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ABSTRACT 

Ultrasound imaging owing to its low cost and non-invasive 

nature is a widely accepted imaging technique. The image 

quality in ultrasound images is degraded by a special type of 

acoustic noise known as speckle. Speckle noise is a random 

presence of bright and dark spots which hinders human 

interpretation of images and computer assisted diagnostic 

techniques. The success of ultrasonic examination depends 

upon image quality; therefore, despeckling is necessary to 

improve visual quality for better diagnosis. Several speckle 

reduction methods are applied to the ultrasound images to 

suppress noise and preserve the useful diagnostic information. 

This paper presents a review of multi-scale filters (wavelets), 

single scale spatial adaptive filters (viz. Median, Wiener, Lee, 

Frost, Kuan, and Gamma MAP filter) and two Diffusion 

filters (viz. Anisotropic Diffusion filter and Speckle 

Reduction Anisotropic Diffusion filter)that are widely used 

for speckle reduction in biomedical ultrasound B-scan images. 

General Terms 

Digital Image Processing. 

Keywords 

Ultrasound imaging, speckle, single scale spatial adaptive 

filters, multi scale filters, anisotropic diffusion filters, 

shrinkage methods. 

1. INTRODUCTION 
Medical Ultrasound B-scan imaging is the most widely used 

imaging system in medical field for effective diagnosis of 

diseases [1]. It is used to visualize muscles and many other 
internal organs, their size, structure, and any pathological 

injuries with real time tomographic images. It does not use 

ionizing radiations, possessing noninvasive, portable and cost 

effective characteristics. 

However ultrasound images are corrupted by speckle noise, 

subjected to imaging equipments and the external 

environment, when they are collected and transmitted. 

Ultrasonic speckle is an interference effect wherein, ultrasonic 

produced by ultrasonic probe is reflected by the body internal 

and external interface back to the probe [2-3]. The 

backscattered coherent waves having different phases undergo 

a constructive and destructive interference in a random 

fashion. The acquired images are thus degraded by a random 

granular pattern called speckle, which delays interpretation of 

the image content. Speckle noise reduces the spatial resolution 

of the imaging system thereby hinders the ability of a human 

observer to discriminate the fine details of diagnostic 

examination [4]. Therefore speckle noise suppression, by 

means of digital image processing, is a central pre-processing 

step for feature extraction, analysis and recognition from 

medical imagery measurements. 

The paper is organized in the following way: Section 2 gives a 

model for speckle noise. Section 3 classifies the speckle 

reduction methods into two categories- single scale spatial 

adaptive filters and multi-scale filters. The subsections discuss 

the theoretical and mathematical forms of these methods. 

Section 4 briefly compares the performance of these filters. 

Paper concludes with Section 5.   

2. MODEL FOR SPECKLE NOISE 
Speckle is a spatially correlated multiplicative noise and 

expressed by Goodman [3] in a mathematical model for the 

analysis of speckle noise as [5] 

),(),(),(),( yxyxyxGyxF AM                   (1) 

Where F(x,y) is the real noisy image, G(x,y) refers to the 

unknown noise free image, ),( yxM and ),( yxA are 

multiplicative and additive noise respectively. Since additive 

noise is considered to be lower than multiplicative noise, 

signal dependent noise model for speckle specification in 

Ultrasound images is generally modeled as 

),(),(),( yxyxGyxF M                  (2) 

3. SPECKLE FILTERING TECHNIQUES 
Several techniques to remove speckle have been proposed by 

researchers [6]. These speckle reduction filters can be 

classified into two categories viz. compounding method and 

post acquisition method [7]. 

Compounding methods [8] are based on averaging of multiple 

images of the same scan plane, where images are obtained by 

varying transducer frequency and/or view angle to achieve 

independent or partially uncorrelated speckle pattern. These 

methods can improve the target detectability but need 

hardware modifications and suffer from degradation of spatial 

resolution and increased system complexity. 

On the other hand, the post acquisition methods do not need 

hardware modification. These methods improve the image 

details and reduce the speckle noise considerably via 

algorithm implementations. These methods are further 

categorized into single scale spatial adaptive filters and multi-

scale filters. 

3.1 Single Scale Spatial Adaptive Filtering 
This approach consists of moving a square window called 

kernel over each pixel in the image and establishing a 

statistical relationship, such as local mean or local variance, 

between the center pixel and its surrounding pixels. The value 



International Journal of Computer Applications (0975 – 8887) 

Volume 135 – No.10, February 2016 

17 

of the central pixel is replaced with the calculated value. This 

approach improves the smoothing effect in homogenous 

regions where speckle is fully developed and the effect 

lessens in other regions to preserve useful details of the image 

[7]. The typical size of filter window must be odd and varies 

from 3x3 to 33x33. Generally a 3x3 or 7x7 window yields 

good results [9]. 

The single scale spatial adaptive filters involve three main 

steps: 

1. Computation of local statistics like local mean or variance. 

2. Region growing procedure where a pixel is grouped into 

homogenous regions using certain homogeneity criteria like 

gray level, texture, local statistics, color similarities. 

3. Application of smoothening operator wherein mean or 

median is applied on homogenous regions. 

The speckle reduction filters in this category are mean, 

median, Lee, Kuan, Frost, Enhanced Frost, Gamma MAP, 

Diffusion filters. The following section presents theoretical 

and mathematical description of these filters. 

3.1.1 Median Filter 
The Median filter [10] is a spatial non-linear filter which can 

preserve edges and other spatial details contained in the 

image. It finds application, when the noise pattern consists of 

strong spike like components. The median filter replaces the 

middle pixel value in a moving window with the median of 

the gray values of pixels in a specific neighborhood. The 

spatial extent of the neighborhood and the number of pixels 

involved in the median calculation determine the noise 

reducing effect of median filter. The extra computation time 

needed to sort the intensity value of each set is a great 

limitation of median filter.  

3.1.2 Wiener Filter 
The Wiener filter [11] also known as Least Mean Square filter 

can restore images degraded with blur as well as noise. The 

statistical parameter used to perform smoothing of the image 

is local image variance. The smoothing effect is little where 

the variance is large and vice-versa. It preserves the edges and 

other high frequency details of the image.  

Mathematically, Wiener filter is given by the following 

expression: 
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Where H(u,v) is the degradation function (* indicates 

complex conjugate) and G(u,v) is the degraded image. 

Functions Sf(u,v) and Sn(u,v) are power spectra of the original 

image and the noise respectively. 

3.1.3 Lee Filter 
The Lee filter [12] assumes a Gaussian (normal) distribution 

for the noise values and uses a minimum mean square error to 

estimate the true strength of the center pixel in the filter 

window. This estimate is calculated from the measured value 

of that pixel, the local mean brightness of all pixels in the 

window, and a gain factor calculated from the local variance 

and the noise standard deviation. For uniform areas, the Lee 

filter calculates an output value close to the local mean, and a 

value close to the original input value in higher contrast 

regions. The Lee filter produces the speckle free image 

governed by the relationship given below  

)),(1)(,('),(),(),( yxWyxIyxWyxIyxU 
      (4) 

Where I’ is the mean value of the intensity within the filter 

window, and W(x,y) is the adaptive filter coefficient 

calculated using the following formula. 
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Where CI is the coefficient of variation of the noised image 

and CB is the coefficient of variation of the noise. In general, 

the value W(x,y) approaches zero in uniform areas, i.e., it 

approaches unity at edges which results  in little modification 

of pixel values near edges. 

3.1.4 Frost Filter 
The Frost filter [13] is an adaptive filter which assumes a 

negative exponential distribution for speckle noise and uses 

local image statistics in the filtering process. The Frost filter 

computes a weighted average of the cell values in the filter 

window, where the weight for each pixel is determined from 

the local statistics to minimize the mean square error of the 

signal estimate. The weighting factor decreases with the 

distance from the center pixel and is weighed more heavily as 

the variance in filter window increases. The parameters in the 

Frost filter are adjusted according to the local variance in each 

area. The filtering process can cause extensive smoothing in 

areas where variance is low. On the other hand, edges are 

retained and little smoothing takes place in the areas where 

variance is high. The response of the filter is given by 
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nP
 represent the image pixels in the filter window. DF is the 

damping factor, which determines the extent of the potential 

damping for the image. SD is the standard deviation of the 

filter window. LM is the local mean T is the absolute value of 

the pixel distance between the centre pixel to its surrounding 

pixels in the filter window. 

3.1.5 Kuan Filter 
The Kuan [14] filter is a local linear minimum square error 

filter which models the multiplicative model of speckle noise 

into an additive linear form. The Kuan filter assumes that the 

mean and variance of pixel of interest is equal to the local 

mean and variance of all pixels within the moving window. 

The Kuan filter can be described as:- 

)()]()([)()(
^

tWtItItItR 
                           (8) 

Where W is the weighting function ranging between 0 for flat 

regions and 1 for regions with high signal activity, I is the 

average of pixels in a moving window and 
),(

^

jiR
is the 

output of the filter. The weighting function of the Kuan filter 

is defined as 
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are the coefficients of variations of the noise u and the image 

I. 

3.1.6 Gamma MAP Filter 
A speckle reduction filter based on Maximum A Posteriori 

(MAP) [15] approach, requires a prior knowledge of 

probability density function (pdf) of the image. This filter 

minimizes the loss of texture information of agricultural 

lands, forested areas, and oceans by assuming the images to 

be gamma distributed. 

It uses coefficient of variation and contrast ratio whose 

theoretical pdf determines the smoothing process. The filtered 

pixel value depends upon the comparison between the local 

coefficient of variation CI   in filter window of defined size, 

the speckle coefficient of variation using equivalent number 

of looks CL and Cmax the upper speckle coefficient of 

variation of the image. 

If CI  falls between CL and Cmax  the value of filtered pixel 

in a defined window size is given as    
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Where 

I
’
 (x’,y’)is the mean intensity value within the window.  α is 

the weighting function given as  
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L is the number of looks 

CI is the speckle coefficient of variation of the filter window 

and 

                       
ISCI /

                                                 (12) 

CL is the speckle coefficient of variation using equivalent 

number of looks 

                      
LCL 1

                                               (13) 

Cmax is the upper speckle coefficient of variation of the 

image 

                    LCC  2max                                        (14) 

S is the standard deviation in filter window 

For CI smaller than CL,U(x’,y’) equals I’(x’,y’) and if 

CI  is greater than Cmax  then the filtered pixel U(x’,y’) 
has the same value as the center pixel in the filter 

3.2 Diffusion Filters 
Diffusion filters proposed by Persona and Malik [17] remove 

the speckle by modifying the image via solving Partial 

Differential Equation (PDE). It simultaneously removes the 

speckle and enhances the edges. An edge detection function 

controls the strength and the direction of the diffusion. A 

simple isotropic diffusion equation may be given as: 
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where  I(i, j, t)=0 is an image in the continuous domain, t is 

an artificial time parameter, when t=0, its I is original image, 

as t increases, image I becomes more smooth. “c” is the 

diffusion constant, and I is the image gradient. This linear 

isotropic diffusion equation is equivalent to Gaussian filtering. 

There are two diffusion filters namely, Anisotropic Diffusion 

(AD) and Speckle Reducing Anisotropic Diffusion (SRAD). 

3.2.1 Anisotropic Diffusion 
Anisotropic Diffusion [18] is an efficient, non-linear 

technique which simultaneously performs contrast 

enhancement and noise reduction. The filter encourages 

smoothening within the region as compared to the edges. 

Persona and Malik replaced the classical isotropic diffusion 

equation by anisotropic diffusion method for smoothing 

image on a continuous domain. The diffusion is described by 
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Where, div is the divergence operator, |||| I  is the gradient 

magnitude of the image I, c ( |||| I ) is the diffusion 

coefficient or the diffusivity function and I0 is the original 

image. If the function c ( |||| I ) is constant for all image 

locations the diffusivity function, c ( |||| I ), is a 

monotonically decreasing function of the gradient magnitude. 

Persona and Malik suggested two different edge stopping c(x) 

functions in their anisotropic diffusion equation 

2
|)(|

1

1
)(







 





K

I
Ic                                            (17) 

2
)

|)(|
(

)( K

I

eIc




                                                          (18) 

Where, K is edge magnitude parameter. 

A step discontinuity gradient magnitude is used to find the 

edges. If KI  |||| then )0||(|| Ic , an all pass 

filter is used; if KI  |||| , then 1||)(|| Ic , 

isotropic diffusion is achieved. The edge stopping function in 

equation (17) can remove noise in large area efficiently, 

because its diffusion is in inverse proportion to gradient. But 

this function cannot preserve edge information. The exponent 

edge stopping function in (18) can retain edges. 

3.2.2 Speckle Reducing Anisotropic Diffusion 

(SRAD) 
SRAD [19] is an edge preserving diffusion method where 

diffusion constant is proposed in terms of the “instantaneous 

coefficient of variation” as a function of the local gradient 

magnitude and Laplacian operators. The function exhibits 

high values at edges and produces low values in homogenous 
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regions. Thus it ensures the mean preserving behavior in the 

homogenous regions and edge preserving and edge enhancing 

at the edges. The PDE based speckle removal approach 

generates of an image scale space i.e. a set of filtered images 

that vary from fine to coarse without bias due to filter window 

size and shape. Given an intensity image ),(0 yxI having 

finite power and no zero values over the image support Ω, the 

output image I(x, y; t) is evolved according to the following 

PDE: 
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where  denotes the border of Ω, n is the outer normal to 

the  and 
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In (18) and (19), q(x,y;t) is the instantaneous coefficient of 

variation determined by 
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And q0 is the speckle scale function. In the SRAD, the 

instantaneous coefficient of variation q(x,y;t) serves as the 

edge detector in speckled imagery. The function exhibits high 

values at the edge or on high contrast features and produces 

low values in homogenous regions. The modification reflects 

encouraging isotropic diffusion in homogenous regions of the 

image where q(x,y;t) fluctuates around q0(t). The speckle 

scale function q0(t) effectively controls the amount of 

smoothing applied to the image by SRAD. It is estimated 

using 
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where var [z(t)] and )(tz are the intensity variance and mean 

over a homogenous area at t, respectively.  

3.3 Multi-scale Filtering 
Multi-scale analysis proposed by Mallat for image processing 

applications, can be viewed as a successive approximation or 

successive refinement of a signal and is closely related with 

the wavelet transform [20][21]. The approximations are the 

high-scale, low-frequency components of the signal whereas 

the details are the low-scale, high-frequency components. The 

DWT (Discrete Wavelet Transform) separates an image into a 

lower resolution approximation image (LL) as well as 

horizontal (HL), vertical (LH) and diagonal (HH) detail 

components. 

Wavelet denoising attempts to remove noise present in the 

signal while preserving the signal characteristics, regardless of 

its frequency content. Multi-scale wavelet transform utilizes 

the "focus" capability in the filtering method which means 

that a small number of wavelet coefficients are better than 

other wavelet coefficients. They contain the most of the 

signals which can be separated using wavelet threshold 

procedure. 

The multi-scale analysis of wavelet based speckle reduction 

process usually includes (1) logarithmic transformation (2) 

Discrete wavelet transformation (3-level decompositions) (3) 

Thresholding the wavelet coefficients (Threshold may be 

universal or sub band adaptive) (4) inverse discrete wavelet 

transform and (5) exponential transformation.  

Thresholding distinguishes between the coefficients due to 

noise and the ones consisting of important signal information. 

There are two general categories of thresholding, hard- 

thresholding and soft-thresholding [22]. Hard-thresholding 

function retains all coefficients whose magnitude is greater 

than the selected threshold value, t, and the others with 

magnitudes smaller than t are set to zero. Soft-thresholding 

shrinks the coefficients greater than the threshold towards 

zero after comparing them to a threshold value. Soft-

thresholding is preferred over hard-thresholding, for the soft-

thresholding method yields more visually pleasant images 

over hard thresholding which yields abrupt artifacts in the 

recovered image. The choice of a threshold plays a major role 

in the removal of noise in images .A small threshold may 

yield a result close to the input, but it may still be noisy. Large 

threshold alternatively, produces signal with large number of 

zero coefficients which leads to a smooth signal. So much 

attention must be paid to select optimal threshold.  

Speckle reduction through wavelet transform based on 

Bayesian approach by means of the statistical models of free 

signal and noise  is suggested by Achim et.al [23], 

Thitimajshima.P et.al [24]. Wavelet-based denoising using 

Hidden Markov Models (HMM) [25] models are efficient in 

capturing inter-scale dependencies and has been quite 

successful. The various shrinkage methods, as discussed 

below, are based on estimation of statistical and probabilistic 

parameters required for shrinkage. 

3.3.1 VisuShrink  

VisuShrink [26] is a thresholding method proposed by 

Dohono and Johnstone. It uses a threshold value that is 

proportional to the standard deviation of the noise. It can be 

viewed as general-purpose threshold selector that exhibits 

near optimal minimax error property and is found to yield a 

highly smoothed estimate. This threshold is given by: 

LT nU log2                                                         (24) 

Where, n
2  is the noise variance of AWGN and L is the 

total number of pixels in an image. TU tends to be high for 

large values of L, killing many signal coefficients along with 

the noise.  It cannot remove speckle noise as it deals with an 

additive noise only. VisuShrink follows the global 
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thresholding scheme where there is a single value of threshold 

applied globally to all the wavelet coefficients. 

3.3.2 SureShrink  

SureShrink [27] is an adaptive thresholding method and is 

based on Stein’s Unbiased Risk Estimator (SURE). The 

thresholding employed here is adaptive, i.e., a threshold level 

is assigned to each dyadic resolution level by the principle of 

minimizing the Stein’s Unbiased Risk Estimator for threshold 

estimates. The threshold TSURE employed for denoising is 

expressed as: 
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Where, 
2

n is the noise variance of AWGN; L is the total 

number of coefficients in a particular sub-band; Yi is a 

wavelet coefficient in the particular sub-band. SureShrink 

follows the soft thresholding rule. It is smoothness adaptive, 

which means that if the unknown function contains abrupt 

changes or boundaries in the image, the reconstructed image 

also does. 

3.3.3 BayesShrink  

BayesShrink [28] uses an adaptive data-driven threshold for 

image denoising. This method is based on the Bayesian 

mathematical framework. The wavelet coefficients of a 

natural image are modeled by a Generalized Gaussian 

Distribution (GGD). Thus, a threshold is derived in a 

Bayesian framework as: 
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Where, 
2

^

n  is the estimated noise variance of AWGN by 

robust median estimator and F

^

 is the estimated signal 

standard deviation in wavelet-domain.  

3.3.4 NeighShrink  

Chen et al. incorporated neighboring coefficients in the 

wavelet-domain image thresholding scheme [29]. The 

method, NeighShrink, thresholds the wavelet coefficients 

according to the magnitude of the squared sum of all the 

wavelet coefficients, i.e., the local energy, within the 

neighborhood window. The neighborhood window size may 

be 3×3, 5×5, 7×7, 9×9, etc. The shrinkage function for 

NeighShrink of any arbitrary 3×3 window centered at (i,j) is 

expressed as: 
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Where, TU is the universal threshold and 
2

ijS is the squared 

sum of all wavelet coefficients in the respective 3×3 window 

given by 
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Here, + sign at the end of the formula means to keep the 

positive values while setting it to zero when it is negative. The  

estimated center wavelet coefficient Fij is then calculated from 

its noisy counterpart wij as: 

ijijij wF 
^

                                                                     (29) 

4. CONCLUSION 
The existing despeckling techniques for ultrasound images 

can preserve image features as well as edges. But they have 

constraints regarding resolution degradation. The filters 

operate by smoothing over a fixed window; large window size 

reduces the resolution of the algorithm, and produces artifacts 

around the object. Wavelet transform performs better than the 

standard speckle filters and is best suited due to its properties 

like sparsity, multiresolution and multi-scale nature. 

Thresholding techniques are simplest to implement with 

discrete wavelets. The choice of despeckling filters and 

speckle model plays an important role in the design of 

despeckling methods, and it varies from application to 

application. The paper discussed most commonly employed 

models and filters along with their pros and cons. 
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