
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

15

Comnoid: Information Leakage Detection using Data

Flow Analysis on Android Devices

Sunita Dhavale
 Dept. of Computer Science and Engineering
Defence Institute of Advanced Technology,

Girinagar, Pune-411025

Bhushan Lokhande
Dept. of Computer Science and Engineering
Defence Institute of Advanced Technology,

Girinagar, Pune-411025

ABSTRACT

Security and privacy of Smartphone data are critical

requirements in case of both personal as well as corporate

environment. Hence, there is a need to come up with an

effective solution in order to address data leakage issues in

smartphones. Generally, taint analysis techniques are used for

information flow tracking and data leakage detection purpose.

Static Taint analysis techniques can detect the leakages that

may not be exposed in runtime. Static analysis derives the

information about program‟s behaviour by inspecting the

program‟s code and discovering multiple paths of a program

execution. In this work a static taint analysis tool Comnoid is

proposed along with companion app ApkGrabber. Comnoid is

based on open source tool FlowDroid and is capable of

analyzing the inter app communication. Existing version of

FlowDroid tool can provide precise static taint analysis but it

lacks capability to analyze inter app communication between

Android applications. Thus the aim of proposed scheme is to

develop a tool to perform Static Taint analysis with inter app

analysis which will take Android application APK files as an

input and produce a data leakage report.

General Terms

Android Security, Operating System Security.

Keywords

Android Operating System; static and dynamic taint analysis;

data flow analysis; Mobile Security

1. INTRODUCTION
Smartphone usage has exceeded those of desktops‟s in the

recent years. At the same time, Security and privacy concerns

about Smartphone data are increasing exponentially in case of

both personal as well as corporate environment. Android

being the most used Smartphone OS, needs solution to

address information leakage issues. Today professionals

prefer utilizing their personal Smartphone/Tablet for carrying

out corporate work related tasks like email, docs, calendar,

corporate apps etc. This helps them to achieve greater

flexibility and balance between personal and corporate life.

This trend belongs to well known Bring Your Own Device

(BYOD) model. Companies have successfully adopted BYOD

concept and are ready to manage security and privacy

concerns as BYOD model promises more work efficiency of

employees [1, 2, 23]. Android nears 80% market share in

Global smartphone shipments [3, 4] and is also the biggest

target of mobile malwares. These malwares pose high risk to

the privacy of user‟s data. Many of the genuine applications

have the permissions to access various local resources like

contacts, mail, GPS, SD card, camera, microphone,

accelerometer etc. They may leak data to unwanted parties on

the internet, or other malicious applications on the phone.

These security and privacy concerns are being addressed in

current Android research domain. Taint analysis techniques

are used for tracking the information flow and possible

leakage on Android [7-14]. Taint analysis [6, 7, 23] is data

flow analysis technique that can track flow of sensitive

information. In this analysis, Taint sources and Taint sinks of

sensitive data are predefined. In context of Android, Taint

sources are Account, Email, Contact, Calendar, Database,

File, Location Log, Phone State, SMS/MMS, Settings and

Unique identifiers (IMEI) etc. Whereas Taint sinks are the

points from where data can leak out of the system. Common

taint sinks in Android are internet, publicly accessible storage

i.e. memory card, inter process communication message and

SMS transmission. Taint tracking discovers the route from

source to sink if any exists. If source data reaches the sink, it

is identified as instances of data leakage.

There are two approaches for taint analysis: Dynamic Taint

analysis and Static Taint analysis. Based on dynamic taint

analysis, many works have been proposed [8-10, 23].

Dynamic analysis techniques monitor the code as it is being

executed and based upon runtime information. It suffers from

performance overheads in case of real time monitoring of

applications. Although, it provides detailed information of

specific run, it cannot provide complete overview of all

possible execution path of program. Further, for real time

processing, this approach needs to be implemented on actual

Android device or Virtual Android device.

In contrast to dynamic taint analysis, static taint analysis

techniques considers all possible execution paths of the

program [11-15]. It analyzes complete code without the need

of execution of the code; and creates control flow graph

(CFG) of program. CFG is used to trace the flow of sensitive

information from sources to sinks. Modern static taint

analysers convert programs code into some intermediate

representation, which can be effectively processed to generate

CFG and Call graphs [13, 23]. Static analysis takes more time

to analyse the program than dynamic analysis as it processes

complete code and all execution paths. But it has no real time

performance overhead as processing is done statically before

the code is actually being executed. Static taint analysis on

Android can be performed by extracting android package (apk

files) of all installed applications and then processing them.

Also it can be done at application market level like Google

Play Store.

In this paper, a static taint analysis tool Comnoid is proposed

along with companion app ApkGrabber. Comnoid is based on

open source tool FlowDroid and is capable of analyzing the

inter app communication. A companion app ApkGrabber can

be used for collecting application APKs from smartphones.

The remaining part of the paper is organized as; Section II

provides the overview of flowdroid. Proposed scheme with

experimental results are explained in Section III followed by

Conclusions in Section IV.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

16

2. OVERVIEW OF FLOWDROID
Christian Fritz et al. [13] presented FlowDroid, precise static

taint analysis for android applications. It takes the Android

apk file as input for processing and does the static taint

analysis. This approach models complete Android lifecycle

[6] precisely to handle callbacks. It is context sensitive as well

as flow, field and object sensitive. Source and sink for

targeted Android version are identified by using SuSi

framework [17]. Detection of source, sink and entry-point is

done by parsing manifest, dalvik executable (dex) and xml

layout files extracted from application apk.

Fig 1: Overview of FlowDroid [10].

FlowDroid generates dummy main method from parsed data

as shown in Fig 1. Taint analysis is performed on this graph to

discover paths from source to sink; all the discovered paths

are then reported. IFDS framework is used to formulate inter

procedural data flow analysis problem which creates exploded

super graph [18]. FlowDroid ignores dynamic loading and

reflection. It treats JNI code as black box and explicit taint

propagation rules are defined for common native methods. It

lacks taint tracking for intra-app and inter-app

communication. Also the current implementation of

FlowDroid ignores reflexive calls and dynamically loaded

codes.

Along with FlowDroid, the authors have also proposed

DroidBench which is very Android specific test suite

containing set of vulnerable apps. On DroidBench evaluation

FlowDroid outperformed other commercially available tools.

It detected all seven data leaks of Insecure Bank App

(vulnerable app used for evaluation purpose) [19]. It also

performed well on Java specific benchmark suites. FlowDroid

is highly precise static taint analysis tool, recently it is been

improved to support implicit flows [22] and it is available as

an open source. It can be executed on any computer with

Android application apk‟s are given as input for further

analysis [13]. Further in [25], the security challenges of

Android communication from the perspectives of Intent

senders and Intent recipients are given in more details.

3. PROPOSED SCHEME
The proposed static taint analysis tool „Comnoid‟ consists of

two major modules; Comnoid and ApkGrabber as shown in

Figure 2. The details of both modules are explained in

following sections.

Fig 2: Processing scenario of Comnoid along with

ApkGrabber

3.1 Comnoid
Comnoid is based on FlowDroid open source tool. It takes

Android application apk file as input and extracts Dex file,

Manifest file and Xml layout files for processing as shown in

Figure 3.

Fig 3: Comnoid overall processing architecture

Manifest file is used to extract metadata about various

Android components as well as permissions used in it. Dex

file contains dalvik executable code which will be

disassembled for call graph and Control flow graph generation

(CFG). Xml layout files contains the application UI

components i.e. Android Activities. Soot framework is used to

generate CFG. It has dexpler tool which disassembles dalvik

code and generates Jimple format code. Jimple code is used to

form Jimple CFG & call graph. This control flow graph is

processed to trace propagation of taint source (sensitive

information) to the taint sink (data leak gateway). If the link

found from taint source to taint sink in the CFG, it is reported

as data leak instance in the final report.

A new inter App processing module is added in existing

Flowdroid framework which is responsible for inter

application communication processing and finding the data

leakages as shown in Fig. 4. In Android inter app

communication is performed via Binder responsible for Inter

Process Communication (IPC). Communication messages

between applications as well as components are in the form of

Intent [24]. Intent analysis is performed to find out data

leakages in Inter app communication. This module contains

three sub modules named Permission mapper, Intent

Analyser, Component Analyser as shown in Fig. 4.

Fig 4: Inter App processing sub modules

3.1.1 Permission Mapper
Permission Mapper extracts the permissions used by

application. These extracted permissions can belong to

following categories as shown in Figure 5.

Normal Permissions- These are basic permission which are

granted automatically by Android system.

Dangerous Permissions- User grants these permissions to

application at the time of installation. If denied, the

application will not be installed.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

17

Signature Permission- granted only to the application which is

developed by same developer who defined the permission.

Useful when set of applications developed by same developer

wants to communicate.

Signature System Permission- Application pre-installed by

System manufacturer can have these permissions.

Fig 5: Permission Mapper

Normal and Dangerous permissions are used for further

processing as signature and signature system permissions does

not lead to the data leakage. Normal permissions are extracted

from Android manifest and dangerous permissions are

extracted from Application manifest file.

3.1.2 Intent Analyzer Module
Intent analyser tracks the intent when it is passed as parameter

or returned as value of any function. Figure 6 shows the

details of Intent Analyzer Module. Explicit intents are sent to

the exact intended application but implicit intent may be

received by malicious application. Such intents are tracked

from source to sink in the control flow graph. Thus data leak

instance is generated when implicit intent with weak or no

permission requirements is traced. For each such intent, its

action, flags and data are tracked.

Fig 6: Intent Analyser

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent. setAction(Intent. ACTION_SEND);

sendIntent. putExtra(Intent. EXTRA_TEXT, textMessage);

sendIntent. setType(HTTP. PLAIN_TEXT_TYPE); // "text
/plain" MIME type

// Verify that the intent will resolve to an activity

if (sendIntent. resolveActivity(getPackageManager()) !
= null) {

 startActivity(sendIntent);

}

The code shows example of implicit Intent, in this intent the

plain text data embedded. Such intent can be received by

different apps like sms, email and whatsapp like chatting

apps. In such case, sendIntent which contains sensitive

information textMessage string is tracked.

Fig 7: Example of Jimple Control Flow graph

After identifying the intent for tracking, it is tracked in the

generated Jimple CFG. Figure 7 shows the Jimple CFG for

SnakeView app. „$‟ symbol represents it‟s a variable, and

suppose

$r0 = sendIntent

$r0 is tracked through the CFG and check whether it passes to

the taint sink.

3.1.3 Component Analyzer Module
Component Analyser extracts components information from

manifest file as well as from translating Dalvik instructions.

This information is checked to see if EXPORTED flag is set

or intent filters are present. If either of this is found the

component is identified as exported component and further

traced for data leakage. Exported component with no

permission or weak permission check are reported as data

leak. If Comnoid finds a exported component that registers to

receive Intents with a non-Android action string and also finds

components that transmit implicit Intents with the same action

string, Comnoid issues a data leak. Exported broadcast

receivers reported for broadcast injection leak, exported

activities for activity launch attack and exported services for

service launch attack.

3.2 Companion Android App ApkGrabber
A companion Android app is developed which creates apk

files for all the installed applications on the smartphone and

store it in one destination folder on SD card. ApkGrabber

requests the Android package manager details and list of all

applications on phone. From these details it tracks the

application folder and generates the apk file. Phone can be

connected to the Pc and Comnoid will given the address of

that folder which contains all the apk‟s. Comnoid will the

generate the data leakage report for all the applications. This

fastens the manual process of getting APK file from the

marketplace and sometimes user may have installed

applications other than market store of android i.e. Google

Play Store.

Companion app stores all apk in the sdcard/APK folder. This

folder„s path is given to the Comnoid to analyse all the apk‟s

and generate report.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

18

4. EXPERIMENTAL RESULTS
The data leakage reports generated from Flowdroid and

Comnoid are compared. This output data leak report can be

analyzed by technicians and/or programmers to detect number

of vulnerabilities. Following are some of the sample data

leakage reports generated for the ArraysAndList, Callbacks

and InterApp related vulnerability apps from DroidBench

benchmark using Flowdroid.

1. droidbench\ArraysAndLists_ArrayAccess1.apk

RESULT SIZE: 1

#Found a flow to sink virtualinvoke

$r2.<android.telephony.SmsManager: void

SendTextMessage(java.lang.String,java.lang.String,java.lang.

String,android.app.PendingIntent,android.app.Pe

ndingIntent)>("+49 1234", null,$r7, null, null), from the

following sources: - virtualinvoke

$r6.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.ArrayAccess1:

void onCreate(android.os.Bundle)>)

2. droidbench\Callbacks_Button2.apk

RESULT SIZE:4

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink virtualinvoke

$r2.<android.telephony.SmsManager: void

sendTextMessage(java.lang.String,java.lang.String,java.lang.

String,android.app.PendingIntent,android.app.Pe

ndingIntent)>("+49 1234", null, $r5, null, null), from the

following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

3.droidbench\InterAppCommunication_ActivityCommunicat

ion1.apk

No results found.

4. droidbench\InterAppCommunication_IntentSink1.apk

No results found.

5. droidbench\InterAppCommunication_IntentSink2.apk

No results found.

From results, it is found that the .apk files containing inter app

vulnerabilities are not recognized by Flowdroid. Following

are some of the sample data leakage reports generated for the

ArraysAndList, Callbacks and InterApp related vulnerability

apps from DroidBench benchmark using Comnoid.

1. droidbench\ArraysAndLists_ArrayAccess1.apk

RESULT SIZE: 1

#Found a flow to sink virtualinvoke

$r2.<android.telephony.SmsManager: void

SendTextMessage(java.lang.String,java.lang.String,java.lang.

String,android.app.PendingIntent,android.app.Pe

ndingIntent)>("+49 1234", null,$r7, null, null), from the

following sources: - virtualinvoke

$r6.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.ArrayAccess1:

void onCreate(android.os.Bundle)>)

2. droidbench\Callbacks_Button2.apk

RESULT SIZE:4

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink staticinvoke <android.util.Log: int

i(java.lang.String,java.lang.String)>("TAG", $r3),

from the following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

#Found a flow to sink virtualinvoke

$r2.<android.telephony.SmsManager: void

sendTextMessage(java.lang.String,java.lang.String,java.lang.

String,android.app.PendingIntent,android.app.Pe

ndingIntent)>("+49 1234", null, $r5, null, null), from the

following sources: - virtualinvoke

$r5.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Button2: void

clickOnButton3(android.view.View)>)

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

19

3.droidbench\InterAppCommunication_ActivityCommunicat

ion1.apk

RESULT SIZE:1

#Found a flow to sink virtualinvoke

$r2.<android.telephony.SmsManager: void

sendTextMessage(java.lang.String,java.lang.String,java.lang.

String,android.app.PendingIntent,android.app.Pe

ndingIntent)>("+49", null, $r3, null, null), from the following

sources: - virtualinvoke

$r4.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.Activity2: void

onCreate(android.os.Bundle)>)

4. droidbench\InterAppCommunication_IntentSink1.apk

#Found a flow to sink virtualinvoke

$r0.<de.ecspride.IntentSink2: void

startActivity(android.content.Intent)>($r3) on line 22, from

the following sources: - virtualinvoke

$r6.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.IntentSink2:

void startIntent(android.view.View)>)

5. droidbench\InterAppCommunication_IntentSink2.apk

RESULT SIZE:1

#Found a flow to sink virtualinvoke

$r0.<de.ecspride.IntentSink2: void

startActivity(android.content.Intent)>($r3) on line 28, from

the following sources: - virtualinvoke

$r6.<android.telephony.TelephonyManager: java.lang.String

getDeviceId()>() (in <de.ecspride.IntentSink2:

void startIntent(android.view.View)>)

From results, it is found that, Comnoid is able to detect the

interapp vulnerabilities successfully. Table 1 gives the

comparison between Flowdroid and Comnoid.

Current version of Comnoid does not support the detection of

privilege delegation through Pending Intents and Intents that

carry URI read-write permissions. Pending Intent is a token

that one application (say App1) gives to another application

(say App2). This allows App2 to inherit permissions of App1

to execute a predefined piece of code. In future, Comnoid tool

will be enhanced to trace back to the original intents.

Table 1: Comparison between Flowdroid and Comnoid

Apk Leaks

FlowDroid

Result

Comnoid

Results

Callbacks_

MethodOverride

1.apk

1 Success Success

Callbacks_

MultiHandlers1.

apk

1 Fail Success

Callbacks_

Ordering1.apk

2 Success Success

Callbacks_

RegisterGlobal1

1 Success Success

.apk

Callbacks_

Unregister1.apk

1 Success Success

InterAppComm

unication_Intent

Sink1.apk

1 Fail Success

InterAppComm

unication_Intent

Sink2.apk

1 Fail Success

InterAppComm

unication_Activ

ityCommunicati

on1.apk

1 Fail Success

5. CONCLUSIONS
Smart phones can contain private and confidential data, when

allowed for accessing corporate applications. Malicious apps

can steal such sensitive data or can track users without their

consent. Considering pros and cons of both approaches, it is

found that static taint analysis techniques are best suited for

analysis on Android Market site and dynamic taint analysis

for real time tracking on Android phone. Thus static taint-

analysis tools for Android applications can be used to detect

illegal data leakage before any malicious application executed

or even before its installation.

Many current static taint analysis approaches do not analyse

dynamically loaded code and Inter-app communication. There

are many data leakage issues in inter-app communication.

From results, it is found that proposed Comnoid tool can

detect inter-app data leakage instances for DroidBench

benchmark successfully. Comnoid gives similar results as

FlowDroid with additional support for inter app analysis. An

ApkGrabber companion Android app is also developed to

collect apk‟s of installed application on phone. Thus Comnoid

can be efficiently used for data leak detection for Android

application on Market store as well as for individual user‟s

smartphone applications.

Comnoid suffers with the drawbacks which are common to

that of other static analysis tools like it is not able to analyse

the reflexive calls and dynamically loaded code.

6. REFERENCES
[1] Keith W. Miller, Jeffrey Voas, George F. Hurlburt,

"BYOD: Security and Privacy Considerations", IT

Professional (Volume:14,Issue:5), Sept.-Oct. 2012,

pp.53-55.

[2] Antonio Scarfò, “New security perspectives around

BYOD”, Seventh International Conference on

Broadband”, Wireless Computing, Communication and

Applications 2012

[3] International Data Corporation Press Release,

http://www.idc.com/getdoc.jsp?containerId=prUS242574

13, Aug. 07, 2013 [Oct. 24, 2013]

[4] Technology Research Gartner Inc,

http://www.gartner.com/newsroom/id/2573415, Aug. 14,

2013 [Oct. 24, 2013]

[5] Android Security Overview,

https://source.android.com/devices/tech/security/index.ht

ml [Oct. 24, 2013]

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

20

[6] Android Activity Lifecycle,

http://developer.android.com/guide/components/activitie

s.html [Oct. 24, 2013]

[7] Edward J. Schwartz, Thanassis Avgerinos, David

Brumley, "All You Ever Wanted to Know About

Dynamic Taint Analysis and Forward Symbolic

Execution (but might have been afraid to ask)" SP '10

Proceedings of the 2010 IEEE Symposium on Security

and Privacy, pp.317-331

[8] William Enck, Peter Gilbert, Byung-Gon Chun, Landon

P. Cox, Jaeyeon Jung, Patrick McDaniel, Anmol N.

Sheth. "TaintDroid: An Information-Flow Tracking

System for Real-time Privacy Monitoring on Smart

phones" 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI' 10) 2010.

[9] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart

Schechter, and David Wetherall, "These Aren't the

Droids You're Looking For", Retroffiting Android to

Protect Data from Imperious Applications In Proc. of

ACM CCS, October 2011

[10] Daniel Schreckling, Johannes Kostler, Matthias Schaff,

“Kynoid: Real-time enforcement of fine-grained, user-

defined, and data-centric security policies for Android”,

information security technical report 17, pp.71-80, 2013

[11] Zhemin Yang and Min Yang, “LeakMiner: Detect

Information Leakage on Android with Static Taint

Analysis”, In Software Engineering (WCSE), 2012 Third

World Congress on, pp.101–104, 2012

[12] Zhibo Zhao and F.C.C. Osono, “Trustdroid: Preventing

the use of smartphones for information leaking in

corporate networks through the used of static analysis

taint tracking”. In Malicious and Unwanted Software

(MALWARE), 7th International Conference on, pages

135–143, 2012

[13] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric

Bodden, Jacques Klein, Alexandre Bartel, Yves le Traon,

Damien Octeau, Patrick McDaniel, “Highly Precise Taint

Analysis for Android Applications”, EC SPRIDE

Technical Report. Nr. TUD-CS-2013-0113. May, 2013

[14] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and

Hao Chen, “AndroidLeaks: automatically detecting

potential privacy leaks in android applications on a large

scale”, Proceeding TRUST'12 Proceedings of the 5th

international conference on Trust and Trustworthy

Computing pp.291-307, 2012

[15] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum

Shin, “ScanDal: Static Analyzer for Detecting Privacy

Leaks in Android Applications” MoST 2012: Mobile

Security Technologies, May 2012

[16] Golam Sarwar (Babil), Olivier Mehani, Roksana Boreli,

Mohamed-Ali Kaafar, “On the Effectiveness of Dynamic

Taint Analysis for Protecting Against Private

Information Leaks on Android-based Devices”,

SECRYPT, 10th International Conference on Security

and Cryptography 2013

[17] Steven Arzt, Siegfried Rasthofer, and Eric Bodden.

“SuSi: A Tool for the Fully Automated Classification and

Categorization of Android Sources and Sinks”. Technical

report, EC SPRIDE Technical Report TUD-CS-2013-

0114, 2013

[18] Thomas Reps, Susan Horwitz, and Mooly Sagiv.

“Precise interprocedural dataflow analysis via graph

Reachability”, In POPL ‟95, pp.49–61, 1995

[19] Paladion. Insecurebank test app.

http://www.paladion.net/downloadapp.html [Oct. 25,

2013]

[20] ANTLR, http://www.antlr.org/ [Oct. 25, 2013]

[21] Jasmin, http: //jasmin.sourceforge.net/guide.html

[Oct.25, 2013]

[22] FlowDroid Now Supports Implicit Flows,

http://sseblog.ec-spride.de/2013/10/flowdroid-implicit-

flows/ Oct. 01, 2013 [Oct. 25, 2013]

[23] B Lokhande, S Dhavale, “Overview of information flow

tracking techniques based on taint analysis for android”,

International Conference on Computing for Sustainable

Global Development (INDIACom), 5-7 March 2014,

New Delhi, Publisher: IEEE, pp. 749 – 753, 2014

[24] http://developer.android.com/reference/android/app/

PendingIntent.html [Oct. 25, 2013]

[25] Erika Chin, Adrienne Porter Felt, Kate Greenwood and

David Wagner, “Analyzing Inter-Application

Communication in Android”, In the Proceedings of the

9th International Conference on Mobile Systems,

Applications, and Services (MobiSys 2011), Bethesda,

MD, USA, June 28 - July 01, 2011

IJCATM : www.ijcaonline.org

http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=oJwZxHYAAAAJ&citation_for_view=oJwZxHYAAAAJ:ufrVoPGSRksC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=oJwZxHYAAAAJ&citation_for_view=oJwZxHYAAAAJ:ufrVoPGSRksC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=oJwZxHYAAAAJ&citation_for_view=oJwZxHYAAAAJ:ufrVoPGSRksC

