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ABSTRACT 

Security and trust are two inevitable concept for secure 

MANET. There are various systems used for ensuring 

security and trust in case of MANET. These systems has 

several advantages as well as several disadvantages in terms 

high communication and computation overhead. In this 

proposed trust based system, trust is evaluated on the basis of 

detection of  signal noise and after that reduction of noise as 

much as possible with the help of Alpha Beta Filter as well as 

Kalman filter once the signal is flowing from one node to 

another node. In this paper, it is also able to show that using 

Kalman filter is more advantageous than alpha beta filter for 

reducing the error due to noise. 
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1. INTRODUCTION 
Trust is one of the prime factor for decision-making processes 

of any network for which uncertainty plays very crucial role. 

If it can be predicted regarding any faulty behavior in advance 

for any network, any network becomes flawless. Out of these 

faulty behaviors, noise is one of them. Noise is detected with 

the help of common term known as “signal-noise ratio”.  

2. RELATED WORK 
In [1], nodes are created and deployed in the wireless sensor 

network. These nodes are labeled as CH or Cluster Head, CM 

or Cluster Mode and Bs or Base Station. Each CH includes 

several CMs. A lightweight trust scheme is evaluated between 

CMs or between CHs. Within each cluster, CH evaluates 

indirect trust for its CM. So, CM does not require to maintain 

feedback from other CMs which reduces the communication 

overhead. According to dependability-enhanced trust 

evaluating approach, CHs take the responsibility of large 

amount of data forwarding and communication tasks which 

reduce network consumption by preventing improper 

(malicious, selfish and faulty) CHs. In [2], wormhole attack 

affects severely the routing and byzantine attack weakens the 

routing services. To overcome these attacks, the proposed 

trust based approach evaluates the Observed Trust Value or 

OTV and Advertised Trust Value or ATV. The Observed 

Trust Value indicates to the root trust calculated by node itself 

on the basis of ROUTE_ACKNOWLEDGEMENT or 

R_ACK information. The Advertised Trust Value is 

advertised by a node which is located at downstream of 

current node. Route Selection Value or RSV is calculated with 

the Observed Trust Value and the Advertised Trust Value. 

Route Selection Value is acted as a parameter in choosing one 

of the multiple paths leading towards destination. Whatever 

the path chosen by Route Selection Value is the trusted and 

shortest path. In [3], according to Seniority Based or SB trust 

model, trust management and maintenance are distributed in 

both space(k) and time(T) domains. Thus Seniority Based 

model depicts a seniors-securing scheme to node 

authentication in MANET. In other words, the time varying 

feature of a trust relationship, while k indicates the number of 

senior nodes required to work as „Certificate Authority‟ or 

CA. In the network, there are several groups. Again each 

group consists of several nodes. The leader of the group acts 

as a „Certificate Authority‟ or CA, which issues group 

membership certificates. CAs certify that the public key in the 

certificate belongs to a group member. An entity is trusted if 

any k trusted available senior entities claim so within a 

specific time period say, T. Once a node is trusted by its 

groups, it is universally accepted as a trusted node. Otherwise, 

if the seniors distrust a node, this node is treated as 

untrustworthy in the entire network. 

3. PROPOSED SYSTEM 
 According to the proposed system, at first it has to detect 

noise of signal coming from any particular node. For this 

purpose, it has to calculate SNR or Signal to Noise Ratio. If 

this value is greater than 1, it can be easily determined that the 

node, from which the signal is coming, is trustworthy. 

Otherwise, if this Signal to Noise Ratio is less than 1, it can be 

concluded that the node is untrustworthy. At that time, two 

specific filters known as Kalman filter and alpha beta filter are 

used to minimize the effect of noise as much as possible so 

that the Signal to Noise Ratio becomes greater than 1 and the 

node obtains trustworthy status from previous untrustworthy 

status.  

4. BACKGROUND STUDY 

4.1 Noise 
Noise [4] can be generally described as, which, when 

interpreted by receiving node, delivers absurd information 

without any interest to the receiver. Noise gets added with 

signal at the time of signal transmission and produces inferior 

quality signal. Background noise is always present in spite of 

absence of useful signal. Sources of background noise are:- 

 Thermal noise 

 Intrinsic noise of the electronic devices, for 

example, shot nose 
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 Atmospheric disturbances 

 Electromagnetic interference 

Lightning and rain attenuation are two sources of atmospheric 

noise. Electromagnetic interference is caused by discharges in 

commutator motors and spark plugs of vehicles. Sources of 

thermal and shot noise are present within the 

telecommunication equipment. 

4.2 Signal to Noise Ratio 
The quality of a signal is calculated by its level with respect to 

the level of noise, which is included into the signal. It is 

termed as the ratio of signal power(Ps) to noise power(Pn) and 

is known as  the Signal-to-Noise Ratio(SNR). It is represented 

as following:-                                                             

                                S / N = Ps / Pn 

4.3 Alpha Beta Filter 
Alpha-Beta (α-β) [7] filters were employed to reduce the 

mean square error in estimating position and velocity. 

According to assumption of this filter, the velocity remains 

more or less constant over the small time period or the 

sampling rate. Thus, Alpha Beta filters have very limited 

capacity to track accelerating (changing direction) targets. 

According to this filter technique, the system is sufficiently 

approximated by a model having two internal states. The two 

states are position X and velocity V. 

Because the previous x estimate was low, the previous v was 

low, or some combination of the two, so as a result of this, it 

can be assumed that the residual r is positive. The alpha beta 

filter takes selected alpha and beta constants (from which the 

filter gets its name), uses alpha times the deviation r to correct 

the position estimate, and uses beta times the deviation r to 

correct the velocity estimate. An extra ΔT factor 

conventionally serves to normalize magnitudes of the 

multipliers. 
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T=Time; Z=Location Measurement 

 

Figure1: Alpha Beta Filter 

4.4 Kalman Filter 
 A Kalman Filter is an optimal data processing 

algorithm. 

 The Kalman Filter incorporates all information that 

can be provided to it. It estimates the current value 

of the variables of interest after processing all 

available information regardless their precision. 
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current measurements and previous parameter 
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Figure2: Kalman Filter 

5. SYSTEM DESCRIPTION 
Step 1: A structure 'AlphaBeta' is declared. Under this 

structure, the variables 'alpha'(i.e. alpha value which 

effects position x),   'beta'(i.e. beta value which effects 

velocity v), 'xk_1'(current x-estimate value) and 

'vk_1'(current v-estimate value) are declared. 

  Step 2: After that current system state(i.e. position) 'xk', 

derivative of system state(i.e. velocity) 'vk' and 

residual error 'rk' are declared. 

Step 3: Update position(estimated) state 'x' from the 

system(i.e. position = position + velocity(last).dt with 

following way, 

            xk = xk_1 + dt × vk_1 

We know, velocity= d/dt(position);   So position= dt × 

velocity 

velocity is derivative of position with respect of time 

that means dt 

Step 4: Update(estimated) velocity in following way, 

vk = vk_1 

Step 5: Calculate residual error as difference of measured 

value and estimated value of position in following 

way, 

            rk = x_measured – xk 

Step 6: Update the estimates given the residual error in 

following way, 

            xk = xk + alpha × rk 

            vk = vk + beta/dt  × rk 

Step 7: Now all current values become old values for next 

time in following way, 

            vk_1 = vk 

            xk_1 = xk 

where, vk and xk be current values of velocity and 

position respectively. vk_1 and xk_1 be old values of 

velocity and position respectively. 

+ 

+ 

+ 

+ 

Z-1 

Z-1 

 

             System  Error                                                                            

System 

Sensors Kalman 

Filter 



International Journal of Computer Applications (0975 – 8887) 

Volume 135 – No.3, February 2016 

27 

Step 8: Now one function 'frand()' is defined under which 

system random value is measured. 

Step 9: Enter the value of signal and noise. 

Step 9A: If signal value is greater than noise value, that means 

ratio between signal and noise is greater than 1, it 

can be concluded that  node or system is trustworthy 

Step 9B: Otherwise, it can be concluded that node or system is 

untrustworthy., that means system has error due to 

noise. Now go to Step 10 to reduce error using 

Alpha Beta filter by calling function 

'filterAlphaBeta()' and then go to Step 18 to reduce 

error using Kalman filter by calling function 

'Kalman()'. 

Step 10: Function 'filterAlphaBeta()' is defined. Under this 

function, the following variables are declared: 

 't' as time, 

 'x' and 'y' as ideal values under 'x' and 'y' co-ordinate  

 ''xnoise' and 'ynoise' as inserted noise values under 

'x' and 'y' co-ordinate(this noise is inserted into our 

system).Both 'xnoise' and 'ynoise' are initialized as 0 

 'merror' as error due to difference between measured 

value and ideal value 

 'ab_error' as error due to difference between value 

using Alpha Beta filter and ideal value 

Step 11: Initialize Alpha Beta filter values with respect of 'x' 

and 'y' position. 

Step 12: Indicate system's true position, as x = cos(t) and y = 

sin(t) 

Step 13: Update simulated noise in following way, 

              xnoise = xnoise + frand()× ratio × 0.01 and  ynoise = 

ynoise + frand()× ratio × 0.01 

 Here 'ratio' indicates ratio between signal value and 

noise value 

Step 14: Calculate measured position including some noise 

 xm = x + xnoise and ym = y + ynoise 

Step 15: Adjust system's filtered position by removing noise. 

Step 16: Now print following values: 

 Ideal position  

 Measured position as fabs(x - xm) and fabs(y – ym) 

 Alpha Beta position as fabs(x – ab_x.xk_1) + fabs(y 

– ab_y.xk_1) 

where fabs (a) be absolute value of 'a' 

Step 17: Update the errors as m_error = m_error + fabs(x – 

xm) + fabs(y – ym) 

                 ab_error = ab_error + fabs(x – ab_x.xk_1) + fabs(y – 

ab_y.xk_1) 

Step 18: Calculate reduction in error using Alpha Beta filter as 

100 – (int) ((ab_error / m_error) × 100) 

Step 19: Function 'Kalman ()' is defined. Under this function, 

the following variables are declared: 

 'x_est_last'  as last system's estimated value and 

initialized as 0 

 'p_last'  as system's last predicted value and 

initialized as 0 

 'Q' and 'R' as two different noise values and 

initialized as 0.022 and 0.617 respectively 

 'K' as Kalman gain 

 'p' as current predicted value 

 'p_temp' as temporary predicted value 

 'x_temp_est' as system's temporary estimated 

value 

 'x_est' as system's current estimated value 

 'z_measured' as measured noisy value 

 'z_real' as measured ideal value and initialized 

as 0.5 

Step 20: Calculate system's last estimated value as 

x_est_last  =  z_real  + frand() ×ratio  ƒ  0.09 

Here, 'ratio' indicates ratio between signal value and 

noise value. 

 Step 21: Initialize error due to ideal situation as 

sum_error_measure = 0 and error due to using 

Kalman filter as sum_error_kalman    = 0 

Step 22: Predict some measurement for some no. of loops (say 

50) in following way 

 x_temp_est  =  x_est_last       and         p_temp  =  

p_last  +  Q 

Step 23: Calculate Kalman gain as  

K =  p_temp  ƒ  (1.0  /  (p_temp  +  R)) 

Step  24: Calculate the real measurement plus noise  

as z_measured  =  z_real + frand() × ratio 

Step 25: Update the system's estimated value and predicted   

value as 

 x_est  =  x_temp_est  +  K  ×  (z_measured  –  

x_temp_est) 

              p  =  (1 – K)  ×  p_temp 

Step 26: Now print following values: 

 Ideal position 

 Measured position as fabs(z_real – z_measured) 

 Kalman position as fabs(z_real – x_est) 

Step 27: Update error values 

 sum_error_kalman = sum_error_kalman +      

fabs(z_real – x_est) 

sum_error_measure = sum_error_measure +  

fabs(z_real  - z_measured) 

Step 28: Update system's last values 

              p_last = p    and     x_est_last = x_est 
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Step 29: Calculate reduction in error using Kalman filter as    

100 – (int)((sum_error_kalman / sum_error_measure) 

× 100) 

6. PSEUDOCODE 
typedef struct {  

    float alpha; //alpha value (effects x, eg pos) 

    float beta; //beta value (effects v, eg vel) 

    float xk_1; //current x-estimate  

    float vk_1; //current v-estimate  

} AlphaBeta;  

 

  void InitializeAlphaBeta(float x_measured, float alpha, float 

beta, AlphaBeta* pab) { 

    pab->xk_1 = x_measured;  

    pab->vk_1 = 0;  

    pab->alpha = alpha;  

    pab->beta = beta;  

} 

void AlphaBetaFilter(float x_measured, float dt, AlphaBeta* 

pab) { 

    float xk_1 = pab->xk_1;  

    float vk_1 = pab->vk_1;  

    float alpha = pab->alpha;  

    float beta = pab->beta;  

     

    float xk; //current system state (ie: position) 

    float vk; //derivative of system state (ie: velocity) 

    float rk; //residual error  

      

    //update our (estimated) state 'x' from the system (ie pos = 

pos + vel (last).dt) 

    xk = xk_1 + dt * vk_1;  

    //update (estimated) velocity   

    vk = vk_1;  

    //what is our residual error (mesured - estimated)  

    rk = x_measured - xk;   

    //update our estimates given the residual error.  

    xk = xk + alpha * rk;  

    vk = vk + beta/dt * rk;  

    //finished!  

      

    //now all our "currents" become our "olds" for next time  

    pab->vk_1 = vk;  

    pab->xk_1 = xk;  

} 

 

double frand() { 

return 2*((rand()/(double)RAND_MAX) - 0.5); 

} 

float filterAlphaBeta(float ratio) { 

    AlphaBeta ab_x;  

    AlphaBeta ab_y;  

    double t; //time  

    double x,y; //ideal x-y coordinates  

    double xm,ym; //measured x-y coordinates  

    double xnoise = 0; //noise we are inserting into our system 

    double ynoise = 0;  

    double m_error = 0; //total error (measured vs ideal) 

    double ab_error = 0; //total error (ab filter vs ideal) 

#define DT 0.1 

    //intialize the AB filters  

    InitializeAlphaBeta(1,0.85,0.001,&ab_x); //x position 

    InitializeAlphaBeta(0,1.27,0.009,&ab_y); //y position 

    srand(0);  

 

    for (t = 0; t < 4; t+=DT) { 

        //our 'true' position (A circle)  

        x = cos(t);  

        y = sin(t);  

        //update our simulated noise & drift  

    xnoise += frand()*ratio*0.01; 

    ynoise += frand()*ratio*0.01; 

        //our 'measured' position (has some noise)  

        xm = x + xnoise;  

        ym = y + ynoise;  

        //our 'filtered' position (removes some noise)  

        AlphaBetaFilter(xm,DT, &ab_x);  

        AlphaBetaFilter(ym,DT, &ab_y);  

          

        //print   

        printf("Ideal     position: %6.3f %6.3f\n",x,y);  

        printf("Mesaured  position: %6.3f %6.3f 

[diff:%.3f]\n",xm,ym,fabs(x-xm) + fabs(y-ym));  

        printf("AlphaBeta position: %6.3f %6.3f 

[diff:%.3f]\n",ab_x.xk_1,ab_y.xk_1,fabs(x-ab_x.xk_1) + 

fabs(y-ab_y.xk_1));  

          

        //update error sum (for statistics only)  

        m_error += fabs(x-xm) + fabs(y-ym);  

        ab_error += fabs(x-ab_x.xk_1) + fabs(y-ab_y.xk_1);  

    }  

    printf("Total error if using raw measured: %f\n",m_error); 

    printf("Total error if using a-b filter:   %f\n",ab_error);  

  printf("Reduction in error: %d%% \n",100-

(int)((ab_error/m_error)*100)); 

    return 0;  

} 

float Kalman(float ratio) { 

 

//initial values for the kalman filter 

float x_est_last = 0; 

float P_last = 0; 

//the noise in the system 

float Q = 0.022; 

float R = 0.617; 

float K; 

float P; 

float P_temp; 

float x_temp_est; 

float x_est; 

float z_measured; //the 'noisy' value we measured 

float z_real = 0.5; //the ideal value we wish to measure 

srand(0); 

//initialize with a measurement 

x_est_last = z_real + frand()*ratio*0.09; //frand()*0.09; 

 

float sum_error_kalman = 0; 

float sum_error_measure = 0; 

 

for (int i=0;i<50;i++) { 

//do a prediction 

x_temp_est = x_est_last; 

P_temp = P_last + Q; 

//calculate the Kalman gain 

K = P_temp * (1.0/(P_temp + R)); 

//measure 

z_measured = z_real + frand()*ratio;//frand()*0.09; //the real 

measurement plus noise 

//correct 

x_est = x_temp_est + K * (z_measured - x_temp_est); 
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P = (1- K) * P_temp; 

//we have our new system 

 

printf("Ideal    position: %6.3f \n", 

printf("Mesaured position: %6.3f 

[diff:%.3f]\n",z_measured,fabs(z_real-z_measured))); 

printf("Kalman   position: %6.3f 

[diff:%.3f]\n",x_est,fabs(z_real - x_est)); 

 

sum_error_kalman += fabs(z_real - x_est); 

sum_error_measure += fabs(z_real-z_measured); 

 

//update our last's 

P_last = P; 

x_est_last = x_est; 

} 

 

printf("Total error if using raw measured:  

%f\n",sum_error_measure); 

printf("Total error if using kalman filter: 

%f\n",sum_error_kalman); 

printf("Reduction in error: %d%% \n",100-

(int)((sum_error_kalman/sum_error_measure)*100)); 

 

return 0; 

} 

………….. 

int main() { 

int signal,noise; 

float ratio; 

float Kalman(float ); 

float filterAlphaBeta(float ); 

 

printf("Enter the value of signal(in decibel)"); 

scanf("%d",&signal); 

printf("Enter the value of noise(in decibel)"); 

scanf("%d",&noise); 

 

ratio=(float)signal/(float)noise; 

 

if(ratio>=1.00) 

{ 

printf("The Node is Trustworthy"); 

} 

else 

{ printf("The Node is Untrustworthy\n\n"); 

printf("Now use Alpha Beta Filter to Reduce Error due to 

Noise\n\n" ); 

filterAlphaBeta(ratio); 

printf("Now use Kalman Filter to Reduce Error due to 

Noise\n\n" ); 

Kalman(ratio); 

} 

return 0; 

} 

7. STRENGTH OF ALGORITHM 
In the first time, it can be able to highlight signal noise as an 

indicator with respect of trust evaluation scheme. 

 So it can be able to filter out the noise as much as 

possible so that a node becomes trustworthy. 

 In this paper, it can be also able to highlight the 

comparative analysis between Kalman filter and 

alpha beta filter on the basis of error reduction due 

to signal noise. 

Following are the results based on some random input. 

 

Figure3: Input value II 

 

Figure4: Untrustworthy Node on Input Value II (Alpha 

Beta) 

 

Figure5: Untrustworthy Node on Input Value II (Kalman) 

 

Figure6: Trustworthy Node on Input Value I 
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Figure7: Comparative Analysis between Alpha Beta filter 

and Kalman filter; N-Noise, S-Signal 

Table1: Table for comparative analysis between Alpha 

Beta filter and Kalman filter performance 

Noise value 

in decibel 

Signal 

value in 

decibel 

Error 

reduction by 

Alpha Beta 

filter in % 

Error 

reduction by 

Kalman 

filter in % 

12 5 1.527961 64.781996 

240 70 3.042935 64.781997 

2000 400 4.335037 64.781995 

45 23 2.198511 64.782003 

123 89 7.061170 38.376505 

8. CONCLUSION 
In this proposed system, problem has arisen due to performing 

too much computation. So computational overhead plays 

crucial role in this proposed  system. 

In future, our aim will be to try to minimize this 

computational load as much as possible. 

9. FUTURE SCOPE 
In future, the main aim should be to minimize the above  

massive computational overhead. 

For getting better performance, the experiment should be 

performed  regarding comparative analysis between Kalman 

filter and Weiner filter because the main importance of 

Weiner filter is to minimize amount of a noise in a signal with 

the help of comparing by estimating the desired noise signal. 

10. REFERENCES 
[1] S. Jeyantha Jafina Juliet Jacquet ,  M. Varghese “ Role 

Based and Energy Efficient Trust System for Clustered 

Wsn.” IOSR Journal of Computer Engineering, Volume 

16, Issue 2, Ver. 1(Mar-Apr. 2014), pp 44-48.  

[2] Abhijit Das, Soumya Sankar Basu, Atal Chaudhuri, “ A 

Novel Security Scheme for Wireless Adhoc Network”.   

[3] Abhijit Das, Atiqur Rahman, Soumya Sankar Basu, Atal 

Chaudhuri, “Energy Aware Topology Security Scheme  

for Mobile Ad Hoc Network” .    

[4] Jashanvir Kaur, Er. Sukhwinder Singh Sran, “SBPGP 

Security based Model in Large Scale Manets” 

International Journal of Wireless Networks and 

Communications, Volume 5, Number 1(2013), pp 1-10 . 

[5] Eli Brookner, "Tracking and Kalman Filtering Made 

Easy," Wiley-Interscience, April 1998      

[6] Mayiatis, D. E., "Comparison of an Alpha-Beta and 

Kalman Filter in Track While Scan Radars," NAVAL 

POSTGRADUATE SCHOOL                    MONTEREY 

CA, Diplomarbeit, 1976. http://www.stealthskater.com/ 

Documents/Radar_02.pdf [21 March, 2013]  

[7] Wikipedia, “Alpha beta filter,” 6 February 2013. 

[Online]. Available: 

http://en.wikipedia.org/wiki/Alpha_beta_filter 

[8] Nidh Mittal, Janish “ Performance Evaluation of AODV 

and DSDV  under Seniority based Pretty Good Privacy 

Model ” International Journal of Scientific and 

Engineering Research, Volume 4, Issue 6, June 2013, pp  

943-949.  

[9] Prakash C. Gupta “Data Communications “  Publisher-

Prentice Hall of India, Version May 1999, pp-59.    

[10] John Davies ” Use of  Kalman filters in time and 

frequency analysis .” National Physical Laboratory, 1st 

May, 2011.  

[11] Welch, G and Bishop, “An Introduction to the Kalman 

Filter .” http://www.cs.unc.edu/~welch/kalman/, 2001 

 

0

10

20

30

40

50

60

70

Alpha Beta

Kalman

IJCATM : www.ijcaonline.org 


