
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.5, January 2016

14

Survey on Data Deduplication for Cloud Storage to

Reduce Fragmentation

Reshma A. Fegade R. D. Bharati
ME Computer Student of

D.Y.P.I.E.T. Pimpri,
Pune India.

Faculty of Computer Department
D.Y.P.I.E.T. Pimpri,

Pune,India.

ABSTRACT
Data Deduplication is an important technique which provides

better result to store more information with less space. Cost

and maintenance of Information backup storage system for

major enterprises can be minimized by storing it on Cloud

Storage. Data redundancy between different kinds of data

storage gets minimal by utilizing data deduplication method.

By giving each application differently and storing the

associated information distinctly the overall disk usage can

be enhanced to a great level. Cloud backup systems uses data

deduplication to eliminate duplicate chunks that are present

in multiple files. The duplicate chunks are substituted with

the references to already present chunks through

deduplication, without storing it again on cloud storage. The

successive chunks are actually stored in scattered form in

backup system in numerous segments (the storage unit of

cloud).

Keywords
Cloud Backup, Data deduplication, Fragmentation.

1. INTRODUCTION
Cloud computing is a computing model which uses the

hosted web services and delivers them over Internet (Wide

area network) making use of standard Internet Protocols.

Cloud as a term comes from the use of cloud symbol

generally used in network diagrams representing a section of

the Internet. In these diagrams, the cloud gets the details

from some part of the network and presents a view focused

on the web services provided by the cloud part of the

network [5].

At present, backing up and archiving of data in the cloud is

becoming very popular due to its flexibility and ease of

usability it provides to the end customers. Cloud backup

providers need to offer their services at a convincing price

point, appreciate strong margins, and still offer reasonable

Service Level Agreements (SLAs). Cloud typically uses high

performance disks and tapes to store the data. While tape has

a high mount and seeks time overhead when compared to

disk, it is considerably cheaper, has a much longer projection

life, lower bit error rate, and is more energy efficient for long

term archiving. Furthermore, technologies like the Linear

Tape File System (LTFS) make large tape library farms

increasingly easier to use in an online fashion [2].

Some cloud backup systems are designed under a thin cloud

assumption that the remote data center only provides

minimal interfaces (i.e., uploading and downloading

complete files). Cumulus, Brackup, YuruBackup and

Duplicity are this kind of system. The thin cloud design

ensures that the systems are able to back up data to almost

any remote storage. In order to improve the backup speed

and reduce the storage space, the backup system uses data

deduplication, and delta compression due to their salient

features of data compression performance.

The deduplication process is a backup process, in which the

input chunks of the data are detected for duplication and

duplicate chunks are not be written to the cloud. Instead, the

system only keeps references to the stored chunks. Using

deduplication, only new chunks of data will be written to

segments and uploaded to the cloud. Thus, deduplication

improves storage utilization and saves backup time for thin

cloud based backup systems [4].

The Storage Networking Industry Association (SNIA)

formed a special interest group in 2010 called Cloud Backup

Recover & Restore (BURR) to focus on interoperability,

explanations, best performs, and principles requirements for

cloud backup, recover and restore. One of the cloud BURR

user desires is that any cloud backup system should be able

to provide fast retrievals locally. However, limited wide area

network (WAN) bandwidth, poses a challenge on cloud

backup services that have to transmit large datasets while

adequate the requirements of the ever shrinking backup

windows and recovery time objectives [5].

2. RELATED WORK
Because of chunk fragmentation in cloud backup systems

using deduplication, the restore performance becomes poorer

when the version number propagates. Though, existing

defragmentation schemes are poor to identify fragments in

cloud backup. Rongyu Lai et al. proposed NED to identify

fragments in cloud backup by accurately identifying

fragmented chunks in every backup. The experimentation

results states NED successfully recovers the restore

performance at the cost of deduplication ratio [4].

Y. Nam et al. proposed deduplication process which

implanted with some kind of chunk fragmentation

optimization. It associates each data stream with its own

open container in the memory, so that the unique chunks

from different streams can be stored into different chunk

containers [7].

Fu, Min, et al. proposed History-Aware Rewriting algorithm

(HAR) and Cache-Aware Filter (CAF). HAR utilizes historic

information in backup systems to specifically recognise and

decrease sparse containers, and CAF exploits restore cache

data to identify the out-of-order containers that hurt restore

performance. CAF well complements HAR in datasets where

out-of-order containers are dominant. To reduce the metadata

overhead of the garbage collection, they further proposed a

Container-Marker Algorithm (CMA) to identify effective

containers instead of valid chunks [1].

Young Jin Nam et al. proposed a deduplication scheme that

guarantees required read performance of each data stream

while accomplishing its write performance at a practical

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.5, January 2016

15

level, ultimately being can be guarantee a objective system

recovery time. For this, they first propose an indicator called

cache aware Chunk Fragmentation Level (CFL) that

evaluations degraded read performance on the fly by taking

into account both entering chunk information and read cache

effects. Author also displays a strong association between

this CFL and read performance in the backup datasets. In

order to assurance claimed read performance stated in terms

of a CFL value, they propose a read performance

improvement scheme called selective duplication that is

initiated whenever the current CFL becomes worse than the

claimed one. The key idea is to thoughtfully write non-

unique (shared) chunks into storage together with unique

chunks unless the shared chunks exhibit well in spatial areas.

They enumerate the spatial area by using a selective

duplication threshold value. Their experiments with the

actual backup datasets determine that the proposed scheme

achieves requested read performance in most cases at the

realistic cost of write performance [8].

Author describes LBFS, a network file system intended for

low-bandwidth networks. Users usually run network file

systems on LANs or campus-area networks with 10 MB per

seconds or more allocated bandwidth. Over slower, wide-

area networks (WAN), data transfers saturate blockage links

and causes undesirable delays. Collaborative programs

restricts and does not responds to user input data during file

I/O process, batch commands can perform process for usual

execution time, and other less hostile network applications

suffer lack of bandwidth allocation. Users must specify

employ different methods to achieve over LAN they would

use the file system [6].

3. LEVELS OF DATA

DEDUPLICATION

3.1 File Level
File Level also normally stated to as single-instance storage

(SIS), file-level data deduplication relates a file to be backed

up or archived with those already stored using checking its

qualities against an index. If the file is matchless, it is stored

and the index is updated; if not, only a pointer gets pointed to

the existing file which is stored in backup system. The effect

is that only one case of the file is saved and successive

copies get replaced with a "stub" that has pointer which

points to the original file. File-level methods can be less

effective than block-based deduplication. A normal change

within the file can cause the overall file to be saved again.

PowerPoint presentation file can have somewhat as simple as

the label page altered to reflect a new presenter or date this

will cause the same file to be saved again. Changed blocks

between one version of file and next version can be saved

using Block based Deduplication. Range of reduction ratios

between is 5:1 or lesser. To reduce capacity between ranges

20:1 to 50:1 of stored data uses Block based deduplication

[3].

3.2 Chunk Level (or Block Level)
Chunk level data deduplication functions on the substitute

file level. The file is usually divides into segments chunks or

blocks that is observed for differences of redundancy and

earlier stored information. Block-level data deduplication

fragments data streams into blocks, examining the blocks to

define if each has been encountered before (characteristically

by creating a digital signature or unique identifier via a hash

algorithm for each block). If the block detected as unique

content then get stored in to disk and its unique identifier is

updated in an index; else, file pointer get projected to the

original and unique block is stored. By changing repetitive

blocks with smaller pointers somewhat than storing the block

again, Space of disk is getting saved [3].

3.3 Byte Level
Exploring data streams at the byte level is alternative

methodology for deduplication. By carrying out a byte-by-

byte comparison between new data streams and formerly

stored ones, a high level of accuracy can be provided. A

deduplication product which uses this technique have one

thing in common i.e. it's possible that the received backup

data stream has been seen earlier, so it is revised to see if it

matches similar data received previously. Products

leveraging a byte-level methodology are commonly "content

aware," which states that vendor has done some reverse

engineering of the backup data to recognize how to retrieve

information parameters such as the file name, file type,

date/time stamp, etc. This technique decreases the aggregate

of computation required to determine by comparing unique

and duplicate data. This methodology normally occurs for

post-process execution on backup data when the backup

process has finished. In Backup jobs, to complete full disk

performance, also require a spare of disk cache to achieve the

deduplication process. The deduplication process is restricted

to a backup storage stream from a particular backup set and

not applied globally on backup sets [3].

4 DEDUPLICATION TYPES

4.1 Offline Deduplication
The signatures of fixed-size chunks updated to the backup

storage and send these signatures to the server that shares

duplicate chunks asynchronously. The index of unique

signatures is stored on the Storage Area Network and it has

two versions. One is structured to support sequential I/O and

spatial locality. The second is indexed by partial bits for

enabling random searches. Copy-on-write is used to

guarantee that chunks are not changed and the signatures are

valid, otherwise it will lead to data corruption. References

are stored in different metadata structures used for garbage

collection. Deduplication is regulated to within a specific file

set that is a subsection of the global file system. This policy

allows separate file sets for applications with different

performance norms, as some may not allow the performance

consequence introduced by deduplication. And performing

effective lookup and update operations [9].

4.2 Inline Deduplication
Deduplicating data before it's retained in to disk refer

to inline deduplication. This relates to post-process

deduplication, also called asynchronous deduplication, which

examines and reduces data after it has been stored to disk.

Performing deduplication in an in-line manner needs costly

lookups in the write path, which can enact a significant

overhead in I/O latency. On the other side, offline

deduplication may introduce extra reads from the storage, it

requires more storage space, and increases concurrency

issues, and increases the complexity of the deduplication

process. These problems driven to the development [9].

5 PROCESS OF DATA

DEDUPLICATION
In the data deduplication process, there are four main steps in

chunk level data deduplication, chunking, fingerprinting,

index lookup and writing.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.5, January 2016

16

Fig 1: Deduplication Process (Chunk level) [5].

5.1 Chunking
In the chunking stage, data is divided into chunks of non-

corresponding data blocks. The size of the data blocks are of

two types one is fixed and another is variable size depending

on the chunking technique used. The Fixed Size Chunking

(FSC) process is used in the situation of fixed data blocks,

while the common technique is used to produce variable

sized chunks is Content Defined Chunking (CDC) [5].

5.2 Fingerprinting
Cryptographic hash functions (e.g., SHA-1) can be used as a

fingerprint to calculate each chunk which gets produced from

the chunking phase [5].

5.3 Index Lookup
A lookup table (chunk index) is formed and it contains the

fingerprints for each unique data chunk. A lookup operation

is executed for each fingerprint generated in chunking step to

decide whether the current chunk is unique or not. If the

fingerprint is found in the lookup table, it implies that the

data chunk is not unique and vice a versa. The fingerprint is

thus place in the table and the chunk is updated to the data

store in writing step [5].

5.4 Writing
All unique data chunks from backup files are written or

updated to the data store. Each chunk stored on the backup

storage using chunk-based deduplication has a unique

fingerprint in the chunk index [5].

To decide whether a given chunk is a duplicate or not, the

fingerprint of the incoming data chunk is first search in the

chunk index. Presence of a matching fingerprint (i.e., hash)

in the index shows that a duplicate copy of the incoming

chunk already present in the index (i.e., has been stored

previously) and the system consequently only needs to store

a reference to the existing data. If there are no unique chunks

found, then the incoming chunk is unique and is stored on

the backup storage system and its fingerprint put in the

chunk index consequently. Deduplication can be performed

either ‘inline’ as the data is incoming the storage

system/device in real time, or as a ‘post-process’ after the

data has been stored. Inline data duplication uses less storage

space as the identical data is detected in real time before the

data is stored [5].

6 CLOUD V/S TRADITIONAL

BACKUP
Table 1. Cloud V/S Traditional Backup[4]

Constraint

Cloud Backup

Traditional

Backup

User Single Enterprise

Size of Backup Less More

Bandwidth

Allocation

Low

Bandwidth
High Bandwidth

Storage Type Cloud Server Data Server

Restore Segment Container

Access More Flexible Less Flexible

Examples of

System

Dropbox,

Brackup

Hydrastor,

Symantec

Table 1 shows the difference between cloud backup and

traditional backup. In traditional backup, chunks are

transferred to the client after being acquired from the

containers in the data servers in restore process. If a data

server is running many jobs at a time, reading data from disk

will become a block in traditional backup. Since thin cloud

system services interface of reading a complete file (i.e.,

segment), data is read in the client after the segments are

transferred from the cloud in cloud backup. Overall, the

speed of reading data from disk is much faster than that of

translating data through Wide Area Network. Thus, the

bottleneck of restore process in cloud backup is the segment

moving process [4][9].

7 CONCLUSION
We have discussed deduplication technique and related

factors which can be used for efficient deduplication process

so that space utilization in backup storage system can be

reduce effectively. Chunk level Deduplication process can be

used for minimizing size at block level. By comparing Cloud

and traditional backup storage system we concluded that for

individual backup storage system cloud is better and gives

more mobility as compare to traditional backup.

8 REFERENCES
[1] Fu, Min, et al. "Reducing Fragmentation for In-line

Deduplication Backup Storage via Exploiting Backup

History and Cache Knowledge."

[2] Gharaibeh, Abdullah, et al. "CloudDT: efficient tape

resource management using deduplication in cloud

backup and archival services." Proceedings of the 8th

International Conference on Network and Service

Management. International Federation for Information

Processing, 2012.

[3] http://viewer.media.bitpipe.com/1019054049_245/1240

950275_886/FalconStor_sDataBackup_Final.pdf

[4] Lai, Rongyu, et al. "A Near-Exact Defragmentation

Scheme to Improve Restore Performance for Cloud

Backup Systems." Algorithms and Architectures for

Parallel Processing. Springer International Publishing,

2014. 457-471.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.5, January 2016

17

[5] Mkandawire, Stephen. "Improving Backup and Restore

Performance for Deduplication-based Cloud Backup

Services." (2012).

[6] Muthitacharoen, Athicha, Benjie Chen, and David

Mazieres. "A low-bandwidth network file

system." ACM SIGOPS Operating Systems Review. Vol.

35. No. 5. ACM, 2001.

[7] Nam, Youngjin, et al. "Chunk fragmentation level: An

effective indicator for read performance degradation in

deduplication storage." High Performance Computing

and Communications (HPCC), 2011 IEEE 13th

International Conference on. IEEE, 2011.

[8] Nam, Young Jin, Dongchul Park, and David HC Du.

"Assuring demanded read performance of data

deduplication storage with backup datasets." Modeling,

Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2012 IEEE

20th International Symposium on. IEEE, 2012.

[9] Paulo, João, and José Pereira. "A survey and

classification of storage deduplication systems." ACM

Computing Surveys (CSUR) 47.1 (2014): 11.

IJCATM : www.ijcaonline.org

