
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

1

A New Software Component Approach

Abdellatif Hair
LMACS

P.B. 523, Faculty of Sciences and Technology,
 Beni Mellal, Morocco

ABSTRACT
The "component" paradigm appeared in response to

boundaries of the object approach. It introduced a new

method for designing software applications. This method is

based on the assembly of prefabricated software entities called

components. The Technology of connector is thus proposed to

facilitate assembly. We present in this paper a model of multi-

views software components for systems based components. A

multi-views software component allows each user to

manipulate a system with a vision own to its needs. The

assembly of the components in this model is implemented by

a new type of connector named visibility connector.

Keywords
Software component, Assembly, Viewpoint, Visibility

connector.

1. INTRODUCTION
Building applications has many advantages especially in

terms of code reuse, quality of development, modularity, etc.

Component Based Software Engineering (CBSE) addresses to

improve the development of systems as assembly of software

components, components as reusable entities, maintenance

and upgrading of systems by customizing and replacing such

components [22][23]. Recent years have seen the emergence

of different models to components such as EJBs (Enterprise

Java Beans) [5] or CCM (CORBA Component Model) [11].

These models facilitate the construction of applications by

assembling software components defined by their required

and provided interfaces. Despite the hype about these models,

the academic community offers many new models to facilitate

the specification, construction, deployment or reconfiguration

of applications based on software components.

Furthermore, everyone agrees to recognize the user interest in

the development of complex systems. The viewpoint concept

is an appropriate means to implement this concern [2][8].

This concept has been addressed in the area of programming

including programming by topics [15], aspects [14] and by

object [20][16]. It was also studied in the case of systems such

as TROPES LOOPS [29] in the field of knowledge

representation, role models [13] and also in O2Views, Multi-

view and COCOON systems [7] for databases.

The introduction of the viewpoint concept in object oriented

modeling of complex systems can elaborate a unique model

that is shareable and accessible by several viewpoints. The

advantage of this new approach appears at the consistency of

data, deletion of some redundancy, enhancement of the multi-

model approach and the definition of access rights.

Several approaches have been proposed in the object

viewpoint modeling, among the most successful works, is the

work of [28][1] which led to the definition of the VUML

profile (View based Unified Modeling Language). VUML

proposes formalism and methodology to support view-based

modeling from analysis to coding. VUML enables to model a

software system according to each actor’s viewpoint. First,

actors of the system are identified as in UML. Each actor is

associated with a unique viewpoint. Then, for each viewpoint,

we describe, in an iterative way, use cases and scenarios as

well as related classes. The result is a set of class diagrams

(called also viewpoint models) in the UML formalism.

Finally, a VUML model is produced by composing the partial

models.

Recently J. Krumeich, et al. proposes also a method for

viewpoint-based modeling using recommender system in a

multiple-user environment [17][18]. The viewpoint based

modeling method aims at solving such problems by

introducing and using stakeholder-specific viewpoints on

collaboratively created models. Our work in this area allowed

to standardize the analysis/design method VBOOM (View

Based Object-Oriented Method) developed by A. Kriouile, [9]

in UML notation [25]. The VBOOM method integrates the

viewpoint approach in the object-oriented development. The

new standardized method is called U_VBOOM [3][4].

By integrating the viewpoint concept in the CBSE, we will

propose a model to facilitate the development of applications

based on software components. This model that we present

allows the construction of a software component called

"Multi-view Software Component" CLM by assembly of a

software component (Base Component: BC) and software

components (Views Components: VCs). The specificity of a

CLM is the possibility to have interfaces whose accessibility

and behavior change dynamically depending on the current

user (Stakeholder). Its mean we can enable/disable Views

Components at runtime. We introduce the visibility

relationship in software component models. The reification of

this relationship is achieved by the new type of connector:

visibility connector.

This work proposes a model of CLM for multi-view systems

based on components. The assembly of the components in this

model is made by the visibility relationship to be able to

design components called multi-view software components.

We present in the second section the definition and properties

of relationship visibility. In the third, we describe the CLM

model and the concepts Base Component (BC), View

Component (VC) and visibility connector. Then we present in

the fourth section, the process of transformation and

implementation of CLM in CCM [11]. The enhanced version

of language IDL3 (Interface Definition Language) with the

statement of CLM is then proposed and is called IDL3-VIEW

[24]. Finally we end with a conclusion.

In this paper, we are going to illustrate our subjects with the

Media library Management example. The Media library

system must allow its members to consult and to borrow

various types of support: books, video and audio disks, audio

CD, etc. Only one member of the library can borrow books,

reviews, etc. The borrow is limited in time. The potential

users of the Media library system are: the librarian who

manages the loans, the person in charge of adhesions who will

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

2

add and withdraw members, the person in charge of

examplaries who will seize the new examplaries and to

withdraw those damaged, and finally the system engineer who

ensures the good exploitation of the system for the users.

According to the use types, the Media library system will be

considered, as a set of ADHERENTS ACCOUNTS, or of

EXEMPLARIES, or a means to facilitate the LOANS. Thus,

we identify four classes of the system: Media_Library, Loans,

Exemplaries and Counts_Adherents.

2. VISIBILITY RELATIONSHIP:

DEFINITION AND PROPERTIES

2.1 Definition
By visibility, we mean that an entity can be seen upon several

angles. It’s the Media Library which can be seen under the

loans, exemplaries and adherent’s accounts. Several solutions

of implementation and assimilation have been proposed; for

example, the S. Marcaillou proposition. This proposition

consists to assimilate the visibility relationship to selective

multiple inheritance in VBOOL object-oriented language

[27]. The VBOOL language proposes the flexible class

concept (multi-view class). This is a class that declares more

than two visibility ties with other classes named its “views”.

A view is an abstraction of the model. It constitutes the unity

of visibility; it is the result of factorizing user's needs. The

instantiation of flexible class consists to specify a particular

viewpoint which takes various appearances.

In the Figure 1, the Media_Library class is a flexible class

which owns 3 views (Loans, Exemplaries,

Counts_Adherents).

The visibility relationship is a relationship between an entity

(base entity) with its views (views entities) by a set of

visibility links.

Fig 1: Graph of visibility

2.2 Properties
Some the most essential properties of this relationship are:

Transitivity: Visibility relationship is transitive when the

same types of visibility relationship are involved in the

premises.

Anti-symmetry: A base entity is seen as an entity view, but

the reverse is not possible. For example: the base entity

"Media" is seen as an entity view "Loans" but the entity

"Loans" cannot be seen as an entity view "Media";

Dependence: This is an important property that allows the

changes propagation between the dependent view entities. The

propagation direction can be that of the source view entity to

the destination view entity (the loan of a book made by a

member changes the number of copies, and both views

entities "Loans" and " Exemplaries" are dependent);

Mutual exclusion: This property consists of achieving the

access right on a multi-view model. Activating a view entity

V1 having a mutual exclusion with another view entity active

V2 can occur only if the entity view V2 is disabled and vice

versa.

3. MULTIVIEWS SOFTWARE

COMPONENTS MODEL
We dedicate this section to present our proposal for the multi-

views software components model. We begin firstly with the

software component basics presentation. And secondly by

introducing the visibility relationship for the software

components by offering new concepts such as the base

component, view component and visibility connector. And we

end this section by presenting the multi-views software

components model.

3.1 Basics of a software component
This software component is a composition entity specifying,

by contract, its interfaces (provided and required) and explicit

dependencies contexts. A software component can be

deployed independently and can be an assembly element for

the software applications design [24].

The software component architecture specifies its inputs and

outputs to facilitate the description of his behavior -offered

services- regardless of the programming languages used

(Figure 2).

Fig 2: Software component Architecture

As this figure above, a software component has mainly the

following three elements:

 The provided interfaces (outputs) and the required

interfaces (inputs), in synchronous or asynchronous

mode are the means employed to cooperate. These

means may be operations (functions promised to

customers) or properties;

 Configurable properties: these are attributes

generally; they can adapt and customize the

component in specific contexts executions;

 Technical constraints (QoS: Quality of Service) can

be: the security, persistence, transactions, etc.

<<Base_Entity>>

Media

<<view_dependency>> <<view_dependency>>

<<view>>
Counts_Adherents

<<view>>
Loans

<<seen_as>>
<<seen_as>>

<<seen_as>>

<<view>>
Examplaries

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

3

3.2 Visibility relationship in software

components
To introduce the visibility relationship in software

components, we must start giving precisely the definition of a

multi-view software component and all visibility relationship

properties for software components.

A Multi-view Software Component (CLM) is a software

component that can be considered and apprehended under

several "angles", named the views components. A multi-view

software component consists of a base component (software

component) linked with visibility links to views components.

From this definition we can establish the rules to follow in

order to introduce the CLM concept in Component Based

Software Engineering.

Rule 1: a CLM is primarily a software component that

publishes provided and required interfaces.

Rule 2: a CLM consists of a base component and the views

components. A base component is linked to its views

components by visibility links.

Rule 3: the visibility links should reflect the visibility

relationship properties such as dependency, mutual exclusion,

etc.

Rule 4: a view component can be applied only on a single

base component.

Rule 5: the view components are directly accessible as long

as they are not part of a CLM. From the moment they become

views components of a CLM, they will be inaccessible except

through their CLM.

Rule 6: a CLM should provide a possibility to change

dynamically its behavior and its accessibility by the type of

use (customer need).

3.3 Presentation of CLM model
In "component" approach, a software application is built by a

collection of software components interconnected using

connectors [10][26].

In our model, the visibility link is translated into a connector

called visibility connector. This visibility connector is a

software component. It has its interfaces and interposed

between the base component and the view component to

ensure the visibility relationship semantics (Figure 3).

Therefore, the visibility connector must ensure the visibility

relationship properties and particularly two properties:

dependency and mutual exclusion.

Dependency: To ensure the dependency between two views

components, an integer variable will be stored in the

corresponding visibility connector. This variable must be

tested for all operations of modifications concerning changes

related between two views components.

Mutual exclusion: To ensure the access right between two

views components in mutual exclusion, an integer variable

will be stored in the corresponding visibility connectors. This

variable must be tested for any activation operations for a

view component in mutual exclusion.

The CLM use requires the definition of all operations to

ensure the services associated with the visibility relationship:

enable/disable a view component and invoke one of CLM

interfaces.

It’s necessary to check the consistency of the visibility

relationship semantic in use of each operation. We emphasize

that the provided interfaces by the CLM include the provided

interfaces defined by its views components. Use of these

interfaces is specified when defining the links of visibility.

Fig 3: Component model of CLM

4. CLM IMPLEMENTATION IN CCM

4.1 Presentation of the transformation

process
According to the MDA approach (Model Driven Architecture)

[23] our model of CLM is an independent model of any

platform (PIM). From this model, a transformation process

has been defined and used for projections CCM [11] and EJB

[5][19]. Figure 4 illustrates the transformation process used.

Initially, a new model is automatically generated from the

independent supplied model. This new model is a copy of the

original model to which is added a set of specific decisions to

the target platform that cannot be specified in the independent

model.

Once the specific decisions to the target platform are added,

another transformation delivers the specific UML model to

the chosen platform. This model is a PSM (Platform Specific

Model) in the MDA context. The Transformation rules are

automatically applied depending on the specific decisions to

the target platform.

Finally, the designer can adapt the specific model (PSM)

obtained by defining its choices of implementation. These

specific models are expressed in using UML profiles. In

Figure 4, the specifics items to the CCM platform are

expressed in UML [12] and CCM profile (based on CORBA

profile [21]. In platform CCM, the assembly is expressed in

using XML files, called "assembling descriptors".

Fig 4: Transformation Process

Multi-views software
components model -PIM-

PIM suitable for
CCM

CCM model
(PSM)

PIM suitable for

EJB

EJB model
(PSM)

Choice of
implementation

Component

View1

Component
View2

1.1.1.1 Component
View3

Connector
View1

Connector
View2

Connecteur
View3

Component

Base_component

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

4

4.2 The steps of development
In the previous section, we introduced the visibility

relationship in CLM model. In this part, we will implement

this model for CCM components. To define and use CLM in

CCM model, we have developed 3-steps:

4.2.1 Step 1: CLM description - The VIEW- IDL3

language
The CLM description requires the introduction of new

concepts. These concepts are added to those defined by the

IDL3 language [24]. The CLM description using VIEW-IDL3

defines mainly the following elements: the module’s multi-

view software component, its base component, its views

components and its visibility connectors and their properties.

The following example shows the description of a CLM

Media. The CLM declaration in VIEW-IDL3 is just like in

IDL3 (Table 1).

Table 1. The file of the CLM media declaration in VIEW-

IDL3

module demoMedia {

//declaration of interfaces

interface LoansInterface { list of operations….. ; }

interface Counts_AdherentsInterface { list of operations ….. ;

}

interface ExamplariesInterface { list of operations….. ; }

//declaration of base_component

composant_base Media {

attribute string the_name;

type : Asynchronous ;

port_out LoansInterface ;

port_out ExamplariesInterface ;

port_out Counts_AdherentsInterface ;

port_in LoansInterface ;

port_in ExamplariesInterface ;

port_in Counts_AdherentsInterface ;

view_component Loans_View {

attribute string the_name;

// Property declaration of visibility relationship

active : false ;

index : 1 ;

dependency : 0 ; // view component Independent of other

 // components views

mutual_exclusion : 0 ; // view component having no mutual

 }; //exclusion

view_component Examplaries_View {

attribute string the_name;

// Property declaration of visibility relationship

active : false ;

index : 2 ;

dependency : 1 ; // index of view component dependent:

Loans_view: Loans_view

mutual_exclusion : 3 ; // index of view component having

} //mutual exlusion with this view

component

view_component Counts_Adherents_View {

attribute string the_name;

// Property declaration of visibility relationship
active : false;

index :3;

dependency : 1 ; // index of view component dependent:

Loans_view

mutual_exlusion : 3 ; // index of view component having

mutual exlusion with this view component

};

//declaration of base_component Media home

home MediaHome manages Media { };

// declaration of Loans_View component

component Loans_View {

attribute string the_name;

provides LoansInterface Loans_ViewInterface;

};

//declaration of Loans_View home

home Loans_ViewHome manages Loans_View { };

// declaration of Counts_Adherents_View component

component Counts_Adherents_View {

attribute string the_name;

provides Counts_AdherentsInterface

Counts_Adherents_ViewInterface;

};

//declaration of Counts_Adherents_View home

home Counts_Adherents_ViewHome manages

Counts_Adherents_View { };

// declaration of Examplaries_View component

component Examplaries_View {

attribute string the_name;

provides ExamplariesInterface Examplaries_ViewInterface ;

};

//declaration of Examplaries_View home

home Examplaries_ViewHome manages Examplaries_View { };

All definitions we have introduced in IDL3 language are

summarized in the table below (Table 2).

Table 2. Definitions introduced in IDL3 language

CONCEPT CONCEPT DESCRIPTION

Base_component To specify a base component type

View_component To specify a view component type

index Each view component has its own index

that identifies the other views

components.

dependency If it’s different from zero then there is a

dependency between two Views

components. This value represents the

index of the dependent view component.

If it’s equal to zero so there is no

dependency between the current view

component and another view

component.

mutual_exclusion If it’s not zero then there is a mutual

exclusion between two views

components. This number represents the

index of the view component in mutual

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

5

exclusion.

If it’s equal to zero then there is no

mutual exclusion between the current

view component and another view

component.

active

Takes the two values:

True: the view component is active

False: the view component is inactive

port_in Represents the type of interface required

(receptacle or event sink)

port_out Represents the type of the interface

provided (a facet or source event)

4.2.2 Step 2: Projection of the CLM description

from VIEW-IDL3 to IDL3
The projection of the CLM description from VIEW-IDL3 to

IDL3 by the View-IDL3ToIDL3 compiler follows well-

defined rules (Figure 5). However, the main rule that a type

CLM is transformed into a set of components representing the

base component, views components and visibility connectors.

Fig 5: Process projection files VIEW-IDL3 to IDL3

The projection of the CLM description from VIEW-IDL3 to

IDL3 product:

1. Definition of a component "component_name" with

its home "component_nameHome";

2. Each link description defines a component that has

the name of component suffixed by the Connector

word. The same suffix will be added to its home;

3. Description of the views components and the base

component remains the same also their homes

declaration;

4. Depending on the value of type: synchronous,

creates a facet for the base component (if

port_in=true) and a receptacle for the view

component; asynchronous creates an event source

for the base component and an event sink for view

component;

5. Attributes declaration remains as it’s;

6. The ports input/output keep the same number, but

they change the way statement.

To illustrate the projection results from the VIEW IDL3 to

IDL3, we present the projection of the example in the

previous section (Table 3).

Table 3. Projection excerpt from the Media description in

IDL3

// Declaration of CLM Media in IDL3

module demoMedia {

// Definition of interfaces

interface LoansInterface {list of operations... ;};

interface Counts_AdherentsInterface

{liste opérations... ;};

interface ExamplariesInterface {liste opérations… ;};

// Description of base_component component

component Media_Base_Component {

attribute string the_name;

provides LoansInterface ;

provides ExamplariesInterface ;

provides Counts_AdherentsInterface ;

uses LoansInterface To_LoansViews;

uses ExamplariesInterface To_ExamplariesViews ;

uses Counts_AdherentsInterface

 To_Counts_AdherentsViews ;

// Declaration of base_component home

home Media_Base_ComponentHome manages

 Media_Base_Component { };

// Declaration of Loans_View component

component Loans_View {

attribute string the_name;

provides LoansInterface Loans_ViewInterface;

};

// Declaration of Loans_View home

home Loans_ViewHome manages Loans_View { };

// Description of Loans_ViewConnect connector

component Loans_ViewConnect {

attribute string the_name;

// variables Declaration of Loans_ViewConnect

attribute boolean active ;

attribute int index;

attribute int dependency;

attribute int mutual_exclusion;

// Declaration of Loans_ViewConnect interfaces

provides LoansInterface for_MediaLoansCon ;

uses LoansInterface to_LoansCon ; };

// Declaration of Loans_ViewConnect home

home Loans_ViewConnectHome manages

 Loans_ViewConnect { };

IDL3

File

VIEW-IDL3

File

VIEW-IDL3ToIDL3

Compiler

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

6

4.2.3 Step 3: The components interconnection
After implementing the business code of CLM, its base

component, its views components and visibility connectors,

we completed the interconnection of these components. This

should be automated in our model. Indeed, a Java file

containing the set of connections between the connectors and

the components must be automatically generated. A tool

dedicated to this task is under implementation.

5. CONCLUSION
In this article, we presented a model based on multi-view

software components. This model CLM combines the

advantages of the viewpoint approach, and the advantages of

component-based software developing. The CLM model

allows to build a software component by assembling a base

component and views components. The view component is

linked with the base component by a new type of connector

called visibility connector.

The proposed model is independent of any platform which

conforms to model driven architecture (MDA).

We also presented the multi-view software component

implementation on CCM which validated the proposed model

and the steps required to design a multi-view software

component, beginning with the description until execution on

OpenCCM platform.

Thus, it should be noted that the interconnection between the

base component with the view components, according to our

model, is automatically. The description of a CLM type

requires the introduction of new concepts which are added to

those defined by the IDL3 language.

6. REFERENCES
[1] Anwar A., Ebersold S., Coulette B., M. Nassar, Kriouile

A. 2010. A Rule-Driven Approach for composing

Viewpoint-oriented Models. Journal of Object

Technology, 89-114.

[2] Finkelstein A., Kramer J., Goedicke M. 1990. Viewpoint

Oriented Software Development. Presented at the

Proceedings of Sciences Engineering and Applications

Conference, (1990) Toulouse, France.

[3] Hair A., A UML extension for viewpoint-oriented

modeling. Presented at the Proceedings of the

International Conference IADIS Appied Compting

(2005), Algarve, Portugal.

[4] Hair A. 2004. Analysis and design process based on the

viewpoint concept. RITA - Revista de Informática

Teorica e Aplicada -, Vol. X, 63-75.

[5] Rubinger A. L., Burke B. 2010. Enterprise JavaBeans

3.1, 6th Edition O'Reilly Media, USA.

[6] Pope A. 2000. The CORBA Reference Guide:

Understanding the Common Object Request Broker

Architecture, Amazon Edition, France.

[7] Rundensteiner Elke A. 1992. MultiView A Methodology

for Supporting Multiple Views in Object-Oriented

Databases. Presented at the Proceedings of the 18th

International Conference on Very Large Data Bases,

Vancouver, Canada.

[8] Carré B., Geib J.M. 1991. The Point of View Notion for

Multiple Inheritance. Presented at the Proceedings of

European Conference on Object-Oriented Programming,

Geneva, Switzerland.

[9] Coulette B., Kriouile A., Marcaillou S. 1996. The views

approach in object-oriented development of complex

systems. Object Review, 13-20.

[10] Traverson B., Yahiaoui N. 2002. Connector for CORBA

Components. Presented at the Proceedings of the 8th

International Conference on Object-Oriented Information

Systems, Montpellier, France.

[11] CCM. 2007. Object Management Group, CORBA

Component Model Specification OMG Available

Specification Version 4.0.

[12] Booch G., Rumbaugh J., Jacobson I. 2005. The Unified

Modeling Language User Guide. (2nd Edition) Amazon.

[13] Gottlob G., Schrefl M., Rock B. 1996. Extending

Object- Oriented Systems with Roles. ACM Transactions

on Information Systems -TOIS-, 268-296.

[14] Kiczales G., Lamping J., Mendhekar A., Maeda C.,

Videira Lopes C., Loingtier J.M., Irwin J. 1997. Aspect-

Oriented Programming. Presented at the Proceedings of

European Conference on Object- Oriented

Programming, Jyväskylä, Finland.

[15] Ossher H., Kaplan M., Harrison W., Katz A., Kruskal V.

1995. Subject-oriented composition rules. Presented at

the Proceedings of Tenth Annual Conference on Object-

Oriented Programming Systems, Languages, and

Applications, Austin, Texas.

[16] Mili H., Dargham J. 2000. Views : A Framework for

Feature-Based Development and Distribution of OO

Applications. Presented at the Proceedings of Thirty-

Third Hawaii International Conference on System

Sciences, Honolulu, HI.

[17] Krumeich J., Werth D., Loos P. 2013. Towards a

Viewpoint-based Modeling Method to Foster

Collaborative Modeling Conceptual Design and

Implementation. Presented at the Proceedings of the

Pacific Asia Conference on Information Systems, Jeju

Island, South Korea.

[18] Krumeich J., Werth D., Loos P. 2014. Conceiving a

method for viewpoint-based modeling using

recommender systems in a multiple-user environment –

Conceptual approach and proof-of- concept. Presented at

the Proceedings of the Twenty Second European

Conference on Information Systems, Tel Aviv.

[19] Wetherbee J. , Rathod C., Kodali R., Zadrozny P. 2015.

Beginning EJB 3: Java EE 7 Edition, Kindle Edition,

France.

[20] Debauwer L., Caron O., Carré B. 2000.

Contextualization of OODB Schemas in CROME.

Presented at the Proceedings of the 11th International

Conference DEXA, London, UK.

[21] Fernandez L.F., Mareno A. V. 2004. An Introduction to

UML profiles. European Journal for the Informatics

Professional, Vol. 7, 6-13.

[22] Belloir N., Barbier F. 2004. Checking a priori model of

software. Presented at the Proceedings of the

INFormatique des ORganisations et Systèmes

d’Information et de Décision INFORSID), Biarritz,

France.

http://shop.oreilly.com/product/9780596158033.do#tab_04_2
http://www.ecoop.org/
http://www.informatik.uni-trier.de/~ley/db/conf/ecoop/ecoop91.html
http://www.amazon.com/Unified-Modeling-Language-User-Guide/dp/0321267974/ref=la_B000AP85A2_1_1?s=books&ie=UTF8&qid=1446302956&sr=1-1
http://www.amazon.com/Unified-Modeling-Language-User-Guide/dp/0321267974/ref=la_B000AP85A2_1_1?s=books&ie=UTF8&qid=1446302956&sr=1-1
http://www.pacis2013.org/main/
http://www.pacis2013.org/main/
http://www.pacis2013.org/main/
http://www.amazon.com/Jonathan-Wetherbee/e/B00CID2MEO/ref=dp_byline_cont_ebooks_1
http://www.amazon.com/Chirag-Rathod/e/B00CMJZAI4/ref=dp_byline_cont_ebooks_2
http://www.amazon.com/s/ref=dp_byline_sr_ebooks_3?ie=UTF8&text=Raghu+Kodali&search-alias=digital-text&field-author=Raghu+Kodali&sort=relevancerank
http://www.amazon.com/Peter-Zadrozny/e/B00EOA9XD2/ref=dp_byline_cont_ebooks_4
http://dblp.uni-trier.de/db/conf/inforsid/inforsid2004.html#BelloirR04
http://dblp.uni-trier.de/db/conf/inforsid/inforsid2004.html#BelloirR04

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.2, February 2016

7

[23] Pastor O., Molina J. C. 2013. Model-Driven Architecture

in Practice: A Software Production Environment Based

on Conceptual Modeling. Springer.

[24] ACCORD, Projet ACCORD 2003, Modèle abstrait

d’assemblage de composants par contrats, Livrable-4.

[25] Miles R., Hamilton K. 2013, Learning UML 2.0.

 O'Reilly Media, USA.

[26] Nikunj R.M., Medidovic N., Phadke S. 2000. Towards a

Taxonomy of Software Connectors. Presented at the

Proceedings of the 22nd International Conference on

Software Engineering, Limerick, Ireland.

[27] Marcaillou S., Coulette B., Kriouile A. 1994. Visibility :

A new relationship for complex system modeling.

TOOLS, Santa Barbara, USA.

[28] Nassar M. 2003. VUML, A Viewpoint oriented UML

Extension. Presented at the Proceedings of the 18 th

IEEE International Conference on Automated Software

Engineering. Montreal, Canada.

[29] Sherpa P. 1995. Project Tropes 1.0 reference manual,

INRIA Rhônes-Alpes IMAG-LIFIA, Grenoble, France.

IJCATM : www.ijcaonline.org

http://www.amazon.com/Russ-Miles/e/B001I9W0C8/ref=dp_byline_cont_book_1
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Kim+Hamilton&search-alias=books&field-author=Kim+Hamilton&sort=relevancerank

