
International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

An Evolutionary Bayesian Network Learning Algorithm
using Feature Subset Selection for Bayesian Network

Classifiers

Shefali K. Singhal
MBICT Women Engineering College

New Vallabh Vidyanagar
Anand, Gujarat, India

ABSTRACT
Classification is the process of constructing (learning) a model
(classifier) to predict the class (labels) for given data. Bayesian
belief network classifiers allow the representation of dependencies
between subsets of attributes of a dataset. But learning an optimal
Bayesian belief network for a Bayesian network classifier is a NP-
hard problem. A number of heuristic-based algorithms have been
proposed for supervised learning of bayesian belief network such as
Tree-Augmented Naive Bayes (TAN), Hidden Naive Bayes (HNB).
In the past decade, swarm intelligence (SI) based algorithms have
been proposed for many optimization problems. Swarm intelli-
gence based algorithms are characterized by the collective decen-
tralized decision-making of several independent agents to search
for the optimal solution in the solution search space.
In this paper, we propose a hybrid swarm intelligence based
Bayesian network classifier combining Hunting Group search
with Feature subset selections. The Hunting Group Search
- Feature Subset Selection (HuGS-FSS) algorithm has been
inspired by the behaviour of a pack of hunting animals such
as wolves. The classification accuracy of the proposed HuGS-
FSS algorithm is tested against other state of the art Bayesian
network classifiers such as Naive Bayes, TAN, A2De, and
HNB. Through comprehensive evaluation using 28 benchmark
classification datasets from the UCI repository, we show that
HuGS-FSS outperforms the other state of the art algorithms.

General Terms
Swarm Intelligence, Machine Learning

Keywords
Bayesian Network Classifier, Hunting Search Algorithm, Evolu-
tionary Computation

1. INTRODUCTION
A classification algorithm takes a set of training data and cre-
ates a classifier. Once the classifier is learned from the training
dataset, new data samples can be classified using the classifier. Let
< X1, ...,Xn > be the attributes of the data. A data sample d
can be described as < x1, ..., xn > where xi represents the values

of attribute Xi. Learning a classifier from the training data can be
viewed as learning the mapping c = f(d), that can predict the class
c of the data sample d.
A Bayesian belief network classifier comprises of two parts: (1) a
Bayesian belief network graph (directed acyclic graph) that cap-
tures the dependencies between the attributes and (2) conditional
probability tables.
Each node in the Bayesian belief network graph represents an at-
tribute Ai of the dataset. An arc between 2 nodes indicates the at-
tribute dependency. Figure 1 depicts a naive Bayes based Bayesian
belief network graph for the iris dataset from the UCI machine
learning datasets downloaded from the WEKA website [12]. In
a naive Bayes network, every attribute is conditionally dependent
only on the class attribute, as depicted in the above figure. Conse-
quently, the class attribute is the parent of all the attributes of the
iris dataset (i.e. sepallength, sepalwidth, petallength, petalwidth).
Since all the attributes in a naive bayes bayesian network graph is
conditionally independent of each other, there are no arcs between
the attributes.
Each attribute in a Bayesian belief network classifier has an
associated conditional probability table (CPT). The CPT for
an attribute X gives the conditional probability distribution
P (X|Parents(X)). The Bayesian belief network graph along
with the CPT describe a joint probability over attributes X , given
as:

p(x1, x2, ..., xn) =

n∏
i=1

p(xi|Pa(xi)) (1)

where Pa(xi) are the parents of variable xi in the Bayesian belief
network graph.
A naive Bayes classifier makes the class conditional independence
assumption. This implies that if the class of the data sample is
known then the values of the attributes of the data sample are
conditionally independent of each other. However, in reality, this
assumption is often false. Bayesian belief network classifier enable
the encoding of the dependency between the attributes. However
learning an optimal Bayesian belief network classifier has been
shown to an NP-hard problem [4, 3].

Many known state of the art algorithms for learning the optimal
Bayesian Belief network for Bayesian network classifiers make
limited relaxation of the class conditional independence assump-

1



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Fig. 1. A Naive Bayes Bayesian Network Graph for the iris dataset

tion. These algorithms relax the class independence assumption by
adding limits (typically 1 or 2) on the number of parents permitted
[9, 13]. While theoretically AnDe [25] enables learning of an en-
semble of n-dependency classifiers, in practice as noted by the au-
thors it expensive to learn n-dependency classifiers for n ≥ 3. As
learning the optimal Bayesian Network classifier has been shown
to be NP-hard, and due to computational complexity of the current
state of the art Bayesian Network learning algorithms for Bayesian
network classifier, the existing algorithms are unable to accurately
capture all the dependencies amongst all the attributes. The main
motivation of this paper is to develop a computational simple model
that can effectively search the solution space to find the best solu-
tion.
Hunting search algorithm [20, 23] is a bio-inspired metaheuristic
algorithm for optimization problems and has been inspired by the
behavior of animals such as wolves who hunt in packs and collab-
orate to catch a prey. Each member of the group positions itself
based on the position of the other members in the group. In case
the prey escapes, the hunting group repositions itself.
In our previous paper, we proposed a novel hunting group search
based Bayesian network classifier [22]. Using preliminary experi-
mental evaluation, we showed that our proposed classification al-
gorithm outperformed other known Bayesian network classifiers.
However, we observed that many known Bayesian network clas-
sifiers took a long time or large amounts of memory to classify
high dimensional/large datasets. Therefore, in this paper, we ex-
tend our previous work and propose HuGS-FSS, a hybrid swarm
intelligence based Bayesian network classifier combining Hunting
Group search with Feature subset selection. The HuGS-FSS classi-
fier learns the structure of the Bayesian network using the hunting
search optimization technique. This paper is structured as follows:
Section 2 gives a brief overview on the related work in Bayesian
network classifiers, feature subset selection algorithms, swarm in-
telligence and hunting search algorithm. In section 3, we introduce
the HuGS-FSS Classifier and explain the steps to learn the Bayesian
Network structure using the Hunting Search meta-heuristic algo-
rithm. Section 4 presents the experimental methodology and dis-
cusses the results. Finally our conclusions are stated in section 5
along with few remarks for future work.

2. RELATED WORK
2.1 Learning a Bayesian Network
Bayesian belief network classifier can be learned in two steps:
(a) Learning the Bayesian belief network graph and (b) learning
the CPTs for the graph learned in step (a). Learning the optimal
Bayesian belief network for a Bayesian network classifier is an
NP-hard problem [4, 3]. A number of heuristic-based algorithms
have been proposed for learning of Bayesian belief network such
as Naive-Bayes [10], K2 [5], TAN [9]. An overview of these meth-
ods is given by Cheng et al. in [2]. Learning the CPT is straight-
forward and can be done by estimating the likelihood of the value
of the attribute given value of its parent attributes.
The class conditional independence assumption of Naive Bayes
classifier is very strong and often does not hold for many real world
datasets. Tree Augmented Naive Bayes [9] (TAN) classifier relaxes
the class independence assumption of Naive Bayes classifier. It uses
conditional mutual independence to add a single parent for each at-
tribute.
Hidden Naive Bayes [13] is also a structure extension-based-
algorithm which introduces a layer of hidden parents. A hidden
parent for an attribute aggregates the influence of all other attributes
by assigning higher weights to attributes with higher influence.
A2De [25] belongs to a general class of algorithms known as Av-
eraged n-Dependence Estimators (AnDE). AnDe is an approach
to probabilistic classification learning that learns by extrapola-
tion from marginal to full-multivariate probability distributions. In
A2De, the complete set of two-dependency classifiers are learned
i.e. an ensemble of two-dependency classifiers is learned. The fi-
nal prediction is made by averaging the predictions made by the
ensemble. However, as noted in the referenced paper[25], learning
AnDE for n > 3 is very expensive.

2.2 Feature Subset Selection
Feature subset selection refers to the process of selecting a subset
of attributes from a given dataset for model learning. In the con-
text of classification problems, the datasets can consist of a large
number of features. May of these features are redundant or irrele-
vant. Eliminating these attributes can reduce the search space size
and thereby making it easier and less expensive to build the classi-
fier. As this is an active area of research, a large number of Feature

2



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Subset Selection algorithms have been proposed. A complete re-
view of all the literature in this area in beyond the scope of this
paper. We refer the reader to [17] for more information on Fea-
ture Subset Selection. We compared the performance of HuGS-FSS
with the following state of art Feature Subset Selection algorithm in
our implementation: (a) wrapper based IWSSembeddedNB [1], (b)
MultiObjectiveEvolutionarySearch [14], and (c) PSOSearch [18].
However, it must be noted that HuGS-FSS is not dependent on any
particular feature subset selection algorithm.

2.3 Swarm Intelliegnce-Hunting Search Algorithm
In the past decade, many meta-heuristic algorithms based on swarm
intelligence (SI) [26, 27] have been proposed to solve constraint
optimization problems. SI algorithms incorporate a large number
of simple homogeneous agents with simple behaviors who collab-
orate and share information to find the global optima. SI-inspired
algorithms are characterized by their simplicity and the lack of a
central management. Consequently, these algorithms are relatively
fast, robust and effective in finding near optimal if not optimum
solutions. For example, ants can locate food over long distances
without the help of advanced communications and find the shortest
path to the food. Even though each ant individually does not have
a clue, collectively as a swarm, they are intelligent.
Hunting search algorithm [20, 23] is a bio-inspired meta-heuristic
algorithm for optimization problems and has been inspired by
the behavior of animals such as wolves who hunt in packs and
collaborate to catch a prey. Each member of the group positions
itself based on the position of the other members in the group.
As a group they close in on the prey from different directions. In
case the prey escapes, the hunting group repositions itself. This
meta-heuristic-based algorithm has been used for constrained
optimization problems such as transmission-constrained unit
commitment [28], no-wait flow-shop scheduling [19] and other
optimization problems [6, 24]. Hunting Search Algorithm has
been also successfully applied to clustering [21], feature selection
[7, 8] and high-dimensional function optimization problems [11].
However, to the best of our knowledge, HuGS is the first algorithm
designed based on Hunting Search Algorithm to learn the Bayesian
network structure for a bayesian network classifier.

In the last decade, there has been active research in the area
of swarm intelligence inspired data ming algorithms. A compre-
hensive summary of the data mining/machine learning algorithms
based on swarm intelligence has been compiled by Martens et al.
[16]. As noted in this paper, most of the research in SI-inspired data
mining algorithms has been concentrated on rule based classifiers,
and clustering.
In the next section, we describe the HuGS-FSS, a hunting search
inspired Bayesian network structure learning algorithm for a
Bayesian network classifier. HuGS-FSS also incorporates a feature
subset selection algorithm to remove irrelevant and redundant at-
tributes in a classification dataset thereby making the classifier ef-
ficient and robust to handle large and high-dimensional datasets.

3. HUGS-FSS ALGORITHM
A naive Bayes classifier ignores the dependencies amongst the at-
tributes. The Bayesian network classifiers overcomes this short-
coming by modeling the dependencies between the attributes in the
form of a Bayesian network. The dependencies in the attributes are
modeled by adding directed arcs between the attributes. The de-
pendencies between attributes can be identified by a human expert

Start

Initialize 
Hunters

Evaluate 
Hunters

Pick the 
Leader

Movement 
towards 
Leader

Evaluate 
Quality

Keep the 
best position

Position 
correction

Evaluate 
Quality

Keep best 
Positionn Interations 

without 
update 

Create new 
Hunters

Local Search

Stop

Yes

No

Max 
Iterations

Yes

No

Dicretization
Replace 
Missing 
Values

Feature 
Selection

Fig. 2. Block diagram of the HuGS-FSS Bayesian Network Learning Al-
gorithm

or in cases where expert knowledge of the problem domain is not
known, a Bayesian network structure learning algorithm can learn
the structure of Bayesian network directly from the training dataset.
The proposed network learning algorithm, Hunting Group Search-
Feature Subset Selection (HuGS-FSS) Bayesian Network Classi-
fier, is inspired from swarm intelligence based Hunting Search al-
gorithm. The algorithm identifies the key attributes that contribute
towards the classification accuracy and then builds Bayesian net-
work classifier using the group hunting strategy of wolves.
Figure 2 depicts the block diagram of the HuGS-FSS algorithm.
Initially, after discretization and replacement of missing values, an
attribute selection algorithm selects the key attributes of the dataset
that contribute to the classification accuracy. This is important for
high-dimensional datasets as it reduces the complexity and size of
the solution search space. Also by elimination of extraneous at-
tributes that are irrelevant or redundant, the classification accuracy
and efficiency can be increased as non-essential data is removed
from training dataset.
The number of arcs e to be added and the maximum number
of parents k of a node are the design parameters of HuGS-FSS
Bayesian Network learning algorithm. As depicted in fig.2, feature
subset selection is run on the training dataset and the extraneous at-
tributes are removed from the training dataset. In our implementa-
tion, we compared the performance of HuGS-FSS using three state
of the art feature subset selection algorithms: IWSSembeddedNB
[1], MultiObjectiveEvolutionarySearch [14], and PSOSearch [18].
Our results noted in section 4 indicate that IWSSembeddedNB pro-
vides good performance when incorporated in HuGS-FSS. How-
ever, HuGS-FSS is not constrained to any particular feature subset
selection algorithm.
Overall, the HuGS-FSS algorithm works as follows: After feature
subset selection, the algorithm initializes a group of hunters. A
hunter who is the best solution is selected as the leader. A neigh-
borhood (local) search is performed by the hunters in the hunt-
ing group using two techniques: (1) moving towards the leader

3



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Algorithm 1 HuGS-FSS Algorithm
Require: A dataset of training examples.

1: BEGIN
2: AttributeSelection(dataset)
3: BestNetworkglobal = ø
4: Initialize the parameters
5: for i = 0 to HG Size do
6: Initialize hunter[i] {Create solution as per algo. 2}
7: end for
8: Identify the leader hunter[i]
9: BestNetworkglobal = hunter[i]

10: repeat
11: for i = 0 to HG Size do
12: Update hunter[i] to hunter[i]

′
to move towards the

leader
13: if Q(hunter[i]

′
) > Q(hunter[i]) then

14: hunter[i] = hunter[i]
′

15: end if
16: end for
17: for i = 0 to HG Size do
18: Update hunter[i] to hunter[i]

′ for position correction
19: if Q(hunter[i]

′
) > Q(hunter[i]) then

20: hunter[i] = hunter[i]
′

21: end if
22: end for
23: Identify the leader hunter[i]
24: BestNetworkglobal = hunter[i]
25: Reorganize the hunters
26: until max iterations
27: return BestNetworkglobal
28: END

and (2) position correction. Once the local search is completed,
the algorithm performs global search by re-initializing the hunters.
Re-initialization of hunters ensures that the algorithm does not get
stuck in a local optima. Local search and global search are carried
out till convergence or maximum number of iterations are reached.
The details of HuGS-FSS Bayesian network learning algorithm are
outlined in Algorithm 1.

Algorithm 2 Create Hunters Procedure
1: BEGIN CreateHunter()
2: BNC ← φ
3: k = hunter.selectMaxParents()
4: e = hunter.selectNumEdges()
5: i = 0
6: while i < e do
7: {i← j} = hunter.addEdge()

BNC ← BNC ∪ {i← j}
8: if BNC.findCycle == true or

BNC.exceedParentLimit == true then
9: BNC ← BNC − {i← j}

10: end if
11: end while
12: BNC.LearnCPTs()
13: return BNC

Once the Bayesian network structures corresponding to each hunter
have been created, HuGS-FSS algorithm identifies the best solu-
tion, which is marked as the leader. Since HuGS-FSS algorithm is

designed for solving classification problems, the leader is the solu-
tion (hunter) which has the best predictive performance i.e. solution
that most accurately classifies maximum number of tuples. In this
paper, we use accuracy as the quality measure to test the quality of
the solution generated by HuGS-FSS algorithm. The accuracy of a
HuGS-FSS classifier on a given dataset is measured as the percent-
age of tuples that are correctly classified, and is given as follows:

Accuracy =
TP + TN

TC
(2)

where, True Positives (TP): Positive tuples correctly labeled by
the classifier.
True Negatives (TN): Negative values correctly labeled by the
classifier.
Total Count (TC): Total sample count in the dataset.

Step 3: Movement towards the leader: Once the leader has been
identified (using equation 2), local search is carried out to improve
the quality of the solution using maximum movement towards the
leader. Maximum movement towards the leader mimics the wolves
who surround a prey and try to capture the prey by moving in on
the prey from different directions. All the hunters (candidate solu-
tions) in the HuGS-FSS update their positions by moving towards
the leader as per equation 3:

x
′
i = xi + rand×MML× (xli − xi) (3)

where xli is the position of the leader and maximum movement
toward the leader (MML) depends on the problem under consid-
eration. We use a value of 0.5 in our implementation. In section
4, we test 3 datasets with different values of MML. As shown in
table 5 and fig. 3, we note that the classifier is most accurate for
MML = 0.5. After each hunter moves towards the leader, it’s
quality is evaluated as per equation 2. If accuracy of the solution is
better, the hunter keeps the new position otherwise it moves back
to it original position.
Step 4: Position Correction: The hunters perform position
correction based on the hunters current positions and the hunting
group consideration rate HGCR. Based on the HGCR, the hunter
either keeps the position from the HG or moves a new location
based on the distance radius Ra. The new hunter position is set as
shown in Eq. 4

xji ←−

{
xji ∈ {HG}, p(HGCR)

xji = xji ±Ra, p(1−HGCR)
(4)

where, xji is the value of the ith decision variable of the j hunter in
the hunting group.
The parameter HGCR denotes the probability of picking the ex-
isting position from the HG. HGCR is set at 0.6 in our imple-
mentation. Ra denoted the fixed radius distance, that the hunter
moves and is problem dependent parameter. In this step, the hunter
searches in its own local neighborhood to look for a better solution.
If a better solution is found, the hunter moves to the new location;
otherwise it keeps its own position. In our implementation, Ra takes
the value 2.
Step 5: Reorganization: After local search is completed using
movement toward the leader (step 3) and position correction (step
4), the HuGS-FSS algorithm re-initializes the hunters. In this step,
the hunters are reorganized to a new starting position. This is car-
ried out to prevent the hunting group from being trapped in a local
optimum. In our implementation, if there is no improvement in the

4



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Table 1. Details of the datasets used for evaluation.
Sr. No. Dataset Number of data samples Number of attributes Number of classes

1 adult 32560 15 2
2 anneal 898 39 6
3 audiology 226 70 24
4 autos 205 26 7
5 balance-scale 625 5 3
6 breast-cancer 286 10 2
7 car 1728 7 4
8 cmc 1473 10 3
9 colic 368 23 2

10 credit-a 690 16 2
11 diabetes 768 9 2
12 glass 214 10 7
13 heart-c 303 14 5
14 heart-statlog 270 14 2
15 hepatitis 155 20 2
16 hypothyroid 3772 30 4
17 ionosphere 351 35 2
18 iris 150 5 3
19 kr-vs-kp 3196 37 2
20 labor 57 17 2
21 lymph 148 19 4
22 mushroom 8124 23 2
23 nursery 12960 9 5
24 primary-tumor 339 18 22
25 sick 3772 30 2
26 sonar 208 61 2
27 vehicle 846 19 4
28 vote 435 17 2

quality of the solution after 10 iterations of movement towards the
leader and position correction, we re-initialize the hunting group as
described in step 2. Even though the number of iterations of local
search is fixed at 10 for our implementation, the problem search
space and training time can be used as a guide to select the num-
ber of iterations of local search. However, in our experiments, 10
iterations of local search provide good accuracy for the trained clas-
sifier.
Step 6: Termination: Steps 3 to 5 are repeated until maximum
number of iterations are completed. In our implementation, steps
3 to 5 are repeated for a maximum of 100 iterations. The selec-
tion of maximum number of iterations is problem specific. In order
to conduct a more extensive search of the solution space for high
dimensional datasets, the maximum number of iterations can be
increased. The number of iterations provides a trade-off between
the extend of search of solution space and computational resources
required. For our experimental datasets, we found that 100 itera-
tions provided acceptable solutions. Once maximum iterations are
completed, the HuGS-FSS algorithm returns the best HuGS-FSS
Bayesian network classifier learned by the algorithm.
In the next section, we evaluate the performance of the HuGS-
FSS Bayesian network classifier introduced in this section. We also
present the results of the detailed experimental evaluation and a dis-
cussion on selection of values of the various algorithmic parameters
used in HuGS-FSS algorithm.

4. EXPERIMENTS AND RESULTS
We used the Weka machine learning library [12] to implement the
HuGS-FSS classifier. The HuGS-FSS classifier is evaluated using
28 benchmark classification datasets selected from UCI (University

of California, Irvine) repository [15]. These datasets were down-
loaded from the Weka website. The characteristics of these datasets
have been summarized in table 1. These datasets represent a wide
array of domains and varied characteristics. The datasets also in-
clude high-dimensional datasets (upto 70 attributes) as well as large
datasets (having more than 30,000 data samples). As the classifi-
cation algorithm requires a discretized dataset having no missing
values, the following preprocessing steps were applied:

(1) Datasets having continuous attributes were discretized using
the Discretize filter implemented in Weka. It uses a 10-bin
unsupervised discretization.

(2) Datasets with missing values were preprocessed using the
ReplaceMissingV alues unsupervised filter in Weka. This
filter replaces missing values with the modes and means from
the training data.

The predictive accuracy of the HuGS-FSS classifier was compared
against other widely used classifiers such as ZeroR (baseline),
Naive Bayes [10], TAN [9], A2De [25], and HNB [13] search. Ze-
roR classifier chooses the most common class in the training set as
the predicted class. ZeroR is used to provide a baseline to test the
effectiveness of the classifiers.
Table 2 shows the predictive accuracy obtained by the classifiers.
The performance of the classifier was evaluated by running a 10-
fold cross-validation (CV) on the datasets listed in the table. A 10-
fold cross validation divides the dataset into 10 partitions. 9 parti-
tions are used to train the classifier whereas the remaining 1 par-
tition is used to test the performance of the classifier learned. The
10-fold CV is run 10 times where in each iteration a different par-
tition is used as the test set. Each classifier is evaluated via 10 runs
of 10-fold cross validation procedure.

5



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Table 2. Experimental Results: Predictive Accuracy and Standard Deviation
No. DataSet HuGS-FSS ZeroR NB HNB A2De TAN

1 adult 83.32 ± 4.08 75.67 ± 0.0 80.36 ± 0.94 80.06 ± 2.35 84.73 ± 3.80 77.03 ± 1.52
2 anneal 93.81 ± 2.36 76.16 ± 0.0 93.34 ± 1.03 93.34 ± 1.03 93.00 ± 1.68 93.45 ±3.15
3 audiology 81.10 ± 1.05 25.22 ± 0.0 74.64 ±1.15 76.19 ± 1.81 78.05 ± 2.01 77.03 ± 1.52
4 autos 84.92 ± 2.28 32.68 ± 0.0 75.17 ± 2.02 82.68 ± 2.36 84.68 ± 1.77 82.04 ± 3.32
5 balance-scale 91.50 ± 1.52 45.76 ± 0.0 89.53 ± 4.08 89.53 ± 4.08 81.96 ± 6.32 85.40 ± 8.62
6 breast-cancer 75.06 ± 1.33 70.27 ± 0.0 74.37 ± 1.56 72.67 ± 2.04 71.99 ± 2.13 70.06 ± 3.06
7 car 93.14 ± 5.27 70.02 ± 0.0 85.82 ± 4.59 92.81 ± 3.33 94.14 ± 6.66 94.13 ± 3.05
8 cmc 53.90 ± 6.25 42.7 ± 0.0 53.57 ± 5.64 50.36 ± 7.41 52.21 ± 6.57 52.44 ± 9.75
9 colic 86.00 ± 2.27 63.04 ± 0.0 84.34 ± 1.26 83.94 ± 2.55 84.23 ± 2.35 83.91 ± 2.34

10 credit-a 87.11 ± 1.96 55.5 ± 0.0 86.13 ± 1.63 85.14 ± 2.95 85.75 ± 1.76 86.20 ± 2.85
11 diabetes 77.85 ±3.07 65.1 ± 0.0 77.77 ± 2.21 73.16 ± 4.04 71.32 ± 6.39 73.21 ± 6.84
12 glass 64.25 ± 2.50 35.51 ± 0.0 59.25 ± 3.42 58.83 ± 2.42 60.18 ± 3.04 58.27 ± 4.05
13 heart-c 85.31 ± 1.26 54.45 ± 0.0 84.98 ± 1.26 81.45 ± 4.54 81.02 ± 2.46 84.91 ± 1.63
14 heart-statlog 86.11 ± 1.08 55.55 ± 0.0 86.18 ± 0.82 82.70 ± 1.05 83.03 ± 2.82 83.03 ± 1.31
15 hepatitis 89.03 ± 1.15 79.35 ± 0.0 85.80 ± 1.33 82.96 ± 1.95 84.51 ± 2.0 88.58 ± 1.33
16 hypothyroid 94.13 ± 1.03 92.04 ± 0.0 92.89 ± 0.51 92.98 ± 3.24 93.18 ± 1.26 93.34 ± 1.47
17 ionosphere 92.67 ± 1.56 64.1 ± 0.0 92.25 ± 1.03 91.59 ± 2.12 91.50 ± 1.81 90.54 ± 3.15
18 iris 97.19 ± 0.63 33.33 ± 0.0 97.0 ± 1.08 88.4 ± 0.84 96.66 ± 0 97.19 ± 0.63
19 kr-vs-kp 94.67 ± 0.31 54.25 ± 0.0 93.24 ± 0.87 94.66 ± 0.63 94.48 ± 0.63 94.65 ± 0.69
20 labor 94.73 ± 0.0 64.91 ± 0.0 91.22 ± 0.0 87.01 ± 1.26 90.70 ± 0.82 90.52 ± 0.51
21 lymph 87.43 ± 1.07 54.72 ± 0.0 86.82 ± 1.26 83.31 ± 1.05 85.94 ± 1.54 86.89 ± 2.31
22 mushroom 99.50 ± 0.0 50.92 ± 0.0 96.61 ± 1.91 99.11 ± 0.84 99.50 ± 0.0 99.28 ± 1.17
23 nursery 90.37 ± 3.74 34.29 ± 0.0 88.65 ± 3.14 90.37 ± 6.23 91.27 ± 3.78 90.29 ± 3.10
24 primary-tumor 48.64 ± 2.37 24.77 ± 0.0 47.49 ± 2.94 47.84 ± 1.75 48.61 ± 2.09 45.89 ± 3.94
25 sick 94.90 ± 0.42 92.3 ± 0.0 94.66 ± 0.31 94.53 ± 0.51 94.48 ± 0.42 94.32 ± 1.13
26 sonar 78.02 ± 1.70 53.36 ± 0.0 78.07 ± 1.64 72.35 ± 2.27 71.39 ± 2.36 70.62 ± 4.48
27 vehicle 72.64 ± 6.00 25.47 ± 0.0 63.23 ± 4.10 72.21 ± 4.62 71.60 ± 7.06 68.81 ± 6.86
28 vote 96.32 ± 0.0 61.37 ± 0.0 94.57 ± 1.07 95.88 ± 0.73 95.44 ± 1.03 95.97 ± 1.26

Table 3. Win/Tie/Loss Summary Table

ZeroR NB HNB A2De TAN

HuGS-FSS 28/0/0 26/0/2 27/1/0 25/1/2 27/1/0

ZeroR 0/0/28 0/0/28 0/0/28 0/0/28

NB 16/2/10 16/0/12 14/0/14

HNB 11/0/17 13/0/15

A2De 16/1/11

As noted in table 2, overall the classification accuracy of HuGS-
FSS classifier is best amongst the classifiers compared in this pa-
per. HuGS-FSS classifier outperforms all the other classifiers in the
experiment for 23 out of the 28 datasets. For the remaining five
datasets, its classification accuracy is close to the accuracy of the
best classifier. Table 3 summarizes the performance of the algo-
rithms as compared to each other.
The experimental results can be summarized as below:

(1) HuGS-FSS outperforms ZeroR in classification accuracy for
all the datasets.

(2) HuGS-FSS outperforms Naive Bayes in classification accuracy
for 26 datasets and its accuracy is close to Naive Bayes accu-
racy for 2 dataset.

(3) HuGS-FSS outperforms HNB in classification accuracy for 27
datasets and ties for 1 dataset.

(4) HuGS-FSS outperforms A2De in classification accuracy for
25 datasets. HuGS-FSS ties A2De for 1 dataset and under-
performs for 2 datasets.

(5) HuGS-FSS outperforms TAN in classification accuracy for 27
datasets and ties for 1 dataset.

In the following subsections, we discuss how to tune values of the
various HuGS-FSS algorithm parameters for specific applications.

4.1 Parameter Settings
4.1.1 Feature Subset Selection Algorithm. We compared the
performance of various feature subset selection which gave the
best accuracy when incorporated in HuGS-FSS. We compared
the performance of three state of art feature subset selection
algorithms:
(1) IWSSembeddedNB: Incremental Wrapper Subset Selection
with embedded NB classifier
(2) MultiObjectiveEvolutionarySearch: An Multi-objective Evolu-
tionary Algorithm (MOEA)
(3) PSOSearch: An implementation of the Particle Swarm Opti-
mization (PSO) algorithm.

Table 4 shows the performance of HuGS-FSS classifier incorporat-
ing the above mentioned feature subset selection algorithm. From
the results noted in the table 4, we found that IWSSembeddedNB
provided the best performance for 9 out of 14 datasets. While the
selection of the appropriate feature subset selection algorithm can
be tuned for the characteristics of the particular dataset, in gen-
eral, we found that IWSSembeddedNB provides good performance
when incorporated into HuGS-FSS algorithm.

4.1.2 Hunting Group Size. The hunting group size parameter de-
termines the number of hunters (candidate solutions) generated by
the algorithm in each iteration. In our experimental setup we use
hunting group size of 10 hunters. For most classification problems,
a hunting group of size 10 gives good accuracy. However, for prob-
lem with very large search space, it will be useful to increase the

6



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Table 4. Comparison of performance of Hugs-FSS using different
feature subset selection algorithms

No Dataset IWSSembNB MOEA PSO

1 audiology 81.10 ± 1.05 77.30 ± 2.21 76.54 ± 2.26

2 autos 84.92 ± 2.28 86.82 ± 3.21 85.65 ± 1.83

3 breast-cancer 75.06 ± 1.33 74.79 ± 1.10 74.79 ± 1.52

4 colic 86.00 ± 2.27 85.38 ± 1.13 83.31 ± 2.17

5 diabetes 77.85 ± 3.07 76.17 ± 2.58 76.17 ± 2.58

6 heart-c 85.31 ± 1.26 85.61 ± 2.63 85.18 ± 0.73

7 hepatitis 89.03 ± 1.15 86.83 ± 0.96 87.09 ± 0.94

8 iris 97.19 ± 0.63 97.19 ± 0.63 97.19 ± 0.63

9 labor 94.73 ± 0.0 94.38 ± 0.63 94.03 ± 0.69

10 mushroom 99.50 ± 0.0 100 ± 0.0 99.01 ± 0.0

11 nursery 90.37 ± 3.74 70.79 ± 0.0 70.79 ± 0.0

12 sonar 78.02 ± 170 78.70 ± 3.12 78.41 ± 2.02

13 vehicle 72.64 ± 6.00 68.41 ± 7.88 66.33 ± 4.36

14 waveform 83.54 ± 6.26 83.13 ± 5.33 84.48 ± 5.18

hunting group size to enable faster convergence and better accu-
racy.

Table 5. Performance of HuGS-FSS for various
MML values

MML iris cmc hepatitis
0.1 96.13±0.78 52.6±7.67 87.29±1.15
0.2 95.86 ± 1.13 52.69 ± 7.39 87.29 ± 1.15
0.3 95.86 ± 1.13 52.89 ± 5.99 86.45 ± 1.24
0.4 95.86 ± 1.31 52.76 ± 7.14 87.03 ± 1.37
0.5 97.19 ± 0.63 53.89 ± 5.36 89.03 ± 1.15
0.6 95.86 ± 1.31 52.76 ± 7.14 87.61 ± 2.74
0.7 95.86 ± 1.31 53.38 ± 8.6 86.32 ± 1.31
0.8 95.86 ± 1.31 52.62 ± 7.67 87.61 ± 2.74
0.9 95.86 ± 1.31 52.76 ± 7.14 87.29 ± 1.15

1 95.86 ± 1.31 52.76 ± 7.14 87.03 ± 1.37

4.1.3 Maximum movement towards the leader (MML).. MML
determines the distance the hunter moves towards the leader in one
step. We ran experiments for different values ofMML for iris, cmc
and hepatitis datasets. Table 5 shows the results of the experimental
evaluation. We found that the accuracy of the HuGS-FSS is the best
when the value ofMML is set at 0.5. This can be clearly observed
from fig. 3.

4.1.4 HGCR and Ra. The values of HGCR and Ra are depen-
dent on the application and on the size of the search space (i.e. the
number of attributes in our dataset). These parameters are used in
position correction step of local search. During position correction
step, we are search the solution space in close proximity to the
current solution. The HGCR determines the likelihood of decision
variable keeping its current position. Since we performing local
search of the solution space, we would like to add/remove only a
few arcs and evaluate the resultant Bayesian Network Classifier.
Consequently we chose a value of 2 for Ra i.e. 2 arcs would be
added or removed from the current Bayesian Network. If we pick a
very large value of Ra, the resultant HuGS-FSS Bayesian Network
generated will not be similar to the current solution and will not

effectively carry out local search around the current solution. If we
have a very large search space, then we can adjust the value to Ra
to be a larger number.

5. CONCLUSIONS
In this paper, we proposed a novel swarm intelligence inspired
Hunting Group Search - Feature Subset Selection (HuGS-FSS) al-
gorithm to learn the Bayesian Network structure for a Bayesian be-
lief network classification algorithm. HuGS-FSS has been inspired
by the behavior of animals such as wolves who hunt in a group
and collaborate to catch a prey. Our experimental results show that
HuGS-FSS outperforms the other state of the art Bayesian network
learning algorithms for Bayesian network classifiers. Also, due to
the algorithmic and implementation simplicity of the algorithm,
HuGS-FSS can be applied for real-world problems. As the algo-
rithm consists of multiple simple computational agents that collab-
orate to search for the optimal solution, this algorithm can be easily
parallelized.
We also systematically studied how the various algorithmic param-
eters affect the performance of the algorithm. We also provide gen-
eral guidelines for tuning the values of these parameters. Through
systematic evaluation on numerous datasets of varying character-
istics i.e. large number of attributes (upto 70 attributes) or large
datasets (having more than 30000 data samples), we have shown
the effectiveness of HuGS-FSS classification algorithm for a wide
range of classification problems. The resultant HuGS-FSS classifier
is effective and easy to implement in most cases.
In this paper, we have shown the effectiveness of using a swarm
intelligence inspired algorithm to design Bayesian network classi-
fiers. More work is required to design and evaluate the effectiveness
of using other swarm intelligence algorithms for developing novel
and effective Bayesian network classifiers. Also, while HuGS-FSS
has been proven effective for static dataset, more work needs to be
done to adapt and evaluate HuGS-FSS for streaming datasets.

6. REFERENCES

[1] Pablo Bermejo, José A Gámez, and José M Puerta. Speed-
ing up incremental wrapper feature subset selection with
naive bayes classifier. Knowledge-Based Systems, 55:140–
147, 2014.

[2] Jie Cheng and Russell Greiner. Comparing bayesian network
classifiers. In Proceedings of the Fifteenth conference on Un-
certainty in artificial intelligence, pages 101–108. Morgan
Kaufmann Publishers Inc., 1999.

[3] David Maxwell Chickering. Learning bayesian networks is
np-complete. In Learning from Data: Artificial Intelligence
and Statistics V, pages 121–130. Springer-Verlag, 1996.

[4] Gregory F Cooper. The computational complexity of prob-
abilistic inference using bayesian belief networks. Artificial
intelligence, 42(2):393–405, 1990.

[5] Gregory F Cooper and Edward Herskovits. A bayesian
method for the induction of probabilistic networks from data.
Machine learning, 9(4):309–347, 1992.

[6] Erkan Doğan and Ferhat Erdal. Hunting search algorithm
based design optimization of steel cellular beams. In Proceed-
ing of the fifteenth annual conference companion on Genetic
and evolutionary computation conference companion, pages
1729–1730. ACM, 2013.

7



International Journal of Computer Applications (0975 - 8887)
Volume 135 - No.13, February 2016

Fig. 3. HuGS-FSS Accuracy for various MML values

[7] Simon Fong, Kun Lan, and Raymond Wong. Classifying hu-
man voices by using hybrid sfx time-series preprocessing and
ensemble feature selection. BioMed research international,
2013, 2013.

[8] Simon Fong, Xin-She Yang, and Suash Deb. Swarm search
for feature selection in classification. In Computational Sci-
ence and Engineering (CSE), 2013 IEEE 16th International
Conference on, pages 902–909. IEEE, 2013.

[9] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian
network classifiers, 1997.

[10] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian
network classifiers. Machine learning, 29(2-3):131–163,
1997.

[11] Wu Husheng and Zhang Fengming. A uncultivated wolf pack
algorithm for high-dimensional functions and its application
in parameters optimization of pid controller. In Evolutionary
Computation (CEC), 2014 IEEE Congress on, pages 1477–
1482, July 2014.

[12] Mark Hall Ian Witten, Eibe Frank. Data Mining: Practical
Machine Learning Tools and Techniques.

[13] Liangxioa Jiang, Harry Zhang, and Zhihua Cai. A novel bayes
model: Hidden naive bayes. IEEE Transactions on Knowl-
edge and Data Engineering, 21(10), 2009.

[14] Fernando Jiménez, Gracia Sánchez, and José M Juárez.
Multi-objective evolutionary algorithms for fuzzy classifica-
tion in survival prediction. Artificial intelligence in medicine,
60(3):197–219, 2014.

[15] M. Lichman. UCI machine learning repository, 2013.

[16] David Martens, Bart Baesens, and Tom Fawcett. Editorial sur-
vey: swarm intelligence for data mining. Machine Learning,
82(1):1–42, 2011.

[17] Luis Carlos Molina, Lluı́s Belanche, and Àngela Nebot. Fea-
ture selection algorithms: A survey and experimental evalua-
tion. In Data Mining, 2002. ICDM 2003. Proceedings. 2002
IEEE International Conference on, pages 306–313. IEEE,
2002.

[18] Alberto Moraglio, Cecilia Di Chio, Julian Togelius, and Ric-
cardo Poli. Geometric particle swarm optimization. Journal
of Artificial Evolution and Applications, 2008:11, 2008.

[19] B Naderi, Majid Khalili, and Alireza Arshadi Khamseh.
Mathematical models and a hunting search algorithm for the
no-wait flowshop scheduling with parallel machines. Inter-
national Journal of Production Research, 52(9):2667–2681,
2014.

[20] R. Oftadeh, M.J. Mahjoob, and M. Shariatpanahi. A novel
meta-heuristic optimization algorithm inspired by group hunt-
ing of animals: Hunting search. Computers Mathematics with
Applications, 60(7):2087 – 2098, 2010.

[21] Tang Rui, S. Fong, Xin-She Yang, and S. Deb. Nature-
inspired clustering algorithms for web intelligence data. In
Web Intelligence and Intelligent Agent Technology (WI-IAT),
2012 IEEE/WIC/ACM International Conferences on, vol-
ume 3, pages 147–153, Dec 2012.

[22] Shefali K Singhal. Bio-inspired bayesian network learning al-
gorithm for bayesian network classifiers. International Jour-
nal of Advance Engineering and Research Development, 2(3),
2015.

[23] Rui Tang, S. Fong, Xin-She Yang, and S. Deb. Wolf search
algorithm with ephemeral memory. In Digital Information
Management (ICDIM), 2012 Seventh International Confer-
ence on, pages 165–172, Aug 2012.

[24] Korakoch Waiyakan and Pongchanun Luangpaiboon. Heat
treatment process optimization using hunting search and ant
sense on path of steepest ascent. Applied Mechanics and Ma-
terials, 217:1475–1478, 2012.

[25] Geoffrey I. Webb, Janice R. Boughton, Fei Zheng, Kai Ming
Ting, and Houssam Salem. Learning by extrapolation from
marginal to full-multivariate probability distributions: De-
creasingly naive bayesian classification. Machine Learning,
2012.

[26] Xin She Yang. Nature-Inspired Optimization Algorithms. El-
sevier.

[27] Xin She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gan-
domi, and Mehmet Karamanoglu. Swarm Intelligence and
Bio-Inspired Computation. Elsevier, 2013.

[28] Kazem Zare and Sayyed Mohammad Hashemi. A solution
to transmission-constrained unit commitment using hunting
search algorithm. In Environment and Electrical Engineering
(EEEIC), 2012 11th International Conference on, pages 941–
946. IEEE, 2012.

8


	Introduction
	Related Work
	Learning a Bayesian Network
	Feature Subset Selection
	Swarm Intelliegnce-Hunting Search Algorithm

	HuGS-FSS Algorithm
	Experiments and Results
	Parameter Settings
	Feature Subset Selection Algorithm
	Hunting Group Size
	Maximum movement towards the leader (MML).
	HGCR and Ra


	Conclusions
	References

