
International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

31

Multi-queue CPU Process Prioritization using a Dynamic

Quantum Time Algorithm Compared with Varying Time

Quantum and Round-Robin Algorithms

Maysoon A. Mohammed
PhD Student

University Malaysia Pahang,
Gambang, Malaysia

Mazlina AbdulMajid
Senior Lecturer

University Malaysia Pahang,
Gambang, Malaysia

Balsam A. Mustafa
Senior Lecturer

University Malaysia Pahang,
Gambang, Malaysia

ABSTRACT

In Round-Robin Scheduling, the quantum time is static and

tasks are scheduled such that no process uses CPU time more

than one slice time each cycle. If quantum time is too large,

the response time of the processes will not be tolerated in an

interactive environment. If quantum the time is too small,

unnecessary frequent context switch may occur.

Consequently, overheads result in fewer throughputs. In this

study, we propose a priority multi queues algorithm with

dynamic quantum time. The algorithm uses multi queues with

different quantum times for the processes. The quantum times

for the processes are depending on the priorities which in turn

depending on the burst times of the processes. The proposed

algorithm has been compared with varying time quantum

algorithm which already exist to improve the original round

robin algorithm. With proposed algorithm, the simple Round-

Robin algorithm has been improved by about 35%. By

controlling quantum time, we experience fewer context

switches and shorter waiting and turnaround times, thereby

obtaining higher throughput.

Keywords

Burst Time, Dynamic Quantum Time, Multi queue, Priority,

Round Robin.

1. INTRODUCTION
Now days multitasking (executing more than one process at a

time) and multiplexing (transmitting multiple flows

synchronously) are the main processes related with the

operating systems. These tasks primarily depends on CPU

scheduling algorithm where CPU is one of the important units

of operating system. CPU is scheduled by using different

algorithms of scheduling which they mean the act of selecting

a process from multi running processes to allocate CPU for

this process where enable it to access the resources of the

system such as processor IO ports, cycles etc. The selected

process allocates CPU to a specific period of time which

called quantum time which determined by the operating

system. The selected process allocates CPU to a specific

period of time which called quantum time which determined

by the operating system.Now days multitasking (executing

more than one process at a time) and multiplexing

(transmitting multiple flows synchronously) are the main

processes related with the operating systems. These tasks

primarily depends on CPU scheduling algorithm where CPU

is one of the important units of operating system. CPU is

scheduled by using different algorithms of scheduling which

they mean the act of selecting a process from multi running

processes to allocate CPU for this process where enable it to

access the resources of the system such as processor IO ports,

cycles etc. The selected process allocates CPU to a specific

period of time which called quantum time which determined

by the operating system. As researcher [1] previously pointed

out that the need for a scheduling algorithm arises from the

requirement for fast computer systems to perform

multitasking and multiplexing. CPU scheduling is important

because it affects resource utilization and other performance

parameters [2]. Several CPU scheduling algorithms are

available [3], [4], such as First Come First Serve (FCFS),

Shortest Job First Scheduling (SJF), Round-Robin (RR)

Scheduling, Multilevel queues Scheduling (MQS) and Priority

Scheduling (PS). However, due to disadvantages, these

algorithms are rarely used in shared time operating systems,

except for RR Scheduling [5].

RR is considered the most widely used scheduling algorithm

in CPU scheduling [3], [6] also used for flow passing

scheduling through a network device [7]. An essential task in

operating systems in CPU Scheduling is the process of

allocating a specific process for a time slice. Scheduling

requires careful attention to ensure fairness and avoid process

starvation in the CPU. This allocation is carried out by

software known as a scheduler [3], [6].

The scheduler is concerned mainly with the following tasks

[8]:

• CPU utilization - to keep the CPU as busy as

possible

• Throughput - number of processes that complete

their execution per time unit

• Turnaround - total time between submission of a

process and its completion

• Waiting time - amount of time a process has been

waiting in the ready queue

• Response time - amount of time taken from the time

a request was submitted until the production of the

first response

• Fairness - equal CPU time allocated to each process

2. PERFORMANCE FACTORS
CPU is an essential part in the operating system which is

scheduled by many of the scheduling algorithms to keep it

busy as much as possible to achieve the perfect utilization of

CPU. The processes that need to be processed submit to the

system and wait in the ready queue to be selected by the

scheduler for the processing. The scheduler is responsible of

picking the processes from the ready queue and allocate the

CPU if it is idle for that process [2].

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

32

The moment that the process joins to the ready queue is called

the arrival time. Burst time is the time that the process needs

to complete its job inside the CPU. The turnaround time is the

time that the process spends in the system from the moment of

submission to the moment of completion the processing.

Waiting time is the time that the process waits in the ready

queue waiting for its turn to be selected by the scheduler for

the processing. Therefore, we can conclude that a good

scheduling algorithm for real time and time sharing system

must possess the following characteristics [9]:

• Minimum context switches

• Maximum CPU utilization

• Maximum throughput

• Minimum turnaround time

• Minimum waiting time

3. RELATED WORK
Round Robin Scheduling and multilevel queue scheduling is

common in CPU scheduling techniques. The combination

between RR and multilevel queue was an interesting subject

for many researchers. In [10] developed MLQPTS (Multilevel

Queue with Priority & Time Sharing Scheduling) to solve the

problem of starvation with real time processes. The processes

are scheduled in the queue according to their priority which is

defined from the characteristics of the process. Their

algorithm can be using multilevel technique because it met the

condition of deadline which is the attribute of real time

systems. An efficient multi-level round robin multicast

scheduling (MLRRMS) algorithm with look ahead (LA)

mechanism for N×N input-queued switches has been

proposed by [11]. This mechanism can be applied in a parallel

fashion with a low time complexity. Related to packet

processing networks [12] designed a new cheap multi-

resource fair queueing server using O (1) complexity, where

the packets have been scheduled in a way similar to elastic

RR. Their server is easy to implement, and can be applied in

other multi-resource scheduling contexts where jobs must be

scheduled as entities. Still in packet networks [13] proposed

two downstream multi-channel packet scheduling algorithms

designed to support scheduling amongst flows possibly using

different numbers of channels. The algorithms provided a low

delay for average of packet.

4. RR ALGORITHM
RR architecture is a preemptive version of First Come, First

Serve scheduling algorithm. The tasks are arranged in the

ready queue in first come, first serve manner and the

processor executes the task from the ready queue based on

time slice. If the time slice ends and the tasks are still

executing on the processor, the scheduler will forcibly

preempt the executing task and keep it at the end of ready

queue. Then, the scheduler will allocate the processor to the

next task in the ready queue. The preempted task will make its

way to the beginning of the ready list and will be executed by

the processor from the point of interruption.

A scheduler requires a time management function to

implement the RR architecture and requires a tick timer [14].

The time slice is proportional to the period of clock ticks [8].

The time slice length is a critical issue in real time operating

systems. The time slice must not be too small, as it would

result in frequent context switches. Moreover, the time slice

should be slightly greater than the average task computation

time.

RR when implemented in real time operating systems faces

two drawbacks, which are high rate of context switch and low

throughput. These two problems of RR architecture are

interrelated [15].

• Context switch: When the time slice of the task ends

and the task is still executing in the processor, the

scheduler forcibly preempts the tasks on the

processor. The interrupted task is then stored in

stacks or registers, and the processor is allocated the

next task in the ready queue. This action performed

by the scheduler is called “context switch.” Context

switch leads to wastage of time, memory, and

scheduler overhead.

• Larger waiting and response times: In RR

architecture, the time the process spends in the

ready queue waiting for the processor for task

execution is known as “waiting time.” The time the

process completes its job and exits from the task-set

is called “turnaround time.” Larger waiting and

response times are clearly a drawback in RR

architecture, as it leads to degradation of system

performance.

• Low throughput: Throughput refers to the number

of processes completed per time unit. If RR is

implemented in real time operating systems,

throughput will be low and results in severe

degradation of system performance. If the number

of context switches is low, then the throughput will

be high. Context switch and throughput are

inversely proportional to each other.

5. IMPROVED RR WITH VARYING

TIME QUNTUM ALGORITHM
The idea of improved Round Robin CPU scheduling

algorithm with varying quantum time (IRRVQ) is depending

on the combination between Shortest Job First (SJF) and RR

with using dynamic quantum time in each round. First, the

processes in the ready queue are ordered from lowest to

highest burst times. The scheduler allocates the CPU to the

first process using RR and assigns its burst time as quantum

time for this round. The same procedure will be repeated in

each round until all processes finish their execution and ready

queue assigns to NULL.

6. THE PROPOSED ALGORITHM:

MULTIQUEUE DYNAMIC

QUANTUM TIME (PMQDQT)
One of the constant challenges for multi queue scheduling is

to minimize resource starvation and to ensure fairness

amongst the parties utilizing the resources and for real time

systems is to build a platform that can meet timeliness

requirement of system. RR scheduling algorithm has no

priority and fixed quantum time. However, this scheduling

algorithm is not suitable for real time operating system

(RTOS) because of drawbacks. In other words, the high

context switch, high waiting and turnaround times, and low

throughput are pitfalls of RR. These disadvantages do not

make the optimal choice for RTOS. Priority RR scheduling

still has the problem of starvation, where the lowest priority

process with fixed quantum time will be starved and

preempted by the highest priority process. In multi queue

scheduling, the starvation problem has been solved efficiently

but this technique is not suitable for real time processes. To

overcome this problem, an idea of new algorithm i.e.,

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

33

PMQDQT (Priority Multi Queue Dynamic Quantum Time)

have been proposed, where the proposed algorithm depends

on the existing RR.

6.1.Methodology
The proposed algorithm tries to enhance the classic RR by

improving the concept of IRRVQ in terms of context

switches, average turnaround time and average waiting time

with multi queues. In addition, enhancing IRRVQ by

prioritizing the processes in the multi ready queues to specify

which process from which queue would be chosen by the

scheduler for the processing in the CPU. Moreover, changing

the quantum time of each queue, rounds and of the processes

increases the throughput of the CPU and reduces the waiting

time of the processes thus effects as many processes that can

be processed by CPU.

6.2.The Proposed Algorithm Design
The basic idea of this algorithm considers different priorities

depending on the burst times of the processes and different

quantum times depending on the priorities [16], [17].

The steps of PMQDQT:

• Allocate multi ready queues for the processes.

• Assign quantum times for the queue such as k.

• Allocate CPU to every process in Round-Robin

fashion, according to the given priority and new

dynamic quantum time, (for given time quantum k

units) only for one time.

• New priorities are assigned according to the CPU

bursts of processes; the process with lowest burst

time is set with highest priority.

• New quantum times are assigned according to the

priorities.

• Calculate new quantum time depending on the

existing one by using a simple formula, which is q

= k + n - 1, where q is the new quantum time for

each process, k is the quantum time for each cycle,

and n is the priority of the processes in the ready

queue.

• Set different quantum times for the processes

according to their priorities. The highest priority

process will get the largest quantum time, which is

q, and the lowest priority process will get the

smallest quantum time, which is k.

• The processes in the multi queue that arrive at the

same time will be chosen according to their lower

burst time.

• Each process gets the control of the CPU until they

finished their execution.

• Apply the original RR, improved RR and proposed

algorithm with the priorities and new different

quantum times.

• Calculate context switches, average turnaround time

and average waiting time.

By changing the quantum time for the cycles and processes,

we guarantee that one or more processes complete their jobs

every cycle. Also, we could improve the existing RR

algorithm by reducing context switches and lessening

turnaround and waiting times. Hence, throughput will

increase. The next sections present case studies to show the

differences between PMQDQT, IRRVQ and RR Algorithms.

7. EXPERMINTAL SIMULATION

7.1 Assumptions
The assumptions that we followed in the case studies are: The

Quantum time has been taken in milliseconds, the CPU bound

is active that mean all processes are in CPU bound not in I/O

bound. For IRRVQ all processes with the same priorities

while in our algorithm different priorities used for all

processes. For experimental purposes, the burst times and

arrival times of all processes are known and chosen by the

researchers. The context switches in IRRVQ are considered

zero while in PDQT are computed. The overhead of arranging

the ready queue processes in ascending order has been

considered zero in IRRVQ [18] as well in PMQDQT.

7.2 Case Study
Two queues Q1 and Q2 with six and five processes in Q1 and

Q2 respectively have been defined with CPU burst times,

different arrival times, and their priorities. These processes are

scheduled in RR, IRRVQ techniques as well as according to

the PMQDQT algorithm. The context switches, average

turnaround time, and average waiting time are calculated, and

the results are compared. To accomplish this task, we

implemented the algorithm in JAVA programming language

and conducted several experiments. However, only one

experiment is discussed here for dynamic quantum time

process, and we assure that the analysis remain the same for

the other experiments.

We consider Q1 with six processes (A1, A2, A3, A4, A5, and

A6) with quantum time 4 millisecond and Q2 with five

processes (B1, B2, B3, B4, and B5) with quantum time 4

millisecond. Different arrival times, and burst times as shown

in Table1.

The equations used to calculate average turnaround and

average waiting time are:

Average turnaround time = T/n𝑛
𝑘=1 (1)

Average waiting time = B/n𝑛
𝑘=1 (2)

, where n = number of processes, T = completion time –

arrival time; B = turnaround time – burst time

The processes with arrival and burst times are shown in table

1. Tables 2, 3 and 4 show the output of using algorithms RR,

IRRVQ and PMQDQT respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

34

Table1: The inputs for the processes of case study

Tasks

of Q1
AT BT QT Tasks

of Q2
AT BT QT

A1 0 4 4 B1 0 3 4

A2 5 8 4 B2 7 5 4

A3 10 12 4 B3 10 10 4

A4 15 10 4 B4 25 7 4

A5 20 6 4 B5 30 13 4

A6 25 15 4

Table2: Output processes of RR

Round

QT of

Round

for Q1

QT of

Round

of Q2

Pi, QTi

1 4 4 A1=4 B1=3 A2=4 B2=4 A3=4 B3=4 A4=4 A5=4 A6=4 B4=4 B5=4

2 4 4 A2=4 B2=1 A3=4 B3=4 A4=4 A5=2 A6=4 B4=3 B5=4

3 4 4 A3=4 B3=2 A4=2 A6=4 B5=4

4 4 4 A6=3 B5=1

Table3: Output processes of IRRVQ

Round

QT of

Round

for Q1

QT of

Round

of Q2

Pi, QTi

1 4 4 A1=4 B1=3 A2=4 B2=4 A3=4 B3=4 A4=4 A5=4 A6=4 B4=4 B5=4

2 4 4 A2=4 B2=1 A3=4 B3=4 A4=4 A5=2 A6=4 B4=3 B5=4

3 4 4 A3=4 B3=2 A4=2 A6=4 B5=4

4 3 3 A6=3 B5=1

Table4: Output processes of PMQDQT

Round

QT of

Round

for Q1

QT of

Round

of Q2

Pi, QTi

1 4 4 B1=3 A1=4 A2=8 B2=5 B3=7 A3=6 A4=8 A5=6 B4=7 A6=4 B5=5

2 4 4 B3=3 A3=6 A4=2 A6=4 B5=5

3 4 4 A6=4 B5=3

4 4 4 A6=3

Figures 1, 2 and 3 show Gantt charts of the three algorithms RR, IRRVQ and PDQT respectively.

Fig. 1: Gantt chart of RR

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

35

Fig. 2: Gantt chart of IRRVQ

Fig. 3: Gantt chart of PMQDQT

Figures above show the staging performance of the three

algorithms, where we note the performance of RR remain

exactly the same when applying IRRVQ in this case study. On

the other hand, the proposed algorithm PMQDQT improved

and raised the level of performance when reducing the context

switches according to the both algorithms, the original RR and

IRRVQ.

8. RESULTS AND COMPARISON
The results that conducted after applying the three algorithms

RR, IRRVQ and PMQDQT are shown in table 5.

Table5: Results obtained from the three algorithms

Algorithm
Average

TAT

Average

WT
CS

RR 47 38 26

IRRVQ 45 38 26

PMQDQT 37 28 18

From the results above, it is obvious that the proposed

algorithm PMQDQT conducted results with context switches,

average turnaround and average waiting time much better than

RR and IRRVQ. Figures 4, 5 and 6 illustrate the comparison

of performance of RR, IRRVQ and PMQDQT algorithms for

5 different quantum times in terms of the three factors,

context switches, average turnaround and average waiting

times, respectively.

Fig. 4: Performance of RR, IRRVQ and PMQDQT in

term of Context Switches

Fig. 5: Performance of RR, IRRVQ and PMQDQT in

term of average Turnaround Times

6

8

10

12

14

16

2 4 6 8

C
o
n
te

x
t

S
w

it
ch

es

Quantum Times

RR

IRRVQ

PMQDQT

12

14

16

18

20

2 4 6 8

A
v
er

ag
e

T
u
rn

ar
o
u
n
d
 T

im
es

Quantum Times

RR

IRRVQ

PMQDQT

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

36

Fig. 5: Performance of RR, IRRVQ and PMQDQT in

term of average Waiting Times

After applying the algorithms with different quantum times

we conduct a conclusion with the improved algorithm

IRRVQ, which is, for some quantum times IRRVQ did not

accomplish results better than RR, on contrast, PMQDQT in

every experiment for any quantum time achieved the proper

results over than RR and IRRVQ. So, PMQDQT solved the

problems that can face us with IRRVQ. On the other hand, a

limitation faces us with PMQDQT, it is the large values of

burst times with large number of context switches. But this

problem do not affect too much because the processes in

worst cases do not need a large burst time to complete their

job.

Honestly and for scientific secretariat, this work may be

relative to the work of [16] and [17], but the difference of

their work is the novelty of the new formula that used in the

proposed algorithm and the dependence of the dynamic

quantum time of the processes upon priorities.

9. CONCLUSIONS AND THE FUTURE

WORKS
We have successfully compared three algorithms, namely,

simple RR, Improved algorithm IRRVQ and the proposed

algorithm PMQDQT for multi queues with priorities

according to process’s burst time and dynamic quantum time

according to the priority of the process. Results indicated that

PMQDQT is more efficient because this proposed algorithm

has fewer context switches and shorter average turnaround

and waiting times compared to simple RR and IRRVQ.

Moreover, the results reduced operating system overhead and

increased throughput. PMQDQT lessened the problem of

starvation as the processes with highest priorities are assigned

to the lowest CPU burst time with largest quantum time and

are executed before lower priority processes.

After experience many quantum times with the three

algorithms, some important points have been conducted and

listed below:

1. With IRRVQ, if the quantum time is large than the burst

time of the first process in the ready queue, the results

that conducted with IRRVQ stay static, e.g. No real

improvement of the performance with this algorithm.

2. The performance of IRRVQ is weak, sometimes give the

same results with RR, if the processes arrive in different

arrival times.

3. IRRVQ gives much better performance over RR with

zero arrival times for the processes.

4. PMQDQT, gives better results and performance with

different arrival times and different quantum times.

5. The advantage of PMQDQT algorithm is, high

performance with the large number of processes which

will be the next improvement of the algorithm to

compare with other techniques, however, there is a

limitation faces us is the low performance with the large

burst times with high quantum time.

For the future works, the performance of time-sharing systems

can be improved with the proposed algorithm, and can be

modified to enhance the performance of real time system.

Moreover, the idea of applying the proposed algorithm in real

environment, operating system such as Linux, is under study

in order to achieve the objective of improving RR algorithm.

10. REFERENCES
[1] H. Kopetz, Real-time systems: design principles for

distributed embedded applications: Springer, 2011.

[2] T. F. Hasan, "CPU SCHEDULING VISUALIZATION."

[3] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating

system concepts vol. 8: Wiley, 2013.

[4] E. Oyetunji and A. Oluleye, "Performance Assessment of

Some CPU Scheduling Algorithms," Research Journal of

Information and Technology, vol. 1, pp. 22-26, 2009.

[5] F. Cerqueira and B. Brandenburg, "A comparison of

scheduling latency in linux, PREEMPT-RT, and

LITMUSRT," in Proceedings of the 9th Annual

Workshop on Operating Systems Platforms for

Embedded Real-Time applications, 2013, pp. 19-29.

[6] L. Yang, J. M. Schopf, and I. Foster, "Conservative

scheduling: Using predicted variance to improve

scheduling decisions in dynamic environments," in

Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, 2003, p. 31.

[7] W. Tong and J. Zhao, "Quantum varying deficit round

robin scheduling over priority queues," in Computational

Intelligence and Security, 2007 International Conference

on, 2007, pp. 252-256.

[8] M.-X. Chen and S.-H. Liu, "Hierarchical Deficit Round-

Robin Packet Scheduling Algorithm," in Advances in

Intelligent Systems and Applications-Volume 1, ed:

Springer, 2013, pp. 419-427.

[9] A. Singh, P. Goyal, and S. Batra, "An Optimized Round

Robin Scheduling Algorithm for CPU Scheduling,"

IJCSE) International Journal on Computer Science and

Engineering, vol. 2, pp. 2383-2385, 2010.

[10] I. Sattar, M. Shahid, and N. Yasir, "Multi-Level Queue

with Priority and Time Sharing for Real Time

Scheduling."

[11] H. Yu, S. Ruepp, and M. S. Berger, "Multi-level round-

robin multicast scheduling with look-ahead mechanism,"

in Communications (ICC), 2011 IEEE International

Conference on, 2011, pp. 1-5.

[12] W. Wang, B. Li, and B. Liang, "Multi-Resource Round

Robin: A low complexity packet scheduler with

Dominant Resource Fairness," in ICNP, 2013, pp. 1-10.

[13] D. Nikolova and C. Blondia, "Bonded deficit round robin

scheduling for multi-channel networks," Computer

Networks, vol. 55, pp. 3503-3516, 2011.

6.5

7.5

8.5

9.5

10.5

11.5

12.5

2 4 6 8A
v
er

ag
e

W
ai

ti
n
g
 T

im
es

Quantum Times

RR

IRRVQ

PMQDQT

International Journal of Computer Applications (0975 – 8887)

Volume 134 – No.7, January 2016

37

[14] N. Goel and R. Garg, "An Optimum Multilevel Dynamic

Round Robin Scheduling Algorithm," arXiv preprint

arXiv:1307.4167, 2013.

[15] R. S. Kiran, P. V. Babu, and B. M. Krishna, "Optimizing

CPU scheduling for real time applications using mean-

difference round robin (MDRR) algorithm," in ICT and

Critical Infrastructure: Proceedings of the 48th Annual

Convention of Computer Society of India-Vol I, 2014, pp.

713-721.

[16] I. S. Rajput and D. Gupta, "A Priority based Round

Robin CPU Scheduling Algorithm for Real Time

Systems," International Journal of Innovations in

Engineering and Technology, 2012.

[17] R. Mohanty, H. Behera, K. Patwari, M. Dash, and M. L.

Prasanna, "Priority based dynamic round robin (PBDRR)

algorithm with intelligent time slice for soft real time

systems," arXiv preprint arXiv:1105.1736, 2011.

[18] M. K. Mishra and F. Rashid, "AN IMPROVED ROUND

ROBIN CPU SCHEDULING ALGORITHM WITH

VARYING TIME QUANTUM," International Journal

of Computer Science, Engineering & Applications, vol.

4, 2014.

IJCATM : www.ijcaonline.org

