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ABSTRACT 
Pseudo Noise (PN) sequences are defined as a sequence of 1‟s 

and 0‟s which have randomness properties that make it appear 

noise-like but are generated by mathematical algorithms. PN 

sequences that are generated by shift registers such as M-

sequences, Gold sequences are known and widely used since 

the 1960‟s for various applications. These sequences are 

periodic and the periodicity is always in terms of powers of 2, 

hence donot offer much flexibility in terms of length of the 

sequence. In the past decade or so, PN sequences based on 

Prime numbers and quadratic residue theory have been 

discovered and are known to exist for a greater range of 

permissible lengths. The properties and generation of these 

Prime number based sequences have not been explored fully 

in literature and hence this paper explains two such sequences 

namely Legendre and Weil sequences and simulates them to 

analyse their properties which test their randomness. The 

simulation is done using MATLAB and Verilog Hardware 

Description Language. Generation of these sequences is 

described and implementation details on the Kintex-7 FPGA 

device with results are brought out.  
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1. INTRODUCTION 
Spread spectrum communication uses much larger bandwidth 

than required by spreading original information signal using 

noise like sequences called pseudo noise sequences. Due to 

noise like property of the spreading sequences, eavesdropping 

into communication is not easy. Future communication is 

expected to operate at higher data rates, be more reliable, and 

operate in increasingly crowded frequency allocations. In 

cellular radio communication, the autocorrelation property and 

the cross-correlation property of the spreading sequences are 

important to achieve multiple access communications, such as 

CDMA (Code Division Multiple Access).  In a system based 

on spread spectrum transmission techniques, users are 

multiplexed by orthogonal spreading codes or orthogonal 

frequency bands or by orthogonal time slots. In Code division 

multiple access (CDMA) systems with direct sequence 

approach, all users transmit on the same band at the same time 

and are distinguished only by means of the code sequence. 

Their main characteristic is the spreading of the information 

signal over a bandwidth much larger than the original, which 

is mainly determined by the spreading method and not by the 

transmitted information. This is usually done with a 

pseudorandom or pseudo-noise (PN) sequence.  

A PN sequence is defined as a sequence of 1‟s and 0‟s which 

appear in a pattern that makes it indistinguishable from a noise 

pattern. For certain applications the sequence is required to 

have certain properties such as equal number of 1‟s and 0‟s. 

Some of the most commonly used PN codes are Maximal 

length codes (M-sequences), Gold codes, Walsh- Hadamard 

codes and Kasami codes. The above said PN sequences have 

average randomness and can be easily generated using shift 

registers. The disadvantage of these sequences is that they are 

periodic sequences and do not offer flexibility in terms of their 

length. 

Communication systems are becoming more flexible in 

bringing in new technologies into the system with mere 

modification of software. A PN binary sequence is a semi-

random sequence in the sense that it appears random within 

the sequence length, fulfilling the needs of randomness. To a 

casual observer the sequence appears totally random, however 

to a user who is aware of the way the sequence is generated all 

its properties should be known. PN sequences have several 

interesting properties, which are exploited in a variety of 

applications. Because of their good autocorrelation two 

similar PN sequences can easily be phase synchronized, even 

when one of them is corrupted by noise. A PN sequence is an 

ideal test signal, as it simulates the random characteristics of a 

digital signal and can be easily generated. Applications of PN 

sequences include signal synchronization, navigation, radar 

ranging, random number generation, multipath resolution, 

cryptography,  signal identification in multiple-access 

communication systems, missile launching systems, satellite 

communications, resistance to intended or 

unintended jamming, sharing of a single channel among 

multiple users, reduced signal/background-noise level 

hampers interception and determination of relative timing 

between transmitter and receiver. 

The rest of the paper is organized as follows: Section 2 

explains the concept of quadratic residue and quadratic non-

residue and the generation of Legendre and Weil sequences, 

section 3 studies the correlation properties of these sequences, 

section 4 contains the FPGA simulation results and 

implementation details and finally section 5 concludes the 

paper. 

2. QUADRATIC RESIDUE SEQUENCES 
The concept of quadratic residues and quadratic non-residues 

[1, 2] is explained below: 

Consider a quadratic congruence of the form y2 ≡b (mod p), 

where „p‟ is a prime number and „b‟ is any positive integer 

less than „p‟, then a solution to the given congruence exists 

(i.e. „y‟ exists) if „b‟ is a quadratic residue (R) modulo „p‟ i.e. 

If „y2‟is divided by „p‟, it should give a remainder „b‟. 

Example:  if p=7 and b=2  

32≡ 2 (mod7) & 42≡ 2 (mod7)   

Thus the solution is y=3 and y=4, & b=2 is a quadratic residue 

modulo 7.  Similarly, it can be proved that 1 and 4 are the 

http://en.wikipedia.org/wiki/Radio_jamming
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remaining quadratic residues of 7. 

Therefore for p=7 the quadratic residues are: R = {1, 2, 4}; 

Of course there may be no solution at all i.e. there is no „y‟ for 

which y2≡3(mod 7) then b=3 is said to be quadratic non-

residue (N) modulo p. Therefore for any given prime number 

„p‟, not counting zero, there always exists (p-1)/2 quadratic 

residues and (p-1)/2 quadratic non-residues. 

The quadratic non-residues of 7 are: N = {3, 5, 6}. 

One of the methods to calculate the quadratic residues and 

non-residues of a prime number is the Euler’s criterion which 

states that an integer „a‟ such that gcd(a,p) =1 is a quadratic 

residue modulo „p‟, „p‟ being odd prime  if,  

a(p-1)/2≡1 (mod p); 

and it is a quadratic non-residue if 

a(p-1)/2≡ −1 (mod p). 

Legendre sequences [3] are constructed from Legendre 

symbol (x/p) which is a short hand notation for expressing 

whether „x‟ is a quadratic residue modulo p or not. Here p is a 

prime number.  

The Legendre symbol (x/p) is defined as follows: 

 

+1;               if x is quadratic residue mod p
−1; if x is a quadratic non − residue mod p

0;                                             if x ≡ 0 mod p

  

The Legendre sequence is now defined as s = (s0, s1, s2…… sp-

1) where si=(i/p) 0≤ i ≤ p-1. The Legendre sequence is a binary 

sequence. Here s0 is always 0 and will be represented as -1. 

Using the above definition for the Legendre symbol, the 

Legendre sequence for p=7 is 

{0, 1, 2, 3, 4, 5, 6} →{-1, 1, 1,-1, 1,-1,-1}. 

Where 1, 2, 4 are quadratic residues represented by +1, while 

3, 5, 6 are non-quadratic residues represented by -1. 

For small primes the Euler‟s criterion is used to calculate the 

quadratic residues and non-residues but for large prime 

numbers using the criterion leads to overflow problems. 

Therefore a method that is described in [4] generates the 

sequence indices at which +1‟s occur rather than -1‟s and does 

not require any multiplication or division and given by the 

equation 

Ln = {Ln-1 + (2n-1)} mod p;                     - (1) 

where,  2 ≤ n≤ (p-1)/2 and L1 =1; 

For the case of p=7, „n‟ is ranging from 2 to 3. Therefore with 

L1 =1 we have 

L2 = {L1 + (2*2) -1} mod 7 = {4} mod 7 = 4. 

L3 = {L2 + (2*3) -1} mod 7 = {9} mod 7 = 2. 

Therefore Ln = {1, 4, 2} which are the quadratic residues of p 

=7. 

The Legendre sequence may then be defined as: 

s(k) =  
+1, 𝑖𝑓 𝑘 ∈  {𝐿𝑛}
−1, 𝑖𝑓 𝑘 ∉  {𝐿𝑛}

 - (2) 

Therefore the Legendre sequence calculated for p =7 by the 

above method is s = {-1, 1, 1,-1,1,-1,-1} which is the same as 

that found using Euler‟s criterion. 

The main drawback of Legendre sequence is the size of the 

family for a given length which is always one.  Hence to 

overcome the family size limitations,  researchers taking 

inspiration from one of the properties of maximum length 

sequences which states that a shift and an XOR addition of an 

M-sequence produces another M-sequence, generated Weil 

sequences. 

Weil sequences: 

The XOR addition of a Legendre sequence „s‟ of length „p‟ 

with a shifted replica of itself leads us to whole new set of 

family called Weil sequences W [5]. 

W = {s+Ts, s+T2s . . . s+T((p-1)/2)s}             -(3)                                          

Where „T‟ denotes the operator which shifts the vector 

cyclically to the left by one place, that is, Ts = (s1, s2…… sp-1, 

s0) whereas Tks shifts the vector cyclically left by „k‟ places. 

Here „+‟ denotes modulo-2 addition. The shift can be a right 

circular shift or a left circular shift. Therefore for one 

Legendre sequence of prime length „p‟ there are (p-1)/2 Weil 

sequences each of length „p‟. 

Figure 1 shows the generation of Weil sequence from a 

Legendre sequence, where the 0‟s are represented as „-1‟ and 

1‟s as „+1‟. Therefore the XOR addition which was for a 

sequence of 0‟s and 1‟s is now replaced with multiplication 

for -1‟s and +1‟s. 

 

Figure 1- Weil sequence generation 

3. PROPERTIES OF LEGENDRE AND 

WEIL SEQUENCES 
The properties of the sequences are tested after generating the 

sequences in MATLAB and are described below. The length 

of the sequence considered is 227 bits. 

(i) Balance property 

The balance property states that in each period of the 

sequence, the difference between the number of 1‟s and the 

number of 0‟s is one. 

Figure 2 indicates that the number of 1‟s in Legendre 

sequence is 113 and the number of 0‟s is 114, whereas for 

Weil sequence with shift index 1, meaning that the Legendre 

sequence with one bit right circular shift when modulo-2 

added with the un-shifted sequence has 114 ones and 113 

zeros in one period of the sequence. 
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Figure 2 – Balance property of Legendre and Weil 

sequences 

(ii) Runs property 

This property states that among the runs of 1‟s and 0‟s in each 

period of the sequence, one-half of the runs of each kind of 

length one, ¼ are of length two, 1/8 are of length three and so 

on as long as these fractions represent meaningful numbers. 

By a run means a subsequence of identical symbols that is 1‟s 

or 0‟s. 

 

Figure 3 – Run length property of Legendre and Weil 

sequences 

The above figure indicates that the runs property is neither 

satisfied by the Legendre sequence nor the Weil sequence. 

There are a total of 7 runs in one period of both the sequences, 

59 of the runs in Legendre sequence are of length 1 and 54 of 

the runs in Weil sequence are of length1; 26 of the runs in 

Legendre and 33 of the runs in Weil are of length 2 and so on. 

(iii) Even & Odd Auto-correlation 

Let a PN sequence be represented by -1 volt for binary 

symbol‟0‟ and +1 volt for „1‟, then the even auto-correlation 

function (ACF) of the PN sequence {an} is defined as, where 

„v‟ is the time shift 

ACFe(v) =  𝒂𝒊𝒂𝒊+𝒗
𝑵−𝟏
𝒊=𝟎                              - (4) 

The odd auto-correlation [6] arises whenever the data bit that 

is modulating the PN sequence flips either from logic 1 to 0 or 

logic 0 to 1 within the period of the PN sequence. It is given 

by the expression, with ′τ′ as the time shift 

ACFo(𝝉) =  𝐚𝐢𝒂𝒊+𝝉  −𝐍−𝛕−𝟏
𝐢=𝟎  𝒂𝒊𝒂𝒊+𝝉

𝑵−𝟏
𝒊=𝑵−𝝉      – (5) 

 

Figure 4- Auto-correlation plot of Legendre sequence of 

227 bits 

Based on the periodic auto-correlation of the Legendre 

sequence, they can be divided into two classes: 

Class 1: If p ≡3 (mod 4) then the auto-correlation function 

(ACF) is  

ACF = 
𝐩;  for i = 0;
−𝟏;  otherwise

  

Class 2: If p ≡1 (mod 4) then the auto-correlation function is  

ACF =  

𝐩; if ′i′ = 0

−𝟑; if ′i′ is quadratic residue mod p

𝟏;  if ′i′is a quadratic nonresidue mod p

  

Therefore the plot of ACF of Legendre sequence of figure 4 

belongs to class 1 group, where p=227 which is congruent to 3 

(mod 4). 

Similarly figure 5 shows the plot of even and odd auto-

correlation of Weil sequence. It can be seen from the plot the 

even auto-correlation is not binary valued but the maximum 

limit of correlation side-lobe is bounded by 2√p +5 [5] where 

„p‟ is the length of the sequence. 

 

Figure 5- Auto-correlation of Weil sequence of 227 bits 
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(iv) Even & Odd Cross-correlation: 

The even cross-correlation function (CCF) for sequences {an} 

and {bn} is defined as 

CCFe(v)  =  𝒂𝒊𝒃𝒊+𝒗
𝒊=𝑵−𝟏
𝒊=𝟎                          - (6) 

The odd cross-correlation is defined as 

CCFo(𝝉) =  𝐚𝐢𝒃𝒊+𝝉  −𝐍−𝛕−𝟏
𝐢=𝟎  𝒂𝒊𝒃𝒊+𝝉

𝑵−𝟏
𝒊=𝑵−𝝉        – (7)                    

Since for a given prime number there is only one Legendre 

sequence hence there is no cross-correlation plot for it. Figure 

6 shows the even and odd CCF plot for Weil sequences. The 

two Weil sequences are Weil sequence index 1 with one bit 

right circular shift and Weil sequence index 2 with two bits 

right circular shift and XOR with Legendre sequence. 

As can be seen in the even auto-correlation and even cross-

correlation plot in figures 5 & 6, the maximum side-lobe is 

bounded by 2√p +5 = 2√227 +5=35.13. 

 

Figure 6- Cross-correlation plot of Weil sequences 

4. FPGA IMPLEMENTATION RESULTS 
A Verilog hardware description language code is written for 

both Legendre and Weil sequences of length 227 bits for 

implementation on the Kintex -7 FPGA XC7K325TFFG900-2 

kit. The simulation results for Legendre sequence is shown in 

figure 7 

 

Figure 7- Simulation results of Legendre sequence of 227 

bits 

In the above figure, „key‟ denotes the start signal for sequence 

execution, „p[9:0]‟ is the 10 bit prime number input 227 which 

in binary notation is “0011100011” and „c1‟ is the output bit. 

The device utilization post implementation is shown in table 1 

Table 1- Device utilization summary of Legendre sequence 

Resource Utilization Available Utilization % 

Flip-

flops 

310 407600 0.08 

Look up 

tables 

(LUT) 

466 203800 0.23 

I/O 14 500 2.80 

BUFG 1 32 3.12 

The power consumption from the implemented netlist is 

shown in figure 8. 

 

Figure 8– Power Analysis for Legendre sequence 

The total on-chip power is 10.474W of which the dynamic 

power which is the on-chip power consumed by each type of 

user logic is 10.224 which is 98 % of the total on-chip power. 

The dynamic power includes user design power from all 

applicable voltage sources. The device static power is 0.250W 

which is 2% of the total power. Device static power is the 

transistor power leakage from all voltage sources when the 

device is powered but not configured. 

The simulation results for a Weil sequence of length 227 bits 

is as shown in figure 9. 

 

Figure 9- Simulation results of Weil sequence of 227 bits 

In the above figure, „key‟ denotes the start signal for sequence 

execution, „p[9:0]‟ is the 10 bit prime number input 227 which 

in binary notation is “0011100011” and „ws1‟ is the output bit. 

The device utilization post implementation for generating two 

Weil sequences is shown in table 2. 
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Table 2- Device utilization summary of Weil sequence 

Resource Utilization Available Utilization 

% 

Flip-flops 310 407600 0.08 

Look up 

tables 

(LUT) 

612 203800 0.30 

I/O 14 500 2.80 

BUFG 1 32 3.12 

Similarly the power utilization summary is shown in figure 10 

 

Figure 10 – Power Analysis for Weil sequences 

The total power consumed is 12.443W out of which 12.167W 

is dynamic power and 0.276W is the device static power. 

5. CONCLUSION 
This paper described the newly discovered Legendre and Weil 

sequences which are based on prime numbers and quadratic 

residue theory. The method to construct these sequences is 

described and their properties such as balance, runs and 

correlation property were analysed. Legendre and Weil 

sequences may not have the ideal properties of M-sequences 

or Gold sequences but their flexibility in terms of length can 

be particularly useful in satellite navigation systems. The 

FPGA implementation results indicate that they are not as 

complex to generate provided the right formula is made use of 

as described in this paper. Weil sequences are currently being 

used as spreading sequences in GPS systems. These sequences 

can also be used for other applications mentioned in the paper 

except for cryptographic applications as the randomness of 

these sequences are not good enough. Future work can include 

obtaining the trace representation of these sequences so that 

they can be generated using shift registers. 
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