
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

18

Static Program Slicing- An Efficient Approach for

Prioritization of Test Cases for Regression Testing

Jyoti Arora
Rukmini Devi Institute of Advanced Studies

2A & 2B, Phase-1,
Madhuban Chowk, Outer Ring Road,

 Rohini, Delhi-110085

ABSTRACT

Regression Testing is performed after modification of the

program or software; it classified the existing test cases into

re-used test cases and affected test cases after modification of

the code. Test case prioritization is an approach of arranging

the existing test cases in manner that most affected test cases

(that generated maximum number of faults) test first after the

other one. There are many techniques used for prioritization

test cases at the time of regression testing. This paper present

a new approach for prioritization of test cases using static

executable program slices for regression testing. Program

slicing is a process to classify the program into number of

parts based on various types of dependencies between

program statements. This paper presents an overview of basic

concept of generating static program slices and on the basis of

these programs slices prioritization of test cases at the time of

regression testing

Keywords
Regression testing, Program dependency, static program

slices, test cases prioritization and execution history

1. INTRODUCTION
Regression Testing is performed after modification of

program code/software. After modification of program, it is

very difficult to find out affected test cases due to

modification of program. Regression Testing is a technique

that classified existing test cases into two parts, re-used test

cases after modification and affected test cases after

modification. Test case Prioritization is a technique of re-

arranging the existing test cases in a manner that test cases

that affected more are executed first that improve the testing

quality[6]. Many techniques used by researchers for

prioritization of test cases, this paper presents an executable

static program slicing technique for test cases prioritization at

the time of regression testing. The concept of Program

Slicing is to decompose the program into small units depends

on various types of dependencies (data dependency, control

dependency, call dependency and so on) between the program

statements. Program slicing is applied into number of

application for example in computer understanding,

debugging, and testing and program comprehension by slicing

the program into smaller parts. This paper shows the process

of automatically generation of static program slices from the

program and used these static program slices for prioritizing

test cases at the time of regression testing.

2. PROGRAM SLICING
In the software development life cycle software testing plays

very import role, with the help of software testing compare

the estimated and actual result of software by executing a

program or system with the intent of finding different types of

faults. There are two approaches for performing software

testing one is functional testing and other one is structural

testing. In the case functional testing, only focus on

functional part of the program and ignore internal details

while comparing estimated and actual result. In the case of

structural testing, focus on internal structure of the program

while comparing estimated and actual result and finding out

faults. The process of structural testing is only focus on

Software Testing is the process of evaluating a system by

comparing its actual and expected result manually or

automatically.

Complete structural testing is a time consuming task and not

possible. Sometimes, for many properties, only a small

portion of the program is relevant. This can be done with the

help of slicing.

Slicing is an important testing technique, it helps in

understanding of the program or software by decompose the

program into smaller part depending on the different types of

dependencies (data, control, method call etc) between the

statements. With the help of program slicing, each slice only

containing statement that relevant to specific variable and

ignore other statements.

Program slicing approach can be classified depending upon

the run-time environment and slicing direction. Depending

upon the run time environment, slicing can be slice or

dynamic and depending upon the slicing direction, slicing can

be forward or backward slicing.

For example figure 1. Shows C’ language code.

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

19

1 .void main()

2. {

3. inti,sum,mul;

4. i=1;

5. sum=0;

6. mul=1;

7. while(i<=10)

8. {

9. sum=sum+i;

10. mul=mul*i;

11. i=i+1;

12. }

13. printf(“%d”,i);

14. printf(“%d”,mul);

15. printf(“%d”,sum);

16. getch();

17. }

Figure 1. Sample c’ program code

Figure-2 shows the demonstration for various program slices

of program1. Figure 2. Shows executable program slices of all

variables of program 1, every program slice includes

statements from program-1 that directly or indirectly affects

the value of that program slice variable.

With the help of program slices, we decompose our program 1

into number of slices containing filtered statements that

affected by the slice variable. Finally for slice S1, count the

value of i variable, for slice S2, compute the multiplication

function and for slice S3 compute the sum function.

S1(i, 13)

void main()

{

inti,sum,mul;

i=1;

while(i<=10)

{

S2(mul,14)

void main()

{

inti,sum,mul;

mul=1;

i=1;

while(i<=10)

S3(sum,15)

void main()

{

inti,sum,mul;

sum=0;

i=1;

while(i<=10)

i=i+1;

}

Printf(“%d”,i);

getch();

}

{

mul=mul*i;

i=i+1;

}

printf(“%d”,mul);

getch();

}

{

sum=sum+I;

i=i+1;

}

printf(“%d”,sum);

getch();

}

Figure 2. Executable Program Slices for above C’

3. PROGRAM SLICING PROCESS
The step by step activities for generating static program

slicing are

Figure3. Static program slicing process

1. Select the slicing criterion:- The slicing criterion

specifies a point of interest (a statement in the program to

be sliced) and interested variable. [2]

2. Create Program Dependency Graph:- The second step

for program slicing process is to create program

dependency graph on the basis of various types of

dependencies between the statements[4].

3. Slice Extraction: - After creating dependency graph, the

next step is to extract slices from program dependency

graph using forward or backward approach.[7][12]

 Create Program Dependency Graph

Select the slicing criterion

 Slice Extraction

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

20

4. EXISTING PROGRAM SLICING

 TOOLS
Table 1 Comparison between Static Program Slicing Tools

 Wisconsin

Tool

Unravel

Tool

Kaveri Tool

PURPOSE A Slicing tool

evaluates C

program

A Slicing

tool

evaluates

ANSI C

code

A Slicing tool

evaluates Java

code

APPLICATI

ON

Debugging Debuggin

g

Program

Comprehensio

n

FEATURES

Slice C’

Programs and

highlighted.

Program

Dependency

Tracking

Slice

ANSI C’

Programs

and

highlighte

d.

Program

Dependen

cy

Tracking

Slice Java

Programs and

highlighted.

Program

Dependency

Tracking

5. PROPOSED APPROACH

Figure 4. Proposed Approach

1. Create executable Static Program Slices Module

This module includes four steps:-

1. Select the Slicing Criteria.

2. Create Software Dependence Graph.

3. Slicing Extraction

4. Slicing Execution

In the first step of this module, input the slicing criteria from

user –slice variable and slicing point.

Figure 5. Step by step procedure for creation of

executable program slices

In the second step of this module, create program dependence

graph.

1. Generate Test Cases from the Executable Static

Program Slices Module:- The executable static program

slices contained line numbers of original program. On

the basis of line numbers of individual executable static

program slices generate test cases and maintained its

execution history.

2. Identify differences between Original & Modified

Program in case of Regression Testing Module:- This

module includes four steps

1. Input original and modified java program.

2. Creation of flow graph of original and modified program.

3. Identify differences between flow graph of original and

modified java program.

4. Display difference- new lines, deleted lines and modified

lines.[12]

Figure 6. Step by step procedure for identify difference

between original and modified program

3. Prioritization of Test Cases in case of Regression

Testing Module:-This module includes two steps:-

1. Search Modified lines into all slices of original java

program & find out effected program slices: - In this

Create Executable Program Slices Module

Identify differences between Original & Modified

Program in case of Regression Testing Module

Generate Test cases from the Executable static Program

slices Module

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

21

step if slice contain modified lines, then it declared effect

program slice.

2. Compare execution history of original test suite with

lines numbers of every effected program slices:- In

this step compare execution history of original test suite

with lines numbers of every effected program slices and

if both are equals then it declared effected test cases after

modification.

3. Prioritization of Test Cases :- On the basis of

maximum number of matches from the execution history

of original test suite with lines numbers of every effected

program slices, prioritized the test cases.[12]

Figure 7. Step by step procedure for prioritization of test

case in case of regression testing

6. DEMONSTRATE RESULT

Figure 8. Main Window

Figure 9. Creation of executable static program slices

Figure 10. Executed static program slice

Figure 11. Dependency Graph

Figure 12. Difference and effected slices finding

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

22

Figure 13. Test case Analysis

7. COMPARISON WITH EXISTING

STATIC SLICING TOOL
Table 2 Comparison with existing static slicing tools

 Wisco

nsin

Tool

Unravel

Tool

Kaveri Tool Proposed

Approach

Purpose Evalu

ates C

progra

m

code

Evaluates

ANSI C

program

code

Evaluates Java

Program code

Evaluates Java

Program code

Applicatio

n

Debu

gging

Debugging Program

Comprehensio

n

Regression

testing &

program

comprehension

Features 1.Slic

e C’

progra

m and

highli

ghts

2.Prog

ram

Depen

dency

tracki

ng

1.Slice

ANSI C’

Programs

and

highlighted.

2.Program

dependency

tracking

1.Slice Java

programs and

highlighted.

2.Dependency

Tracking

1.Create

Executable

static program

slices.

2.Program

dependency

tracking

3.Dependency

graph of

complete java

program

8. EXPERIMENTATION AND

ANALYSIS
Let’s suppose following are the existing test suite before

modification of code/program. (we only included test case id

and execution history in the existing test suite for our

experimentation.

Table 3.Existing test suite of original program

Test case

id

Execution history

t1 1,2,3,5,7

t2 1,2,3,5,7,8

t3 1,2,4,8,9

t4 1,2,3,5,5,6,7

t5 8,9,10

t6 1,2,8,9

t7 1,2,3,9,10

And modified lines are 3,4 and 5

Table 4: Test cases that includes modified lines

Test case id Execution History

t1 1,2,3,5,7

t2 1,2,3,5,7,8

t3 1,2,4,8,9

t4 1,2,3,4,5,6,7

t5 1,2,3,9,10

According to executable static program Slicing approach

affected test cases After modification are:-

Table 5. Number of faults and fault time associated with

each test case of each test case

 t1 t2 t3 t4 t5

F1(for
modified
line
no.3)

* * * *

F2(for
modified
line no.
4)

 * *

F3 (for
modified
line no.
5)

* * *

No. of
faults

2 2 1 2 1

Time 5 7 2 1 3

VTi=fault/time(rate of fault detection) [6]

The calculations are:

Vt1=2/5=0.4

Vt2=2/7=0.28

Vt3=1/2=0.5

Vt4=2/1=2

Vt7=1/3=0.33

Arrange the above Vti in deceasing order, since more the rate

of fault detection more will be the priority.[6]

Hence the prioritized order is:T4,T1,T3,T2,T7.

In the above table

m=no. of faults = 10

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

23

n=no. of test cases = 10

So putting the values of m , n ,TFi(The position of

the first test in T that exposes fault i) in the

equation

APFD = 1 – TF1 + TF2+ +TFm + 1

nm 2n[6]

Putting values:

 APED=1-2+3+2 +1/10

5*3 =0.43

9. CONCLUSION & FUTURE SCOPE
Program slicing approach is used for various application i.e.

program understanding, comprehensiveness, debugging, and

testing using various types of dependencies between the

instructions of the program. This paper shows process of

automatic generation of static executable program slices and

using these slices to find effected test cases after modification

of the program. In this paper, try to working on simple java

program to compute program slices where includes data,

control, call, and method and parameter dependency, in future

trying to work on other types of complex program including

other dependencies between the program statements.

10. REFERENCES
[1] M.Weiser, “Programmers use slices when

debugging”,Communications of the ACM, Vol. 25,

1982, pp. 446452.

[2] Weiser, “Program Slicing”, IEEE Transactions on

Software Engineering 10(4), 352-357 (1984).

[3] F. Tip, “Survey of program slicing techniques”, Journal

of programming languages 3, 121-189 (1995).

[4] Z.Jianjun, “Applying Program Dependence Analysis to

Java Software”In Proc. Workshop on Software

Engineering and Database Systems,Pages 162-169,

Taiwan, December 1998.

[5] L. Andrea De , “Program Slicing: Methods and

Applications”, IEEE international workshop,2001

[6] S.Praveen Ranjan, “Test Case Prioritization”, Journal

of Theoretical and Applied Information Technology,

2008

[7] P.Sandeep, “A New approach of program slicing” Mixed

S-D (static & dynamic) slicing”, IJARCCE, Vol.2,

Issue 5, May 2013.

[8] C. Itti Hooda Rajender, “A Review: Study of test case

generation techniques”, IJCA, Vol. 107, Number 16,

2014

[9] E.Sebastian Elbaum, “Selecting a Cost-Effective Test

Case Prioritization Technique”, April 20, 2004

[10] S.Yogesh, K.Arvinder, “A new technique for version-

specific test case selection and prioritization for

regression testing,” Journal of the CSI ,Vol. 36 No.4,

pages 23-32, October-December 2006.

[11] [D. Gaurav, “Understanding regression testing

techniques”, IJCA, 2015

[12] J,Arora, “Generating & Prioritization of test cases Using

static program slices” OSR Journal of Computer

Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN:

2278-8727, PP 37-44

[13] Indus Project. http://indus.projects.cis.ksu.edu/

[14] Unravel Project http://hissa.nist.gov/unravel/Wisconsin

Program slicing project

[15] http://www.cs.wisc.edu/html/

[16] TopicsinProgramSlicing,http://www.cs.drexel.edu/~spiro

s/teaching/cs576/slides/5.slicing.pdf

IJCATM : www.ijcaonline.org

http://indus.projects.cis.ksu.edu/

