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ABSTRACT 
The circle theorem is one of the most important methods for 

study of absolute stability of nonlinear systems. In circle 

theorem, it is assumed that the nonlinearity term is located 

between linear bounds of a typical sector. In this paper the 

absolute stability of nonlinear systems with generalized sector 

condition is studied in which the bounds of the sector are 

piecewise linear in general. Therefore this method could be 

applied to the sector with nonlinear bounds. In this paper 

using modified Nyquist criterion, it is proved that the study of 

absolute stability of a nonlinear system using circle theorem 

could be reduced to the study of stability of equalized linear 

system. The aim of this paper is to define a pseudo circle 

region that the Nyquist plot of the linear system with 

nonlinearity in sector condition with piecewise bounds 

doesn’t have any intersection with that region and encircle it 

𝑚 times in the counterclockwise direction where 𝑚 is the 

number of poles of linear part of the system with positive real 

parts. 
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1. INTRODUCTION 
Many nonlinear physical systems can be represented as a 

feedback connection of a linear dynamical system and a 

nonlinear element, as shown in Fig1. The absolute stability of 

the feedback system in Fig1 is a classical problem in control 

theory. It has been addressed extensively in the nonlinear 

systems and control literature ([1], [2], [3]). The usual tools 

for absolute stability analysis include Popov criterion and 

circle criterion. With the advancement of robust control 

theory in the 1980s and 1990s, some close relationship 

between robustness and absolute stability was established in 

[4] and robustness analysis tools were applied to deal with 

absolute stability problems ([3], [4], [5], [6]). Among these 

tools, circle criterion appears to be the most popular. 

y(t)r(t)=0
+ _ G(s)

( )y
 

Fig 1: Representation of a nonlinear physical system. 

It is assumed the transfer function matrix of the linear system 

is given by 𝐺(𝑠) = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 which is a square strictly 

proper transfer function and 𝑢 = 𝜓 𝑦  in which 𝜓 is a 

memory less, possibly time varying nonlinearity which is 

piecewise continuous in t and locally Lipschitz in y and In this 

case, 𝜓: [0,∞) × 𝑅 → 𝑅  satisfies a sector condition (or is a 

sector nonlinearity) if there are constants 𝛼,𝛽, a and b ( with 

𝛼 < 𝛽 and 𝑎 < 0 < 𝑏) such that 

∀ 𝑦 ∈  𝑎, 𝑏 : 𝛼𝑦2 ≤ 𝑦𝜓(𝑦) ≤ 𝛽𝑦2 (1) 

If (1) holds for all 𝑦 ∈ (−∞,∞) is said that the sector 

condition holds globally. This sector condition is shown in 

Fig2. 
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Fig 2: Sector condition (𝜶, 𝜷) 

The stability of the above system is studied using circle 

theorem is as following [3]: 

Circle Theorem: Consider a scalar system of the form 

𝐺(𝑠) = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 where {𝐴, 𝐵, 𝐶} is a minimal 

realization of 𝐺(𝑠) and 𝜓 satisfies the sector condition (1) 

globally. Then the system is absolutely stable if one of the 

following conditions is satisfied, as appropriate: 

1. If 0 < 𝛼 < 𝛽, the Nyquist plot of 𝐺 𝑗𝜔  does not 

enter the disk 𝐷(𝛼, 𝛽) in Fig3 and encircles it m 

times in the counterclockwise direction, where m is 

the number of poles of 𝐺 𝑠  with positive real parts. 

2. If 0 = 𝛼 < 𝛽, 𝐺 𝑠  is Hurwitz and the Nyquist plot 

of 𝐺 𝑗𝜔  lies to the right of the vertical line defined 

by 𝑅𝑒 𝑠 = −1/ 𝛽 . 

3. If 𝛼 < 0 < 𝛽, 𝐺 𝑠  is Hurwitz and the Nyquist plot 

of 𝐺 𝑗𝜔  lies in the interior of the disk 𝐷 𝛼, 𝛽  in 

Fig3. 

If the sector condition (1) is satisfied only on an interval [𝑎, 𝑏] 
then the foregoing conditions ensure that the system is 

absolutely stable with a finite domain. 
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Fig 3: disk D(α,β). 

In this paper the absolute stability of nonlinear systems with 

generalized sector condition is studied in which the bounds of 

the sector are piecewise linear in general. Therefore this 
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method could be applied to the sector with nonlinear bounds. 

In this paper using modified Nyquist criterion, it is proved 

that the study of absolute stability of a nonlinear system using 

circle theorem could be reduced to the study of stability of 

linear system. The aim of this paper is to define a pseudo 

circle region that the Nyquist diagram of the linear system 

with nonlinearity in sector condition with piecewise bounds 

doesn’t have any intersection with that region and turn it equal 

to the number of its unstable poles. 

In the remind of the paper, analysis of absolute stability using 

modified Nyquist criteria studied in section 2 and Circle 

criteria for non-typical sector condition is described in section 

3. In section 4, Circle criteria for piecewise linear sector 

condition is studied and the simulation results in section 5, 

shown the beneficiary of this new method. 

2. ANALYSIS OF ABSOLUTE STABILI-

TY USING MODIFIED NYQUIST 

CRIT-ERIA 
In this paper, it is resulted that the absolute stability of a 

nonlinear system using circle theorem could be reduced to the 

study of stability of linear system. In theorem I, will be 

proved that there is a linear system 𝐺𝑡 𝑠  which is equal to the 

system 𝐺 𝑠  with nonlinearity in sector condition 𝛼, 𝛽 , in the 

sense of stability. 

In other words, the stability of 𝐺(𝑠) with nonlinearity in 

sector condition (𝛼, 𝛽) could be studied using the stability of 

a linear system 𝐺𝑡 𝑠  and vice versa. To prove theorem I, two 

lemmas are studied in following. 

Lemma I: If the Nyquist plot of 𝐺 𝑠  encircles the Nyquist 

plot of −1/𝑘 𝑠  𝑚 times (𝑚 is the number of poles of 𝐺 𝑠  
with positive real parts) then the feedback system Fig4 is 

asymptotically stable. 

y(t)r(t)=0
+ _ G(s)

( )k s
 

Fig 4:the feedback interconnection of the system G(s) and 

k(s) 

Proof of the Lemma I: According to the modified Nyquist 

criteria, for the stability of 1 + 𝑘𝑖𝐺(𝑠) = 0, the Nyquist plot 

of 𝐺 𝑠  should encircle the point −1 𝑘𝑖 , 𝑚 times in 

counterclockwise in which 𝑘𝑖  could be a complex number [3]. 

Therefore it is possible to say that, the system Fig4 is stable if 

the characteristic equation 1 + 𝑘𝑖𝐺(𝑠) = 0 be stable for all 𝑘𝑖 , 
where 𝑘𝑖 = 𝑘(𝑗𝜔𝑖) for all 𝜔𝑖 ∈ (−∞ ,∞). It is important to 

say that, the Nyquist plot of −1/𝑘 𝑠  is the combination of 

the points −1/𝑘𝑖  in s-plane. 

Lemma II: if the system of Fig4 be asymptotically stable then 

the Nyquist plot of 𝐺 𝑠  encircle the Nyquist plot of 

−1 𝑘(𝛾𝑠) , m times and there isn’t any intersection between 

these Nyquist plots where m is the number of poles of 𝐺 𝑠  
with positive real parts and 𝛾 > 0. 

y(t)r(t)=0
+ _ G(s)

( )k s
 

Fig 5: the feedback interconnection of the system 𝑮 𝒔  and 

𝒌 𝜸𝒔  

Proof of the Lemma II: According to the fact that, the 

Nyquist plot of −1 𝑘(𝛾𝑠)  is equal to the Nyquist plot 

−1 𝑘(𝑠)  so using lemma I, the Nyquist plot of 𝐺 𝑠  encircle 

the Nyquist plot of −1 𝑘(𝛾𝑠) , 𝑚 times. To prove the lack of 

intersection, using reductio ad adsurdum method, is assumed 

that the Nyquist plots of 𝐺 𝑠  and −1 𝑘(𝛾𝑠)  have at least one 

intersection at point P where the point P is the map of 𝐺(𝑗𝜔1) 

and −1/𝑘(𝛾𝑗𝜔2). If 𝜔1 = 𝜔2 then 1 + 𝑘(𝑗𝜔1)𝐺(𝑗𝜔2)  =  0 

which means that the system is not asymptotically stable 

which is in contradiction with assumption of lemma II. So the 

assumed intersection should be happen in 𝜔1 ≠ 𝜔2. 

At point P, we have 

𝐺 𝑗𝜔1 = −
1

𝑘 𝑗𝜔2 
   
𝛾0=

𝛥
𝜔2 𝜔1 

            𝐺(𝑗𝜔1) = −
1

𝑘(𝑗𝛾0𝜔1)
 (2) 

Therefore there are 𝛾0 and 𝜔1 in such a way that 1 +
𝑘(𝛾0𝑠)𝐺(𝑠) =  0 is not asymptotically stable which 

contradicts with the asymptotically stability assumption of 

lemma II. 

Theorem I: the system 𝐺 𝑠  with nonlinearity in sector 

(𝛼, 𝛽) is stable iff the linear feedback system G(s) and 𝑘 𝛾𝑠  
be stable where 

−
1

𝑘(𝑠)
= −

𝛼𝑠 + 𝛽

𝛼𝛽(𝑠 + 1)
 (3) 

Proof of the Theorem I: Assume that the system Fig6.a is 

asymptotically stable. According to the circle criteria, the 

Nyquist diagram of 𝐺 𝑠  encircle the disk 𝐷 𝛼, 𝛽  in Fig3, 𝑚 

times in which 𝑚 is the number of poles of 𝐺 𝑠  with positive 

real parts. According to this fact that the Nyquist plot of -

1/𝑘(𝛾𝑠) is equal to the circle in Fig3, so to have 

asymptotically stability of system in Fig6.a, the Nyquist plot 

of 𝐺 𝑠  should encircle the Nyquist plot of 1 𝑘 𝛾𝑠   for all 

𝛾 > 0, m times. Because of the equality between the Nyquist 

plot of −1 𝑘 𝛾𝑠   and −1 𝑘 𝑠  , using the lemma I the system 

in Fig6.b is asymptotically stable. 

Assume that the system in Fig6.b is asymptotically stable, 

using lemma II the Nyquist plot of 𝐺 𝑠  doesn’t have any 

intersection with the Nyquist plot of −1 𝑘 𝛾𝑠   and encircle it 

m times. Because of the similarity between the Nyquist plot of 

-1 𝑘 𝛾𝑠   and the circle in Fig3, the Nyquist plot of 𝐺 𝑠  
doesn’t have any intersection with the circle in Fig3 and 

encircle it 𝑚 times. Therefore the system in Fig6.a is 

asymptotically stable. 

y(t)r(t)=0
+ _ G(s)

( )y
 

Fig 6.a: the feedback interconnection of the system 𝑮 𝒔  
and nonlinearity 𝝍 𝒚  

y(t)r(t)=0
+ _ G(s)

( )k s
 

Fig 6.b: the feedback interconnection of the system 𝑮 𝒔  
and 𝒌 𝜸𝒔  



International Journal of Computer Applications (0975 – 8887) 

Volume 134 – No.9, January 2016 

17 

3. CIRCLE CRITERIA FOR 

NONTYPIC-AL SECTOR 

CONDITION 
In this part we want to study the circle theorem for the system 

with non-typical sector shown in Fig7.a. To do this we should 

convert the system in Fig7.a to typical sector problem shown 

in Fig7.b in which the definition of d0 is as follows: 

𝑑𝑜(𝑡) =  

−𝑏                    ; 𝑦1 𝑡 ≥ 𝑏           

−𝑦1 𝑡          ; −𝑏 ≤ 𝑦1(𝑡) < 𝑏

𝑏                       ; 𝑦1 𝑡 < −𝑏         

  (4) 

After some simplifications, the system shown Fig7.b is 

converted to the system in Fig8. 

r(t)=0
+ _ G(s)

y

b

-b

 

Fig 7.a: the linear system G(s) and nonlinearity in non-

typical sector condition. 

r=0
+ _ G(s)

yu
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+
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Fig 7.b: the linear system G(s) and nonlinearity in typical 

sector condition with input d0 

G(s)

b

+

_

G(s)-b

-b

b

 

Fig 8: the simplified system of Fig 7.b 

According to the theorem I, the feedback connection between 

𝐺 𝑠  and typical sector  𝛼, 𝛽 , could be modeled as 𝐺𝑡(𝑠) (the 

transfer function of the system in Fig6.b) in the sense of 

stability. Therefore the system in Fig8 could be simplified to 

the system in Fig9, where 𝐺𝑡(𝑠) is as follows: 

𝐺𝑡(𝑠) =
𝐺(𝑠)𝑘(𝛾𝑠)

1 + 𝐺(𝑠)𝑘(𝛾𝑠)
 (5.a) 

𝐺(𝑠) =
𝐺𝑡(𝑠)

𝑘(𝛾𝑠) (1 − 𝐺𝑡(𝑠)) 
 (5.b) 

The result of above simplifications is reduced to the stability 

study of the system in Fig9. The nonlinearity term in Fig9 

could be modeled as a typical sector (0,1). Therefore the 

stability of the system in Fig9 is equal to the stability of the 

system 𝐺𝑡(𝑠) with sector (0,1). 

b
-b

-b

b

( )tG s

 

Fig 9: the simplified system of Fig8 

Using the circle criteria, the system in Fig9 is stable iff the 

Nyquiast plot of 𝐺𝑡(𝑠) does not enter the region 𝑅𝑒(𝑠) < −1. 

The region 𝑅𝑒(𝑠) < −1, is equal to the Nyquiast plot of 

𝐿 𝑠 = − 1 − 1/𝑠. 

According to (5), it is possible to define a bilinear mapping 

that maps the Nyquist plot of 𝐺𝑡(𝑠) to the Nyquist plot of 

𝐺 𝑠 . The applying result of this mapping to the region 

𝑅𝑒(𝑠) < −1 generates a region M(s) that the Nyquist plot of 

𝐺 𝑠  encircle it m times and doesn’t have any intersection 

with it. The above described mapping is as follows: 

𝑊 =
𝑍

𝑘(𝛾𝑠)(1 − 𝑍)
 (6) 

Also the mapping result of region 𝑅𝑒(𝑠) < −1, is in 

following form. 

𝑀(𝑠) =
𝐿(𝑠)

𝑘(𝛾𝑠)(1 − 𝐿(𝑠))
 = −

(𝛼𝛾𝑠 + 𝛽)(𝑠 + 1)

𝛼𝛽(𝛾𝑠 + 1)(2𝑠 + 1)
 (7) 

4. CIRCLE CRITERIA FOR 

PIECEWISE LINEAR SECTOR 

CONDITION 
In Fig10, a sector with piecewise linear bounds is shown. This 

sector is the combination of two typical and non-typical 

sectors Fig11. To stability analysis of system shown in Fig10 

with piecewise sector bounds, it is possible to convert it to the 

connection shown in Fig12.a in which a general sector could 

be replaced as a summation of two typical and non-typical 

sectors. 

y1

1

( )y

1 2 

1 2 

 

Fig 10: a sector with piecewise linear bounds 

y
1

1
1( )y

y
2

2

2 ( )y

+b

-b

(a) (b)
 

Fig 11: typical and non-typical sectors combined to 

achieve the sector shown in Fig10 
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It is easy to see from Fig12.a that, according to the theorem I, 

the internal nonlinear loop could be replaced with 𝐺𝑡 𝑠  in the 

sense of stability which is shown in Fig12.b. Therefore the 

stability analysis of the system Fig12.a could be studied using 

the stability analysis of the system Fig12.b. 

y(t)r(t)=0
+ _

1( )y

( )G s+ _

2 ( )y
 

Fig12.a: 𝑮 𝒔  with typical sector 𝝍𝟏(𝒔) and non-typical 

sector 𝝍𝟐(𝒔) 

y(t)r(t)=0
+ _

2 ( )y

( )tG s

 

Fig 12.b: 𝑮𝒕 𝒔  with non-typical sector 𝝍𝟐(𝒔) 

5. SIMULATION RESULTS 
In this section, the result of the new method in absolute 

stability analysis is shown and advantages of its compared 

with circle theorem. As shown in Fig13, it is assumed that, 

there exist a feedback connection between a linear system 

𝐺 𝑠  and a deadzone, where 𝐺 𝑠  is as following: 

𝐺(𝑠) =
(𝑠 + 1)2

𝑠(𝑠 + 3)(𝑠 + .0001)
 (8) 

To study absolute stability of this system using circle theorem, 

the nonlinearity deadzone should be modeled as a sector with 

𝛼 = 0 and 𝛽 = 1. Using circle theorem, the system is 

absolutely stable if the Nyquist plot of 𝐺 𝑠  be in the right 

side of the line 𝑅𝑒 𝑠 = −1. As shown in the Fig14, the 

Nyquist plot of G(s) is not on the right side of the 𝑅𝑒 𝑠 =
−1. Therefore it is not possible to analysis the absolute 

stability of the system using circle theorem. 

1
-1

-1

1

( )G s

 

Fig 13: feedback connection between a linear system 𝑮 𝒔  
and a deadzone. 

Using the generalized circle theorem introduced in this paper, 

it is possible to analysis the absolute stability of the system. 

Deadzone could be modeled as a non-typical sector with 

𝛼 = 𝛽 = 1 which is introduced in the system in Fig7.a. In 

section 3, it is proved that the system is stable if the Nyquist 

plot of 𝐺(𝑠) doesn't enter to the Nyquist plot of 𝑀(𝑠) in (7) 

and doesn't encircle it. 

In Fig14, the Nyquist plot of 𝑀 𝑠  is shown which is similar 

to a circle. It is obvious to see that, the Nyquist plot of 𝐺 𝑠  
doesn't encircle the Nyquist plot of 𝑀 𝑠  and doesn't enter to 

it. So using the result of this paper, we could say that the 

system 𝐺 𝑠  with a deadzone in feedback in Fig13 is 

absolutely stable. 

 

Fig 14: the Nyquist plot of 𝑮 𝒔 , the Nyquist plot of 𝑴 𝒔  
and the line 𝑹𝒆(𝒔) = −𝟏 

6. CONCLUSION 
This paper presents a new method for study of stability of a 

nonlinear system using generalized circle criterion. The circle 

criterion is generalized and using this generalization, modeled 

a linear system with nonlinearity in sector (𝛼, 𝛽) by a 

equalized linear feedback system, and studied the stability of 

this linear feedback system instead of stability of the 

nonlinear system. The brilliant result of this paper is to 

generate a pseudo circle region that the stability of a system 

with piecewise linear bounds on its sector could be achieved 

using the analysis of this pseudo circle region and the Nyquist 

plot of linear part of the system.  

Using the method introduced in this paper, can be studied the 

absolute stability of the systems with nonlinearity on their 

sector bounds which could be achieved by the approximation 

of nonlinear bounds of the sector by piecewise linear bounds. 
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