S1 = {ei : i = 2k+1, 0 ≤ k ≤ dn
2
e+2}∪{un−2, e

′
n−1, vn}

and S2 = {ei : i = 2k, 1 ≤ k ≤ n − 3} ∪ {un−1, e
′
n, v1}.

Clearly {S1, S2} is a boundary domatic partition of M(Hn) so
that d

′
b(M(Hn) ≥ 2. Thus d

′
b(M(Hn) = 2
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3. CONCLUSION
In this paper we computed the exact value of the boundary dom-
ination number and the boundary domatic number for the Wheel
Graph Families, line graph of Wheel Graph Families and middle of
Wheel Graph Families .
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