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ABSTRACT 
The site-specific or statistical channel models can be precisely 

characterize the propagation channel, their parameters depend 

on channel statistics and accurate database, making them 

difficult for implementation. In mobile communication 

system, a simple model with few parameters to estimate or 

transmit is of great interest. A new model is proposed using 

both Fourier and Wavelet transform as a decomposition basis 

for outdoor propagation. The path loss is decomposed on 

wavelet packet basis function resulting in scaling and wavelet 

coefficients. Hard thresholding is used to compress these 

coefficients as much as possible. Different threshold levels 

have been tested to find the mean square error (MSE) due to 

reconstructed path loss after compression. Propagation models 

for mobile communication system have been evaluated and 

compared based on this modeling scheme. 
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1. INTRODUCTION 
In real world, signals are non-periodic, noisy, intermittent, 

transient, time variant in nature. The properties of such signal 

cannot be easily detected. It is most natural and effective to 

represent these signals by localized finite energy basis. This 

leads to transformation of signal into another domain. Non-

periodic features can be resolved into much more complex 

spectrum of frequencies, called Fourier transform [FT]. FT is 

the transformation of time domain to frequency domain. 

Fourier coefficients that computed in transformation process 

are used to analyze the frequencies. But, signal cannot be 

simultaneously localized in time and frequency. There are two 

methods that attempt to provide information in both time and 

frequency: Windowed Fourier Transform [WFT] and the 

Continuous Wavelet transform. This transformation maps a 

time function into function of time and frequency.   

An attempt has made to analyze and evaluate the performance 

of outdoor propagation models in transformed domain for 

wireless communication systems.  

1.1  Fourier Transforms 
Fourier analysis has been the major mathematical tool for 

signal representation and a processing. The discrete version 

this approach is called Fourier series, breaks down a given 

signal into sinusoidal function with different harmonics of the 

fundamental frequency. Since sinusoidal signal are periodic 

signal, Fourier analysis is an excellent tool for analyzing this 

class of signals. However it is inefficient for transient signals. 

Fourier transform of an analog function  tf  is defined as 

    dtetfwf jwt





    (1)   

If  tf  is replaced by delta function  0tt   at 0tt  , 

then FT becomes a sinusoidal function, hence it takes an 

infinite number of frequencies to represent the signal that exit 

only at one point in the time domain.  

On the other hand, if the function to be analyzed is a 

sinusoidal function of a single frequency, a spectrum is delta 

function. This leads to discrete Fourier transform which is 

very efficient for studying global periodic function. 

2. WAVELET TRANSFORM 
Wavelets are finite-energy function with localization 

properties that can be very efficiently to represent transient 

signals. Efficiency means only finite numbers of coefficients 

are needed to represent a complicated signal. In contrast with 

the sinusoidal function of infinite extent, „wavelet‟ implies a 

small wave. Mathematically, the area under the graph of the 

Wavelet  tψ  is zero, i.e.    0




dttψ . 

 In spectral domain, this property is equivalent to   0ˆ tψ , 

it means the spectrum of the wavelet has a value of zero at

0w . In other word; the wavelet has no dc offset. The 

spectral domain behavior makes the wavelet a band pass filter. 

It is from any wavelet and its spectrum that energy of wavelet 

is concentrated in a certain region of both t and axles. This 

localization property is an important feature of wavelets. If the 

wavelet is more localized it produces better (higher 

resolution) representation of signal in the time-frequency 

plane and require fewer coefficients in the representation. 

2.1 Wavelet at Different Resolution (Scales) 

For a given wavelet  tψ , a scaled and translated version is 

designated by  

  






 


a

bt
ψ

a
tψ ab

1
                  (2)   

The parameter „a’ corresponds to the scale while b is the 

translation parameter. The wavelet    tψtψ 10  is called 

the basic wavelet mother wavelet. 

It is important to note that the shape of the wavelet remains 

the same under translation and scaling. The wavelet signal 

processing is not much different from that of Fourier 

processing, at least when „Orthogonal Wavelet‟ are 

considered. Instead of decomposing a signal into sinusoidal 

functions of different frequencies, wavelet signal processing 
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seeks to decompose a transient signal into a linear 

combination of the scaled and translated version of the basic 

wavelet. 

2.2 Continuous Wavelet Transform 
The continuous (integral) wavelet transform (CWT/IWT) of a 

signal  tx  is a linear transform defined by the integral, 

      dttψtxabxW abψ 




,           (3) 

                

    dt
a

at
ψtx

a
abxWψ 







 
 





1
,

                 (4)

 

      

           tψtx ba,  

The last expression in above equation represents the inner 

product of   two functions, defined as, 

    ., dttgtfgf 






                                         (5)

 

                                 

The CWT computes the wavelet coefficient of   tx  

associated with the wavelet  tψ ab .This coefficient gives 

correlation between these two functions. Higher correlation 

produces a larger coefficient. 

The original signal is uniquely recovered by double integral is 

given by  

  

      









2

,
1

a

dbda
tψabxW

C
tx abψ

ψ (6)

 

                   

Where, ψC  is a finite constant given by the integral  

 
 





dw
w

wψ
Cψ

2

    (7)                                                                

3. DECOMPOSITION AND 

RECONSTRUCTION ALGORITHMS 
The decomposition (analysis) and reconstruction (synthesis) 

algorithms are the most often used algorithm in wavelet signal 

processing. It consists of simply dividing the signal into 

components so that each component may be proceeding with 

a different algorithm. The important issue of these algorithms 

is to be able to reconstruct the signal perfectly on application 

all-pass filter for all signal components. These algorithms are 

based on two scale relation.  

3.1 Decomposition of a 1-D Signal 
The Decomposition algorithm for scaling function coefficients 

is described by  

 


 ,12 jkkj CaC    (8) 

By rewriting same equation as, 

   


 ,12 jmkj CkmaC   

                (9) 

This is interpreted as convolution before down sampling by 2. 

The computation of the wavelet coefficients at one level of 

resolution is carried out in similar manner, namely 

   


 ,12, jmkj CkmbD   (10) 

These two steps are combined to form decomposition block. 

This decomposition block can be repeated and sequentially 

applied to the scaling function coefficients to yield the 

wavelet coefficient sequences. Implementation of  kjC   is 

simple. Taking a scaling coefficient set to convolve with 

coefficient set {a k} and down sampling yields the scaling 

function coefficients at one lower resolution level. Repeating 

same procedure with coefficient set {b k} yields the wavelet 

coefficients. These procedures are repeated to yield the 

coefficient oat lower resolution levels. 

3.2 Reconstruction of 1-D Signals 
The two scale relation for the approximation space and the 

wavelet space constitute te reconstruction algorithm. The 

scaling function coefficients at a higher resolution level are 

computed by using the formula 

   
k

kjkkjkj dqCpC ,2,2,1  .           (11)         

Each summation can be interpreted as a convolution process 

after up-sampling. It can be repeated for coefficient sequences 

 kpjC ,   and kpjd , , .0...,1,  MMp  

3.3 Thresholding  
Thresholding is one of the most often used processing tools in 

wavelet signal processing. It is used in nose reduction, in 

signal and image compression, and sometimes in signal 

reorganization. There are different types of thresholding in 

use. The choice of thresholding methods depend on the 

application are briefly discussed below, 

Hard Thresholding 

Hard thresholding is sometimes referred as gating. If a signal 

(or a coefficient) value is below a preset value, it is set to 

zero. 



 


otherwise

κxallforx
y

0
                         (12) 

         

 

Where,  κ  is the threshold value or gate value. 

Soft Thresholding 

 It is defined as  

 



 


otherwise

κxallforκxf
y

0

,

             (13) 

The function  xf  generally is a linear function. However, 

spline curves of third and fourth orders may be used to 

effectively weight the value greater than κ . 
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4. MODELING SCHEME 
A new model is proposed using both Fourier and Wavelet 

transform as a decomposition basis outdoor propagation 

models like Hata, COST, Lee, Egli, Xia, SUI, Ray models[1-

8]. The path loss is decomposed on wavelet packet basis 

function resulting in scaling and wavelet coefficients. Hard 

and soft thresholding is used to compress these coefficients as 

much as possible. Different threshold levels have been tested 

to determine the mean square error (MSE) due to 

reconstructed path loss after compression [13].  

 

Figure 1: Transformed Domain Modeling Scheme 

The performance parameter, Root Mean Squared Error,   

MSERMSE  , 





N

n

predcomp LL
N

MSE
1

1
 

 N Length of pL vector 

5. SIMULATION RESULTS 
The Path loss prediction model is proposed using Wavelet 

transform. The different wavelets namely Symlets, 

Daubechies, Coiflets and Biorthogonal, are used in design of 

proposed path loss model for wireless communication system. 

The path loss computed is decomposed on wavelet packet 

basis function. Hard and soft thresholding is used to compress 

these coefficients as much as possible. Different threshold 

levels have been used to test the predicted path loss on the 

basis of RMSE (Root Mean Squared error). 

CASE I 

To find the appropriate mother wavelet, the experiments are 

carried out extensively with all wavelets family. For this 

purpose 2-ray model is considered as case[10,12]. The 2-ray 

model is embedded by ‘synN’, ‘dbN’, ‘coifN’, and ‘biorN’ 

wavelets with thresholding. The model is analyzed on both 

hard thresholding and soft thresholding scheme.  

In analysis, it is found that „sym8‟ is the appropriate from 

Symlet family. The wavelets „db4‟ and „db8‟ are equally well 

from Daubechies family and ciof4‟ is most appropriate 

wavelets from Coiflets wavelet family. The wavelet „bior4.4’ 

is the best choice from Biorthogonal wavelets For 2-ray 

model: 

 

 

Figure 2: RMSE vs. Soft Threshold Using sym8, db8, coif4 

and bior4.4 

Table 1: RMSE values for 2-Ray Model 

Hard threshold 10% 50% 90% 

Smy8 0.0092 0.0384 0.0691 

Db8 0.0076 0.0461 0.0802 

Coif4 0.0088 0.0441 0.0572 

Bior4.4 0.0086 0.0375 0.0573 

  

Table 1 shows RMSE values at minimum (10%) to maximum 

(90%) using both hard and soft threshold the wavelet. In all 

„coif4‟ is best fit on hard threshold for the 2-ray model.  

CASE II 

In second phase, best possible wavelets are applied for 

different outdoor propagation models [1-11] by varying 

threshold value from 10% to 90% with increment of 10%. 

Simulation is carried out for well known propagation models 

which include empirical, deterministic or site specific and 

theoretical models. Results have been observed for these 

models and represented in terms of the evaluation parameter 

RMSE (Root mean square error). The performances of models 

are highlighted in tabular form and represented in tgraphically 

in figures (3, 4, 5, 6.and 7). 

 

Figure 3: RMSE vs. Hard Threshold using sym8 
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Figure 4: RMSE vs. Hard Threshold using db8 

 

Figure 5: RMSE vs. Hard Threshold using coif4 

 

Figure 6: RMSE vs. Hard Threshold using 

bior4.4 

For LOS COSTWI model: 

Table 2: RMSE values for LOS COSTWI Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

Smy8 0.0040 0.0121 0.0228 

Db8 0.0044 0.0140 0.0328 

Coif4 0.0050 0.0137 0.0234 

Bior4.4 0.0042 0.0094 0.0311 

The RMSE obtained from „sym8‟ is constant over 30% to 

80% thresholding. The „bior4.4‟ wavelet is applicable up to 

50% threshold value for LOS COSTWI model. 

For NLOS COSTWI model: 

Table 3: RMSE values for NLOS COSTWI Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

   Smy8 0.0023 0.0177 0.0177 

   Db8 0.0030 0.0206 0.0411 

   Coif4 0.0058 0.0197 0.0200 

   Bior4.4 0.0042 0.0118 0.0306 

  

The wavelet „sym8‟ is the best choice for NLOS COSTWI 

model. 

For Egli model: 

             Table 4: RMSE values for Egli Model  

  

Wavelet 

Hard threshold 

10% 50% 90% 

Smy8  0.0757 0.1188 

Db8 0.0174 0.0597 0.0981 

Coif4 0.0147 0.0800 0.1665 

Bior4.4 0.0116 0.0787 0.0836 

The wavelet „Bior4.4‟ is the best fit for NLOS COSTWI 

model. 

For Hata model: 

Table 5: RMSE values for Hata Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

Smy8 0.0270 0.866 0.1173 

Db8 0.0249 0.0977 0.1601 

Coif4 0.0228 0.1089 0.2241 

Bior4.4 0.0158 0.0821 0.1469 

The wavelet „Bior4.4‟ is the best suit up to 80% threshold for 

NLOS COSTWI model 

For LEE model:  

Table 6: RMSE values for Lee Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

   Smy8 0.0002 0.1894 0.1576 

   Db8 0.0036 0.1467 0.1984 

   Coif4 0.0165 0.2020 0.3641 

   Bior4.4 0.0078 0.1183 0.2247 

  

The RMSE obtained from „Bior4.4‟ increases abruptly above 

50% thresholding (hard), it is admissible up to 50% threshold  

For SUI model: 

Table 7: RMSE values for SUI Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

   Smy8 0.0156 0.0995 0.1165 

   Db8 0.0248 0.1365 0.1996 

   Coif4 0.0250 0.0951 0.1367 

   Bior4.4 0.0220 0.0561 0.0981 
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The wavelet „Bior4.4‟ is the appropriate choice for SUI 

model. 

For Xia model: 

Table 8: RMSE values for Xia Model 

 

Wavelet 

Hard threshold 

10% 50% 90% 

Smy8 0.0002 0.1529 0.1636 

Db8 0.0038 0.1525 0.1948 

Coif4 0.0172 0.1357 0.3783 

Bior4.4 0.0837 0.3474 0.5725 

The performance of „sym8‟ is good on hard threshold and 

„bior4.4‟ is better choice on soft threshold. 

CASE III:  

The Path loss prediction model is proposed on basis of Fourier 

transform. The computed path loss is decomposed by FFT 

(Fast Fourier transformation) and reconstructed by inverse 

Fourier transformation. Different threshold levels have been 

applied to find RMSE (Root Mean Squared error) due to the 

reconstructed path loss. RMSE achieved by simulation 

indicates that the performance of FT basis modeling is very 

poor. 

 

Figure 7:  RMSE vs. Threshold using Fourier Transform 

6. CONCLUSION 
In analysis, best fit mother wavelet is determined from 

wavelet family. The performance of propagation models are 

evaluated using best fit wavelets. FT is also used to evaluate 

the performance of propagation model. Best fit wavelets have 

good accuracy over the 10% to 50% threshold and moderate 

above 50% to 90% threshold. Coiflet wavelets performed well 

in deterministic model like ray model. For empirical model 

like Hata and Egli, the Biorthogonal wavelet is the excellent 

choice. COSTWI LOS & NLOS is the theoretical model, 

Symlet wavelet is better option. Physical models like Xia 

model are based on physical optics. The Symlet or 

Biorthogonal wavelets are reasonably good. In comparison 

with FT, WT is promising mathematical tool in modeling. 
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