
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

51

On Minimum Variance CPU-Scheduling Algorithm for

Interactive Systems using Goal Programming

Anas Jebreen Atyeeh Husain
 Information Systems Department,

 Al al-Bayt University, Mafraq, Jordan

ABSTRACT
Improving response time is considered a fundamental objective

in interactive environments. CPU scheduling aimed mainly to

optimize the response time by minimizing its average in order

to attain faster responses to users’ requests. However, for

interactive systems, reasonable and predictable services are

more preferred than faster responses but highly variable.

Delivering service in a timely manner at less variable response

time is an issue that has been addressed in this paper. A goal

programming (GP) model is proposed to perform CPU

scheduling at minimum variance and low response time. The

GP method determines the optimal process in the ready queue

that best minimizes the variance to be executed first. A

simulation system that can generate varied scheduling

situations was developed and several tests were conducted.

The performance of the proposed GP scheduling method is

measured and compared to the other related scheduling

methods. The evaluation results show that the GP scheduling

method can provide predictable and reasonable service and it

performs scheduling at minimum variance and lower response

time. The GP method outperforms the other related methods

with varying degrees.

Keywords
CPU scheduling, Goal programming, Interactive systems,

Response time, Variance in response time

1. INTRODUCTION
Interactive computer systems such as timesharing and servers

enable their users to communicate directly with the system;

users give instructions and wait for a fast response which is

considered a good service [1]. Responsive operations are

desirable in such environment where timing violations decrease

the provided quality of service (QoS) [2]. Accordingly, a

method for ensuring reasonable response time is required [3].

Providing reasonable responses to users’ requests is carried out

by the operating system (OS) [4]. While swapping and using

virtual memory can contribute to attain reasonable response

time [3], CPU scheduling is fundamental in improving several

desirable performance attributes such as response time [5].

CPU scheduling decides which process from among ready

processes that are simultaneously available in the memory will

run first [6].

One important goal that scheduling attempts to achieve in

interactive systems is to improve the response time and run

interactive applications timely [7]. Improving response time is

an important and a primary objective adopted in the field of

[8], [9], and in computer performance in general [10].

Improving response time has long been taken into

consideration in the performance of interactive systems [11].

Providing low response time, and providing predictable and

reasonable response time are two important performance

attributes that can help optimize response time in interactive

systems [12]. In optimal system design, the response time can

be best optimized by achieving both performance attributes

[13]. Minimizing the average of response time can help provide

low response time [14], while minimizing the variance in the

response time can help provide predictable and reasonable

response time [1]. However, Response time has been mainly

optimized by minimizing the average [15]-[21], [8] or the

maximum response time [22]-[24] rather than the variance.

Performing CPU scheduling at minimum variance is a concern

that has not been addressed yet [1], [25], [26].

In fact, the variability or variance in the response time that is

received by users can indicate predictable and reasonable

response time [1], [12], [27], [28], and can be a fairness

measure among the users [29]. That is, the less variance there

is in the response time, the more reasonable and predictable

response time and service users can get. Wierman and Harchol-

Balter [25] denote that providing predictable response time has

become an important requirement for many modern application

designs. Silberschatz et al. [1] state in their operating systems

text “A system with reasonable and predictable response time

may be considered more desirable than a system that is faster

on the average, but is highly variable." and “… for interactive

systems, it is more important to minimize the variance in the

response time than it is to minimize the average response

time.". Usually, it is more preferred for users to receive

reasonable and predictable response time than optimal response

time on average [30]. The reason is that variable responses can

frustrate users more than the large average response time can

[12].

However, optimizing response time by minimizing measures

other than variance in the response time may not necessarily

indicate that all users get good service [13], [30], and cannot

guarantee fairness or QoS among users [12], [31]. Some

processes may get a priority at the expense of others [22] e.g.

smaller processes may be preferred for execution over larger

ones [25], [31]. Highly variable responses can disappoint users

especially when they wait much longer than expected [27],

[28]. Such consequences may lead to degrade reliability and

trust in the system [32], and, in turn, this may cause lack of

satisfaction among the users [33]. As a result, users may be

forced to find alternative applications.

Variance in the response time can be a fundamental measure to

optimize the response time that enhances the provided service,

and is essential for applicability in modern computer systems

[27], [28]. Hence, the focus in this paper on optimizing

response time by minimizing the variance when performing

CPU scheduling. The problem this paper tackles can be

formulated in the following question:

 How can a CPU scheduling at minimum variance and low

average response time be performed?

Consequently, a CPU scheduling method based on goal

programming (GP) is proposed. The GP scheduling method

can find and select optimal process in the ready queue that best

minimizes the potential variance in the response time to be

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

52

allocated the CPU. A detailed design of the proposed GP

scheduling model is presented in section 3 that follows the

related works in the next section. Evaluation results and

discussion are introduced in section 4. Finally, some

conclusions are given in section 5.

2. RELATED WORKS
Scheduling is an important OS function that can deliver a QoS

[34]. Computer resources – including the CPU – need to be

scheduled to achieve efficient use. A scheduling method can be

selected based on the match between the requirements of the

target environment and the goals of that method [3].

Scheduling has been mainly studied to minimize the

turnaround time, waiting time, and response time, and to

maximize CPU utilization, throughput [31], [34]. For instance,

interactive systems are commonly used on personal computers

and servers, besides optimizing response time is an important

requirement and a primary goal in such environment [9], [19].

The objective of this paper is to perform a CPU scheduling that

optimizes response time at minimum variance. Response time

has been mainly optimized by minimizing the average [8],

[16]-[21], [35], or the maximum response time [23], [24].

Average response time is a standard measure in computer

performance [10] that has been analyzed under various

scheduling strategies [36,55] and used to optimize response

time in various environments such as: interactive-timesharing

system [19], parallel computer system [10], [37], [38], cluster

rendering system [17], web based requests [18], [20], [21],

[39], bottleneck network link [40], and broadcast scheduling

[41]. However, performing scheduling based on other criteria

than variance in the response time may improve the system

performance partially by providing fast responses for specific

users rather than all other users in the system. Such a concern

may result in lower level of QoS provided in the system and

less satisfaction among users. That is, some users may wait

longer than expected, some users may get priority over others

arbitrarily, and the responses might be highly variable.

The variance in the response time is an important requirement

to deliver reasonable and predictable service for users,

especially in interactive environments [1], [12], [42]. Some

studies revealed that delivering consistent service in a timely

manner at less variable response is an issue and it still needs to

be addressed [1], [3], [25], [26]. Other studies pointed out that

the variance in the response time is an important measure to be

considered in optimal system design [13]. The relation of the

response time and its variance to the user satisfaction has been

investigated and analyzed in several perspectives such as: the

influence of response time on users’ satisfaction [26], the

predictability of response time [25], the user perception of

computer system response time [13], and the distribution of

response time for users [12], [43]. It can be concluded that

response time plays an essential role in determining user

satisfaction [54].

Several common scheduling methods that adopt varied

selection criteria other than response time and variance have

been used to optimize response time. First-come-first-served

(FCFS) method schedules processes based on the order of

arrival that is optimal in minimizing the maximum response

time [44]. Shortest-job-first (SJF) and shortest-remaining-time-

first (SRTF) select processes for execution based on the burst

time and they are intended to minimize average response time

[45]-[47]. A process with the highest predetermined priority is

allowed to run first in priority scheduling methods. Lottery

scheduling is another responsive method [48] that selects a

process which holds lottery tickets for system resources. Such

common scheduling methods and their performance are

discussed by Tanenbaum [3], Qureshi [5], and Silberschatz [1].

However, there are no methods that adopt response time and its

variance as selection criteria. Other criteria have been adopted

with the aim of optimizing the response time which limits the

improvement in response time. Additionally, methods that

aimed to optimize response time mainly have minimized its

average or maximum, and little attention has been given for

CPU scheduling methods that minimize variance in the

response time [1]. Alternatively, the use of the variance in the

response time as selection criteria is proposed to be a reference

for all scheduling decisions with the aim of minimizing the

variance and lower the response time. Finally, the variance has

been derived, analyzed, and confirmed its importance under

some scheduling methods [36], [49], but improving variance in

the response time for processes and their distribution has

received little interest [25]. The response time that each process

can receive will be measured, analyzed and improved for the

whole system in the proposed solution.

3. THE MINIMUM VARIANCE GOAL

PROGRAMING SCHEDULING

METHOD
A user in the interactive systems requests a service by

submitting a job or process, and the system schedule processes

in some approach to be allocated the CPU. Response time

represents the time between submitting a job and getting a

response [42], [50], [51] that needs to be optimized in such

environments. To provide a reasonable and predictable service

for all users, our proposed solution is to perform minimum

variance CPU scheduling. The proposed scheduling method is

a GP model that makes all scheduling decisions based on the

potential variance in response time that might be resulted when

a process is selected for execution. The GP method determines

optimal process in the ready queue that best minimizes the

variance to be allocated the CPU. The variance in the response

time can be represented by the squared distance or gap from

the average of response time for all processes [44]. Such

selection strategy can minimize the variance and maintains low

response time in average for all processes.

Consequently, the gap or distance of the response time from

the average, and the amount of time that the process has used

the CPU are proposed as a selection criteria that guide

minimum variance CPU scheduling. The GP model is

responsible for finding an optimal process that best achieves

these two criteria in order to be selected and allocated the CPU.

Firstly, the distance between the response time and the average

of response time is the difference between the two values and it

can help maintain low variance by selecting a process that has

larger distance when performing each selection. Normally the

processes that have larger response time from the average wait

longer without response than the other processes and it is

preferred to select first such a process for execution. This

prevents the system from ignoring the processes that wait

longer which in turn minimizes the variance and maintains low

response time. Secondly, the amount of time that the process

has used the CPU is another selection criterion that can

contribute to minimizing the variance by selecting processes

that have used the CPU less. This selection strategy gives

higher priority for processes that have not used the CPU yet, or

that have used the CPU in lesser time. The amount of time that

the process has used the CPU criterion is also useful for

situations in which several processes have response time with

equal distance to the average with varying degree of CPU

usage. Additionally, this criterion can help maintain less

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

53

waiting time that might be increased if the first criterion is only

adopted.

However, a challenge lies in finding a solution that best

achieves such criteria concurrently; an optimal process that has

maximum value of response time to the average and minimum

time of CPU usage may not exist. Moreover, a process that has

the maximum value of response time to the average may not be

the one that has minimum time of CPU usage, and vice versa.

Various processes may satisfy each proposed selection criteria

with varied degrees, and the optimal solution is a compromise.

Selection criteria and their level of achievement must be taken

into account concurrently.

Accordingly, a GP model responsible for finding an optimal

process that best satisfies such multiple selection criteria to be

executed is proposed. GP is a multi-criteria satisfying approach

that seeks a solution that best fits or satisfies the related criteria

in a multi criteria decision making (MCDM) problems [52]. GP

scheduling model performs scheduling at minimum variance

and low response time by (i) selecting a process that has the

maximum distance between the response time and the average,

(ii) selecting a process that has the minimum amount of CPU

usage time. A set of related constraints is developed and used

to help select an optimal process that best minimizes the

response time and the variance. Finally, the following GP

model is developed and constructed as presented in Figure 1:

Min𝑑𝐷
− + 𝑑𝐷

+ + 𝑑𝑇
− + 𝑑𝑇

+;

Subject to:

(𝐷𝑖 ∗ 𝑃𝑖)− 𝑑𝐷
− + 𝑑𝐷

+𝑛
𝑖=1 = Maximum(D);

(𝑇𝑖 ∗ 𝑃𝑖)− 𝑑𝑇
− + 𝑑𝑇

+𝑛
𝑖=1 = 0;

 (𝑃𝑖) = 1𝑛−1
𝑖=0 ;

Fig 1: The proposed GP scheduling method

The variable n is the number of processes in the ready queue,

Di is the distance or difference between the response time value

of a process i and the average response time value of all

processes, Maximum (D) represents the largest difference D

that exists at selection time in the system. Ti is the amount of

time that a process i has used the CPU at selection time where

maximum value of Ti equals to the burst time of that process. Pi

is a binary decision variables (0/1 variables), and

 𝑑𝐷
−,𝑑𝐷

+,𝑑𝑇
−,𝑑𝑇

+ are deviational variables. The D, T, and

Maximum (D) are input variables for the GP model and can

be obtained dynamically from the system at each time of

selection. The expected output of the model is a vector of 0/1

values corresponds to each process decision variable (Pi) where

one process will be assigned the value 1 to be selected and

allocated the CPU. The process with 1 value is the optimal

process whose selection can result in minimum variance in the

response time.

4. EVALUATION RESULTS AND

DISCUSSION
 In order to measure the ability of the proposed minimum

variance scheduling method to perform CPU scheduling with

the least possible response time and variance, and to compare

its performance with related methods, a simulation system was

constructed and several tests were run. The system simulates a

ready queue that contained several ready processes, and

performs scheduling by selecting processes for execution, and

calculates response time, waiting time and variance for all

processes after the execution has finished. The simulation that

was executed to generate varied scheduling situations consists

of different numbers of submitted processes in the ready queue

with varied burst time, arrival time, and priority values for each

process.

Scheduling situations were generated randomly under three

different numbers of processes in the ready queue, where n =

10, 50, and 100. The burst time that was chosen randomly from

among three intervals i.e. 1 and 10, 25, and 60 milliseconds

(ms) represents the size of each process. For each of the 9

combinations of n and burst time values, arrival time and

priority values were generated randomly between the interval 0

and 10 where it is found from running the simulation several

times that these variables do not have significant effect on the

performance of scheduling methods. For each of the 9

scenarios, 300 scheduling situations were generated resulted in

a total of 2700 situations that require CPU scheduling. All

scenarios have been classified, summarized, and tested as

depicted in Table 1 into two sets: Set (A) is to measure and

compare the performance of scheduling methods in scheduling

different numbers of processes, set (B) is to measure and

compare the performance of scheduling methods in scheduling

processes with different sizes.

Table 1. Simulation Scenarios

No

Number of

processes

Size

(burst time)

Test Value Test Value

1 (A)10 10 (B) 1-10 10

2 10 (B) 1-25 25

3 10 (B) 1-50 60

4 (A)50 50 (B) 1-10 10

5 50 (B) 1-25 25

6 50 (B) 1-50 60

7 (A)100 100 (B) 1-10 10

8 100 (B) 1-25 25

9 100 (B) 1-50 60

Consequently, for each generated situation that requires a CPU

scheduling, the simulation is implemented and configured to

schedule all processes in the ready queue using seven methods

namely; the FCFS, the SJF, SRTF, the non-preemptive priority

scheduling (N-Pr), the preemptive priority scheduling (P-Pr),

minimum distance to average scheduling, and the proposed GP

scheduling method. For each execution of the simulation, each

method selects a process from the ready queue to be allocated

the CPU until execution completes. Thereafter, the response

time, the waiting time and the variance in response time for all

processes have been computed and recorded for that method.

However, using minimum distance to average scheduling

method in the simulation is proposed to measure and compare

its performance to the GP scheduling method and to show that

adopting the first proposed selection criterion only as a solution

is not enough to achieve minimum variance even that it is a

simple method that doesn’t require an MCDM technique.

The obtained evaluation results about response time, waiting

time and the variance achieved by all methods have been

analyzed and classified into several portions. Initially, the aim

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

54

is to measure and compare the performance of scheduling

methods and their ability to handle different environmental

changes. Figure 2 presents the effect of varying environmental

changes such as the number of processes in the ready queue

and process size on the performance of scheduling methods,

and the ability of scheduling methods to minimize response

time, waiting time, and the variance in response time when

performing CPU scheduling. The results show that the variance

and response time that received by processes increase with the

increase of both of the number and the size of processes.

Additionally, the results show that the GP method significantly

reduces the response time and variance, and slightly increases

the waiting time over all method for all scenarios. Indeed, the

proposed GP method can scale to varying environmental

changes at faster responses and minimum variance which is

considered as a good service for the users. The results prove

that performing CPU scheduling based on other criteria than

response time and variance may maintain better waiting time

but it leads to a significant increase in response time and

variance in the responses for users. Using GP scheduling

method leads to increase of waiting time but this increase is not

significant especially if compared to the significant

improvement in the response time and the variance which is in

turn more desirable in the interactive [1], [12], [42].

The expected variance and response time increase with the

increase of the number of processes in the ready queue. For

example, few processes that first arrive receive faster responses

than the other large number of processes when the methods that

perform scheduling based on arrival time have been used, or

few processes that have short burst time receive shorter

responses than the other large number of processes when the

methods that perform scheduling based on burst time have

been used, or few processes that have high priority receive

shorter responses than the other processes when the methods

that perform scheduling based on static priority have been

used. As a result, the response time and the variance achieved

in the system have been increased with the increase of the

number of processes in the ready queue, and all other methods

cannot scale to varying number of processes at fast responses

and low variance.

Furthermore, the expected variance and response time increase

with the increase of the size of processes in the system. Larger

processes - especially interactive ones - stay longer in the ready

queue and receive longer responses and higher variance than

smaller processes when performing scheduling based on arrival

time or static priority. Small processes leave the ready queue

faster and the response time is relatively lower and so is the

variance. Additionally, using scheduling methods that adopt

the shortest burst time also make the selection of larger

processes after executing all smaller processes last. As a result,

the response time and the variance achieved in the system have

been increased with the increase of the size of the processes in

the ready queue, and all other methods cannot scale to varying

size of processes at fast responses and low variance. To sum

up, the increase of both of the number and the size of processes

increases the challenge of performing CPU scheduling at low

variance in response time and there is an immense need to be

maintained.

Instead, the proposed GP method performs CPU scheduling for

all situations and scenarios at minimum variance and low

response time over the other methods. This could be explained

as the GP selects processes based on the potential response

time that might be resulted and based on its ability to minimize

the variance. Furthermore, GP seeks processes that best

achieve the proposed two main selection criteria

simultaneously which have better result. Comparatively,

scheduling method such as minimum distance do not take into

account the amount of time that the process has used the CPU

which increased the response time and the variance.

Furthermore, other scheduling methods such as FCFS, SJF,

SRTF, and priority do not take into account the response time

or the variance in their selection strategies which significantly

increases the response time and the variance that is considered

one of the most important scheduling objective in interactive

environments [53].

Secondly, it is aimed to analyze and compare the distribution

of the responses that the users can receive when different

scheduling methods are used. The simulation is executed for 25

processes with random size between 1 and 60 seconds. The

processes are scheduled using all methods and the response

time for each process in addition to the average of response

time is computed, and the distribution of response time around

their average is presented in Figure 3. The results show that the

GP performs the best over all other methods and achieves

lower average response time and better distribution around the

average. That is, better distribution represents closer values of

response time to their average and minimum variance in

response time. This can be explained by the objective of the GP

model which is to limit the increase of the distance by selecting

processes that have larger distance from the average.

However, each time the process is selected from the ready

queue, some processes may have a precedence or priority to be

executed over the others according to the potential response

time for each process at that time. This priority may

dynamically change at other selection times with the change of

the processes in the ready queue based on the new values of the

arrival time, the burst time, the response time and the average

of response time. Thus, when other methods ignore such a fact

and adopt static priority, or adopt dynamic priority other than

response time and variance, the response time increases in the

average and in the variance.

When performing selection based on the arrival time, for

example, the first processes will be repeatedly selected many

times over other processes that have not used the CPU yet or

that have used the CPU in a lesser time. The same issue is

applied when performing selection from the ready queue based

on burst time and static priority. Thus, using such scheduling

methods increases the average response time and scatters the

response time around their average. Comparatively, the GP

performs its selection based on the potential response time that

may be resulted at selection time which leads to a lower

average response time and a better distribution around the

average.

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

55

Fig 2: Performance of scheduling methods in scheduling (A) different numbers of processes (B) different size of processes.

Min Distance

FCFS SRTF SJF N_Pr Pr

0

10000

10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

V
ar

ia
n

ce
 (

m
s)

GP Min Distance, FCFS, SRTF, SJF, N_Pr, Pr

Min Distance

FCFS
SRTS SJF

N_Pr Pr

0

100

200

300

400

10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

R
e

sp
o

n
se

 T
im

e

(m
s)

Min Distance FCFS
SRTS SJF

N_Pr Pr

0

100

200

300

400

10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

W
ai

ti
n

g
Ti

m
e

(m

s)

(A) Number of Processes

Min Distance

FCFS SRTS SJF N_Pr Pr

0

200000

400000

10 25 60 10 25 60 10 25 60 10 25 60 10 25 60 10 25 60

V
ar

ia
n

ce
 (

m
s)

GP Min Distance, FCFS, SRTF, SJF, N_Pr, Pr

Min Distance

FCFS
SRTS SJF

N_Pr Pr

0

500

1000

1500

2000

10 25 60 10 25 60 10 25 60 10 25 60 10 25 60 10 25 60

R
e

sp
o

n
se

Ti

m
e

(m
s)

Min Distance FCFS
SRTS SJF

N_Pr Pr

0

500

1000

1500

2000

10 25 60 10 25 60 10 25 60 10 25 60 10 25 60 10 25 60

W
ai

ti
n

g
Ti

m
e

(m
s)

(B) Size of Process

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

56

Fig 3: Distribution of the response time (in ms) received by each process around their average using different scheduling

methods.

Table 2. Average performance of scheduling methods for all scenarios and their situations

GP Min. Distance FCFS SRTF SJF N_Pr Pr

Variance (ms) 299.5 1504.6 125702.8 129940.3 129285.9 123788.7 125942.5

Response Time(ms) 23.1 55.7 408.2 268.1 271.3 406.0 401.7

Waiting Time (ms) 498.7 424.8 409.7 269.8 272.7 407.4 406.2

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
e

sp
o

n
se

 T
im

e
GP

GP Avg

Min Distance

Min Distance
Avg

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25R
e

sp
o

n
se

 T
im

e

GP

GP Avg

FCFS

FCFS Avg

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25R
e

sp
o

n
se

 T
im

e GP

GP Avg

SRTF

SRTF Avg

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25R
e

sp
o

n
se

 T
im

e GP

GP Avg

SJF

SJF Avg

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25R
e

sp
o

n
se

 T
im

e

GP

GP Avg

N_Pr

N_Pr Avg

0

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

R
e

sp
o

n
se

Ti

m
e

Processes

GP

GP Avg

Pr

Pr Avg

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

57

Lastly, the average performance of all methods for all

scenarios is summarized and presented in Table 2. The

minimum values are marked as bold indicating best achieved

values. The GP method performs better than the other

methods and completes CPU scheduling at minimum response

time and variance for all generated situations and scenarios.

The GP outperforms the other methods with varying degrees.

5. CONCLUSION
CPU scheduling at minimum variance in the response time

has been addressed in this paper. The proposed solution is to

find and select a process that best reduces the potential

variance in the response time for execution. The distance of

the response time from the average, and the amount of time

that the process has used the CPU are proposed as a selection

criteria that guide minimum variance CPU scheduling.

Accordingly, a linear goal programming model is proposed to

determine the processes that best satisfy the proposed criteria.

The performance of the proposed GP scheduling method has

been measured and compared to related scheduling methods.

The results show that the GP method performs better and

significantly reduces the response time and variance. The

proposed GP method can scale to varying environmental

changes at faster responses and minimum variance. The GP

outperforms the other selection methods with varying degrees.

However, as a future development, another selection criteria

might be proposed and used when performing CPU

scheduling in order to best optimize other CPU scheduling

criteria such as waiting time.

6. REFERENCES
[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating

system concepts. (John Wiley & Sons, 2013).

[2] S. Kato, Y. Ishikawa, and R. Rajkumar, CPU scheduling

and memory management for interactive real-time

applications. Real-Time Systems, Vol. 47, n. 5, pp. 454–

488, 2011.

[3] A. S. Tanenbaum, and H. Bos, Modern operating

systems. (Prentice Hall Press, 2014).

[4] M. A. Al-Husainy, Best-job-first CPU scheduling

algorithm. Information Technology Journal Vol. 6, n. 2,

pp. 288-293, 2007.

[5] I. Qureshi, 2014. CPU Scheduling Algorithms: A

Survey. International Journal of Advanced Networking

and Applications, 5(04): 1968-1973.

[6] S. Almakdi, M. Aleisa, and M. Alshehri, Simulation and

Performance Evaluation of CPU Scheduling Algorithms.

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 4, n. 3, pp. 1-6,

2015.

[7] Y. Etsion, D. Tsafrir, and D. G. Feitelson, Process

prioritization using output production: scheduling for

multimedia. ACM Transactions on Multimedia

Computing, Communications, and Applications

(TOMM), Vol. 2, n. 4, pp. 318-342, 2006.

[8] U. Schwiegelshohn, Preemptive weighted completion

time scheduling of parallel jobs. SIAM Journal on

Computing, Vol. 33, n. 6, pp. 1280-1308, 2004.

[9] Ramamritham, K., and Stankovic, J., Scheduling

algorithms and operating systems support for real-time

systems. Proceedings of the IEEE, (Page: 55-67 year of

publication: 1994).

[10] Turek, J., Ludwig, W., Wolf, J. L., Fleischer, L., Tiwari,

P., Glasgow, J.,and Yu, P. S., 1994. Scheduling

parallelizable tasks to minimize average response time.

Proceedings of the sixth annual ACM symposium on

Parallel algorithms and architectures, PP: 200-209.

[11] Cotton, I. W., 1977. Cost-benefit analysis of interactive

systems. Computer Networks, 1(6), 311-324.

[12] A. Wierman, 2007. Scheduling for today’s computer

systems: Bridging theory and practice. Unpublished

dissertation in partial fulfillment of the requirements for

the degree of PhD, Carnegie Mellon University,

Pittsburgh.

[13] R. Geist, R. Allen, and R. Nowaczyk, Towards a model

of user perception of computer systems response

time. ACM SIGCHI Bulletin, Vol. 17, SI, pp. 249-253,

1986.

[14] Im, S., Kulkarni, J., and Moseley, B., Temporal Fairness

of Round Robin: Competitive Analysis for Lk-norms of

Flow Time. Proceedings of the 27th ACM on

Symposium on Parallelism in Algorithms and

Architectures, (Page: 155-160 year of publication: 2015).

[15] R. Krishnaswamy, Broadcast Scheduling: Minimizing

Average Response Time. Encyclopedia of Algorithms,

(Reference Work Entry), pp: 1-5.

[16] R. A. Kulkarni, and S. H., Patil, A survey on improving

performance of Real Time Scheduling for Cloud

Systems. International Journal for Innovative Research in

Science and Technology, Vol. 1, n. 7, pp. 171-173, 2015.

[17] Li, Q., Wu, W., Zhou, X., Sun, Z., and Huang, J., R-

FirstFit: A Reservation Based First Fit Priority Job

Scheduling Strategy and Its Application for Rendering.

Proceedings of the IEEE 17th International Conference

on Computational Science and Engineering, CSE, (page:

1078-1085, 2014).

[18] G. You, X. Wang, and Y. Zhao, A Dynamic Requests

Scheduling Model Based on Prediction in Multi-core

Web Server. In: Internet of Vehicles – Technologies and

Services, Lecture Notes in Computer Science, pp: 304-

312, 2014. ISBN: 978-3-319-11166-7. DOI:

10.1007/978-3-319-11167-4_30

[19] S. M. Mostafa, and S. Kusakabe, Towards Minimizing

Processes Response Time in Interactive

Systems. International Journal of Computer Science and

Information Technology Research, IJCSITR, Vol. 1, n. 1,

pp. 65-73, 2013.

[20] G. You, and Y. Zhao, A weighted-fair-queuing, WFQ-

based dynamic request scheduling approach in a multi-

core system. Future Generation Computer Systems, Vol.

28, n. 7, pp. 1110-1120, 2012.

[21] Zhang, S., Wu, H., Wang, W., Yang, B., Liu, P., and

Vasilakos, A. V., 2011. Distributed workload and

response time management for web applications.

Proceedings of the 7th International Conference on

Network and Services Management, (page: 198-206 year

of publication: 2011).

[22] C. Chekuri, S. Im, and B. Moseley, Online Scheduling to

Minimize Maximum Response Time and Maximum

Delay Factor. Theory of Computing, Vol. 8, n. 1, pp.

165-195, 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

58

[23] J. Chang, Online Broadcast Scheduling: Minimizing the

Maximum Response Time. Theory of computing, Vol. 8,

SI, pp. 165-195, 2012.

[24] C. Chekuri, S. Im, & B. Moseley, Minimizing maximum

response time and delay factor in broadcast scheduling.

In: Algorithms - ESA, Lecture Notes in Computer

Science, pp: 444-455. ISBN: 978-3-642-04127-3.

[25] A. Wierman, and M. Harchol-Balter, Classifying

scheduling policies with respect to higher moments of

conditional response time. ACM SIGMETRICS

Performance Evaluation Review, Vol. 33, n. 1, pp. 229-

240, 2005.

[26] Hoxmeier, J. A., and DiCesare, C., System response time

and user satisfaction: An experimental study of browser-

based applications. Proceedings of AMCIS, (Page: 347

year of publication:2000).

[27] B. G. Dellaert, and B. E. Kahn, How tolerable is delay?:

Consumers’ evaluations of internet web sites after

waiting. Journal of interactive marketing, Vol. 13, n. 1,

pp. 41-54, 1999.

[28] M. K. Hui, and L. Zhou, How Does Waiting Duration

Information Influence Customers' Reactions to Waiting

for Services. Journal of Applied Social Psychology, Vol.

26, n. 19, pp. 1702-1717, 1996.

[29] D. Raz, B. Avi-Itzhak, & H. Levy, Locality of reference

and the use of sojourn time variance for measuring queue

unfairness. SIGMETRICS Perform. Eval. Rev., Vol. 33,

n. 2, pp. 39–41, 2005.

[30] S. Im, 2012. Online scheduling algorithms for average

flow time and its variants. Unpublished dissertation in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy, University of Illinois, Urbana-

Champaign.

[31] A. Wierman, Fairness and scheduling in single server

queues. Surveys in Operations Research and

Management Science, Vol. 16, n. 1, pp. 39-48, 2011.

[32] D. F. Galletta, R. Henry, S. McCoy, and P. Polak, Web

site delays: How tolerant are users?. Journal of the

Association for Information Systems, Vol. 5, n. 1, pp. 1-

28, 2004.

[33] B. Shneiderman, Designing the user interface: strategies

for effective human-computer interaction. Applied

Ergonomics. Vol. 24, n. 4, pp. 295, 2003.

[34] Chandio, A. A., Xu, C. Z., Tziritas, N., Bilal, K., and

Khan, S. U., A comparative study of job scheduling

strategies in large-scale parallel computational systems.

Proceedings of the 12th IEEE International Conference

on Trust, Security and Privacy in Computing and

Communications, IEEE, (page: 949-957 year of

publication: 2013).

[35] R. Krishnaswamy, Broadcast Scheduling: Minimizing

Average Response Time. Encyclopedia of Algorithms,

(Reference Work Entry), pp: 1-5.

[36] Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., and

Pruhs, K., Scheduling jobs with varying parallelizability

to reduce variance. Proceedings of the 22nd ACM

Symposium on Parallelism in Algorithms and

Architectures - SPAA ’10, (page: 11-20 year of

publication: 2010)

[37] U. Schwiegelshohn, W. Ludwig, J. L. Wolf, J. Turek,

and P. S. Yu, Smart SMART bounds for weighted

response time scheduling. SIAM Journal on

Computing, Vol. 28, n. 1, pp. 237-253, 1998.

[38] J. Edmonds, Scheduling in the dark. Theoretical

Computer Science, Vol. 235, n. 1, pp. 109-141, 1999.

[39] L. Cherkasova, Scheduling strategy to improve response

time for web applications. In: High-Performance

Computing and Networking, Lecture Notes in Computer

Science, Springer Berlin Heidelberg. pp: 305-314, 1998.

ISBN: 978-3-540-64443-9.

[40] I. A. Rai, G. Urvoy-Keller, & E. W. Biersack, Analysis

of LAS scheduling for job size distributions with high

variance. ACM SIGMETRICS Performance Evaluation

Review, Vol. 31, n. 1, pp. 218-228, 2003.

[41] R. Gandhi, S. Khuller, Y. A. Kim, and Y. C. J. Wan,

Algorithms for minimizing response time in broadcast

scheduling. Algorithmica, Vol. 38, n. 4, pp. 597-608,

2004.

[42] M. Ubale, and M. Rahaman,. Improving the Performance

of CPU Scheduling in Interactive Systems. International

Journal of Advanced Research in Computer

Science, Vol. 4, n. 1, pp. 25-28, 2013.

[43] P. M. Broadwell, Response time as a performability

metric for online services. Computer Science Division,

University of California. 2004.

[44] N. Bansal, and K. R. Pruhs, 2010. Server Scheduling to

Balance Priorities, Fairness, and Average Quality of

Service. SIAM Journal on Computing, Vol. 39, n. 7, pp.

3311–3335, 2010.

[45] R. W. Conway, W. L. Maxwell, and L. W.

Miller, Theory of scheduling. (Courier Corporation

2012). 978-1306365451.

[46] M. Harchol-Balter, B. Schroeder, N. Bansal, and M.

Agrawal, Size-based scheduling to improve web

performance. ACM Transactions on Computer Systems,

Vol. 21, n. 2, pp. 207-233, 2003.

[47] N. Bansal, and M. Harchol-Balter, Analysis of SRPT

scheduling: Investigating unfairness. ACM, Vol. 29, n. 1,

pp. 279-290, 2001.

[48] Waldspurger, C. A., and Weihl, W. E., Lottery

scheduling: Flexible proportional-share resource

management. of the 1st USENIX conference on

Operating Systems Design and Implementation,

USENIX Association, (pp: 1-11 year of publication:

1994).

[49] S. F. Yashkov, Mathematical problems in the theory of

shared-processor systems. Journal of Soviet

mathematics, Vol. 58, n. 2, pp. 101-147, 1992.

[50] P. Singh, A. Pandey, and A. Mekonnen,,. Varying

Response Ratio Priority: A Preemptive CPU Scheduling

Algorithm, VRRP. Journal of Computer and

Communications, Vol. 3, n. 4, pp. 40-51, 2015.

[51] N. kumar, and Nirvikar, Performance improvement using

CPU Scheduling Algorithm. International Journal of

Emerging Trends of Technology in Computer Science,

Vol. 2, n. 2, pp. 110-113, 2013. Retrieved from

http://www.ijettcs.org/V2I2.html

http://www.sciencedirect.com/science/journal/00036870
http://www.sciencedirect.com/science/journal/00036870
http://www.sciencedirect.com/science/journal/00036870

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.11, February 2016

59

[52] A. J. Husain, New Roll-Up Operator for Non-Additive

Numeric Measure Summarization. Contemporary

Engineering Sciences, Vol. 6, n. 8, pp. 393 – 402, 2013.

[53] Kiran, R. S., Babu, P. V., and Krishna, B. M.,

Optimizing CPU scheduling for real time applications

using mean-difference round robin (MDRR) algorithm.

Proceedings of the 48th Annual Convention of Computer

Society of India, Springer, (page: 713-721 year of

publication: 2014).

[54] R. S. Chang, J. S. Chang, and P. S. Lin, An ant algorithm

for balanced job scheduling in grids. Future Generation

Computer Systems, Vol. 25, n. 1, pp. 20-27, 2009.

[55] V. Gupta, M. Burroughs, & M. Harchol-Balter, Analysis

of scheduling policies under correlated job

sizes. Performance Evaluation, Vol. 67, n. 11, pp. 996-

1013, 2010.

IJCATM : www.ijcaonline.org

