
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

25

Trust based Evaluation System using Signal Noise

Detection for MANET and Noise Reduction by

Comparative Analysis between Alpha Beta Filter and

Kalman Filter

Jayanta Das
SSVASM

7/2A PWD Road
Kolkata – 35, WB, India

Abhijit Das
RCCIIT

Canal South Road, Beliaghata
Kolkata – 15, WB, India

ABSTRACT

Security and trust are two inevitable concept for secure

MANET. There are various systems used for ensuring

security and trust in case of MANET. These systems has

several advantages as well as several disadvantages in terms

high communication and computation overhead. In this

proposed trust based system, trust is evaluated on the basis of

detection of signal noise and after that reduction of noise as

much as possible with the help of Alpha Beta Filter as well as

Kalman filter once the signal is flowing from one node to

another node. In this paper, it is also able to show that using

Kalman filter is more advantageous than alpha beta filter for

reducing the error due to noise.

General Terms

Mobile Communication, Security, Algorithms.

Keywords

Alpha Beta Filter, MANET, Kalman Filter, Security, signal

Noise, Trust

1. INTRODUCTION
Trust is one of the prime factor for decision-making processes

of any network for which uncertainty plays very crucial role.

If it can be predicted regarding any faulty behavior in advance

for any network, any network becomes flawless. Out of these

faulty behaviors, noise is one of them. Noise is detected with

the help of common term known as “signal-noise ratio”.

2. RELATED WORK
In [1], nodes are created and deployed in the wireless sensor

network. These nodes are labeled as CH or Cluster Head, CM

or Cluster Mode and Bs or Base Station. Each CH includes

several CMs. A lightweight trust scheme is evaluated between

CMs or between CHs. Within each cluster, CH evaluates

indirect trust for its CM. So, CM does not require to maintain

feedback from other CMs which reduces the communication

overhead. According to dependability-enhanced trust

evaluating approach, CHs take the responsibility of large

amount of data forwarding and communication tasks which

reduce network consumption by preventing improper

(malicious, selfish and faulty) CHs. In [2], wormhole attack

affects severely the routing and byzantine attack weakens the

routing services. To overcome these attacks, the proposed

trust based approach evaluates the Observed Trust Value or

OTV and Advertised Trust Value or ATV. The Observed

Trust Value indicates to the root trust calculated by node itself

on the basis of ROUTE_ACKNOWLEDGEMENT or

R_ACK information. The Advertised Trust Value is

advertised by a node which is located at downstream of

current node. Route Selection Value or RSV is calculated with

the Observed Trust Value and the Advertised Trust Value.

Route Selection Value is acted as a parameter in choosing one

of the multiple paths leading towards destination. Whatever

the path chosen by Route Selection Value is the trusted and

shortest path. In [3], according to Seniority Based or SB trust

model, trust management and maintenance are distributed in

both space(k) and time(T) domains. Thus Seniority Based

model depicts a seniors-securing scheme to node

authentication in MANET. In other words, the time varying

feature of a trust relationship, while k indicates the number of

senior nodes required to work as „Certificate Authority‟ or

CA. In the network, there are several groups. Again each

group consists of several nodes. The leader of the group acts

as a „Certificate Authority‟ or CA, which issues group

membership certificates. CAs certify that the public key in the

certificate belongs to a group member. An entity is trusted if

any k trusted available senior entities claim so within a

specific time period say, T. Once a node is trusted by its

groups, it is universally accepted as a trusted node. Otherwise,

if the seniors distrust a node, this node is treated as

untrustworthy in the entire network.

3. PROPOSED SYSTEM
 According to the proposed system, at first it has to detect

noise of signal coming from any particular node. For this

purpose, it has to calculate SNR or Signal to Noise Ratio. If

this value is greater than 1, it can be easily determined that the

node, from which the signal is coming, is trustworthy.

Otherwise, if this Signal to Noise Ratio is less than 1, it can be

concluded that the node is untrustworthy. At that time, two

specific filters known as Kalman filter and alpha beta filter are

used to minimize the effect of noise as much as possible so

that the Signal to Noise Ratio becomes greater than 1 and the

node obtains trustworthy status from previous untrustworthy

status.

4. BACKGROUND STUDY

4.1 Noise
Noise [4] can be generally described as, which, when

interpreted by receiving node, delivers absurd information

without any interest to the receiver. Noise gets added with

signal at the time of signal transmission and produces inferior

quality signal. Background noise is always present in spite of

absence of useful signal. Sources of background noise are:-

 Thermal noise

 Intrinsic noise of the electronic devices, for

example, shot nose

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

26

 Atmospheric disturbances

 Electromagnetic interference

Lightning and rain attenuation are two sources of atmospheric

noise. Electromagnetic interference is caused by discharges in

commutator motors and spark plugs of vehicles. Sources of

thermal and shot noise are present within the

telecommunication equipment.

4.2 Signal to Noise Ratio
The quality of a signal is calculated by its level with respect to

the level of noise, which is included into the signal. It is

termed as the ratio of signal power(Ps) to noise power(Pn) and

is known as the Signal-to-Noise Ratio(SNR). It is represented

as following:-

 S / N = Ps / Pn

4.3 Alpha Beta Filter
Alpha-Beta (α-β) [7] filters were employed to reduce the

mean square error in estimating position and velocity.

According to assumption of this filter, the velocity remains

more or less constant over the small time period or the

sampling rate. Thus, Alpha Beta filters have very limited

capacity to track accelerating (changing direction) targets.

According to this filter technique, the system is sufficiently

approximated by a model having two internal states. The two

states are position X and velocity V.

Because the previous x estimate was low, the previous v was

low, or some combination of the two, so as a result of this, it

can be assumed that the residual r is positive. The alpha beta

filter takes selected alpha and beta constants (from which the

filter gets its name), uses alpha times the deviation r to correct

the position estimate, and uses beta times the deviation r to

correct the velocity estimate. An extra ΔT factor

conventionally serves to normalize magnitudes of the

multipliers.

Location

 Alpha

Predicted Location

 Beta/T

T=Time; Z=Location Measurement

Figure1: Alpha Beta Filter

4.4 Kalman Filter
 A Kalman Filter is an optimal data processing

algorithm.

 The Kalman Filter incorporates all information that

can be provided to it. It estimates the current value

of the variables of interest after processing all

available information regardless their precision.

 For Provides current parameters‟ estimation using

current measurements and previous parameter

estimates

 Should provide a close to optimal estimate if the

physical situation is matched the models used in

filter

 SSdsdffd

 Controls

Figure2: Kalman Filter

5. SYSTEM DESCRIPTION
Step 1: A structure 'AlphaBeta' is declared. Under this

structure, the variables 'alpha'(i.e. alpha value which

effects position x), 'beta'(i.e. beta value which effects

velocity v), 'xk_1'(current x-estimate value) and

'vk_1'(current v-estimate value) are declared.

 Step 2: After that current system state(i.e. position) 'xk',

derivative of system state(i.e. velocity) 'vk' and

residual error 'rk' are declared.

Step 3: Update position(estimated) state 'x' from the

system(i.e. position = position + velocity(last).dt with

following way,

 xk = xk_1 + dt × vk_1

We know, velocity= d/dt(position); So position= dt ×

velocity

velocity is derivative of position with respect of time

that means dt

Step 4: Update(estimated) velocity in following way,

vk = vk_1

Step 5: Calculate residual error as difference of measured

value and estimated value of position in following

way,

 rk = x_measured – xk

Step 6: Update the estimates given the residual error in

following way,

 xk = xk + alpha × rk

 vk = vk + beta/dt × rk

Step 7: Now all current values become old values for next

time in following way,

 vk_1 = vk

 xk_1 = xk

where, vk and xk be current values of velocity and

position respectively. vk_1 and xk_1 be old values of

velocity and position respectively.

+

+

+

+

Z-1

Z-1

 System Error

System

Sensors Kalman

Filter

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

27

Step 8: Now one function 'frand()' is defined under which

system random value is measured.

Step 9: Enter the value of signal and noise.

Step 9A: If signal value is greater than noise value, that means

ratio between signal and noise is greater than 1, it

can be concluded that node or system is trustworthy

Step 9B: Otherwise, it can be concluded that node or system is

untrustworthy., that means system has error due to

noise. Now go to Step 10 to reduce error using

Alpha Beta filter by calling function

'filterAlphaBeta()' and then go to Step 18 to reduce

error using Kalman filter by calling function

'Kalman()'.

Step 10: Function 'filterAlphaBeta()' is defined. Under this

function, the following variables are declared:

 't' as time,

 'x' and 'y' as ideal values under 'x' and 'y' co-ordinate

 ''xnoise' and 'ynoise' as inserted noise values under

'x' and 'y' co-ordinate(this noise is inserted into our

system).Both 'xnoise' and 'ynoise' are initialized as 0

 'merror' as error due to difference between measured

value and ideal value

 'ab_error' as error due to difference between value

using Alpha Beta filter and ideal value

Step 11: Initialize Alpha Beta filter values with respect of 'x'

and 'y' position.

Step 12: Indicate system's true position, as x = cos(t) and y =

sin(t)

Step 13: Update simulated noise in following way,

 xnoise = xnoise + frand()× ratio × 0.01 and ynoise =

ynoise + frand()× ratio × 0.01

 Here 'ratio' indicates ratio between signal value and

noise value

Step 14: Calculate measured position including some noise

 xm = x + xnoise and ym = y + ynoise

Step 15: Adjust system's filtered position by removing noise.

Step 16: Now print following values:

 Ideal position

 Measured position as fabs(x - xm) and fabs(y – ym)

 Alpha Beta position as fabs(x – ab_x.xk_1) + fabs(y

– ab_y.xk_1)

where fabs (a) be absolute value of 'a'

Step 17: Update the errors as m_error = m_error + fabs(x –

xm) + fabs(y – ym)

 ab_error = ab_error + fabs(x – ab_x.xk_1) + fabs(y –

ab_y.xk_1)

Step 18: Calculate reduction in error using Alpha Beta filter as

100 – (int) ((ab_error / m_error) × 100)

Step 19: Function 'Kalman ()' is defined. Under this function,

the following variables are declared:

 'x_est_last' as last system's estimated value and

initialized as 0

 'p_last' as system's last predicted value and

initialized as 0

 'Q' and 'R' as two different noise values and

initialized as 0.022 and 0.617 respectively

 'K' as Kalman gain

 'p' as current predicted value

 'p_temp' as temporary predicted value

 'x_temp_est' as system's temporary estimated

value

 'x_est' as system's current estimated value

 'z_measured' as measured noisy value

 'z_real' as measured ideal value and initialized

as 0.5

Step 20: Calculate system's last estimated value as

x_est_last = z_real + frand() ×ratio ƒ 0.09

Here, 'ratio' indicates ratio between signal value and

noise value.

 Step 21: Initialize error due to ideal situation as

sum_error_measure = 0 and error due to using

Kalman filter as sum_error_kalman = 0

Step 22: Predict some measurement for some no. of loops (say

50) in following way

 x_temp_est = x_est_last and p_temp =

p_last + Q

Step 23: Calculate Kalman gain as

K = p_temp ƒ (1.0 / (p_temp + R))

Step 24: Calculate the real measurement plus noise

as z_measured = z_real + frand() × ratio

Step 25: Update the system's estimated value and predicted

value as

 x_est = x_temp_est + K × (z_measured –

x_temp_est)

 p = (1 – K) × p_temp

Step 26: Now print following values:

 Ideal position

 Measured position as fabs(z_real – z_measured)

 Kalman position as fabs(z_real – x_est)

Step 27: Update error values

 sum_error_kalman = sum_error_kalman +

fabs(z_real – x_est)

sum_error_measure = sum_error_measure +

fabs(z_real - z_measured)

Step 28: Update system's last values

 p_last = p and x_est_last = x_est

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

28

Step 29: Calculate reduction in error using Kalman filter as

100 – (int)((sum_error_kalman / sum_error_measure)

× 100)

6. PSEUDOCODE
typedef struct {

 float alpha; //alpha value (effects x, eg pos)

 float beta; //beta value (effects v, eg vel)

 float xk_1; //current x-estimate

 float vk_1; //current v-estimate

} AlphaBeta;

 void InitializeAlphaBeta(float x_measured, float alpha, float

beta, AlphaBeta* pab) {

 pab->xk_1 = x_measured;

 pab->vk_1 = 0;

 pab->alpha = alpha;

 pab->beta = beta;

}

void AlphaBetaFilter(float x_measured, float dt, AlphaBeta*

pab) {

 float xk_1 = pab->xk_1;

 float vk_1 = pab->vk_1;

 float alpha = pab->alpha;

 float beta = pab->beta;

 float xk; //current system state (ie: position)

 float vk; //derivative of system state (ie: velocity)

 float rk; //residual error

 //update our (estimated) state 'x' from the system (ie pos =

pos + vel (last).dt)

 xk = xk_1 + dt * vk_1;

 //update (estimated) velocity

 vk = vk_1;

 //what is our residual error (mesured - estimated)

 rk = x_measured - xk;

 //update our estimates given the residual error.

 xk = xk + alpha * rk;

 vk = vk + beta/dt * rk;

 //finished!

 //now all our "currents" become our "olds" for next time

 pab->vk_1 = vk;

 pab->xk_1 = xk;

}

double frand() {

return 2*((rand()/(double)RAND_MAX) - 0.5);

}

float filterAlphaBeta(float ratio) {

 AlphaBeta ab_x;

 AlphaBeta ab_y;

 double t; //time

 double x,y; //ideal x-y coordinates

 double xm,ym; //measured x-y coordinates

 double xnoise = 0; //noise we are inserting into our system

 double ynoise = 0;

 double m_error = 0; //total error (measured vs ideal)

 double ab_error = 0; //total error (ab filter vs ideal)

#define DT 0.1

 //intialize the AB filters

 InitializeAlphaBeta(1,0.85,0.001,&ab_x); //x position

 InitializeAlphaBeta(0,1.27,0.009,&ab_y); //y position

 srand(0);

 for (t = 0; t < 4; t+=DT) {

 //our 'true' position (A circle)

 x = cos(t);

 y = sin(t);

 //update our simulated noise & drift

 xnoise += frand()*ratio*0.01;

 ynoise += frand()*ratio*0.01;

 //our 'measured' position (has some noise)

 xm = x + xnoise;

 ym = y + ynoise;

 //our 'filtered' position (removes some noise)

 AlphaBetaFilter(xm,DT, &ab_x);

 AlphaBetaFilter(ym,DT, &ab_y);

 //print

 printf("Ideal position: %6.3f %6.3f\n",x,y);

 printf("Mesaured position: %6.3f %6.3f

[diff:%.3f]\n",xm,ym,fabs(x-xm) + fabs(y-ym));

 printf("AlphaBeta position: %6.3f %6.3f

[diff:%.3f]\n",ab_x.xk_1,ab_y.xk_1,fabs(x-ab_x.xk_1) +

fabs(y-ab_y.xk_1));

 //update error sum (for statistics only)

 m_error += fabs(x-xm) + fabs(y-ym);

 ab_error += fabs(x-ab_x.xk_1) + fabs(y-ab_y.xk_1);

 }

 printf("Total error if using raw measured: %f\n",m_error);

 printf("Total error if using a-b filter: %f\n",ab_error);

 printf("Reduction in error: %d%% \n",100-

(int)((ab_error/m_error)*100));

 return 0;

}

float Kalman(float ratio) {

//initial values for the kalman filter

float x_est_last = 0;

float P_last = 0;

//the noise in the system

float Q = 0.022;

float R = 0.617;

float K;

float P;

float P_temp;

float x_temp_est;

float x_est;

float z_measured; //the 'noisy' value we measured

float z_real = 0.5; //the ideal value we wish to measure

srand(0);

//initialize with a measurement

x_est_last = z_real + frand()*ratio*0.09; //frand()*0.09;

float sum_error_kalman = 0;

float sum_error_measure = 0;

for (int i=0;i<50;i++) {

//do a prediction

x_temp_est = x_est_last;

P_temp = P_last + Q;

//calculate the Kalman gain

K = P_temp * (1.0/(P_temp + R));

//measure

z_measured = z_real + frand()*ratio;//frand()*0.09; //the real

measurement plus noise

//correct

x_est = x_temp_est + K * (z_measured - x_temp_est);

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

29

P = (1- K) * P_temp;

//we have our new system

printf("Ideal position: %6.3f \n",

printf("Mesaured position: %6.3f

[diff:%.3f]\n",z_measured,fabs(z_real-z_measured)));

printf("Kalman position: %6.3f

[diff:%.3f]\n",x_est,fabs(z_real - x_est));

sum_error_kalman += fabs(z_real - x_est);

sum_error_measure += fabs(z_real-z_measured);

//update our last's

P_last = P;

x_est_last = x_est;

}

printf("Total error if using raw measured:

%f\n",sum_error_measure);

printf("Total error if using kalman filter:

%f\n",sum_error_kalman);

printf("Reduction in error: %d%% \n",100-

(int)((sum_error_kalman/sum_error_measure)*100));

return 0;

}

…………..

int main() {

int signal,noise;

float ratio;

float Kalman(float);

float filterAlphaBeta(float);

printf("Enter the value of signal(in decibel)");

scanf("%d",&signal);

printf("Enter the value of noise(in decibel)");

scanf("%d",&noise);

ratio=(float)signal/(float)noise;

if(ratio>=1.00)

{

printf("The Node is Trustworthy");

}

else

{ printf("The Node is Untrustworthy\n\n");

printf("Now use Alpha Beta Filter to Reduce Error due to

Noise\n\n");

filterAlphaBeta(ratio);

printf("Now use Kalman Filter to Reduce Error due to

Noise\n\n");

Kalman(ratio);

}

return 0;

}

7. STRENGTH OF ALGORITHM
In the first time, it can be able to highlight signal noise as an

indicator with respect of trust evaluation scheme.

 So it can be able to filter out the noise as much as

possible so that a node becomes trustworthy.

 In this paper, it can be also able to highlight the

comparative analysis between Kalman filter and

alpha beta filter on the basis of error reduction due

to signal noise.

Following are the results based on some random input.

Figure3: Input value II

Figure4: Untrustworthy Node on Input Value II (Alpha

Beta)

Figure5: Untrustworthy Node on Input Value II (Kalman)

Figure6: Trustworthy Node on Input Value I

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.3, February 2016

30

Figure7: Comparative Analysis between Alpha Beta filter

and Kalman filter; N-Noise, S-Signal

Table1: Table for comparative analysis between Alpha

Beta filter and Kalman filter performance

Noise value

in decibel

Signal

value in

decibel

Error

reduction by

Alpha Beta

filter in %

Error

reduction by

Kalman

filter in %

12 5 1.527961 64.781996

240 70 3.042935 64.781997

2000 400 4.335037 64.781995

45 23 2.198511 64.782003

123 89 7.061170 38.376505

8. CONCLUSION
In this proposed system, problem has arisen due to performing

too much computation. So computational overhead plays

crucial role in this proposed system.

In future, our aim will be to try to minimize this

computational load as much as possible.

9. FUTURE SCOPE
In future, the main aim should be to minimize the above

massive computational overhead.

For getting better performance, the experiment should be

performed regarding comparative analysis between Kalman

filter and Weiner filter because the main importance of

Weiner filter is to minimize amount of a noise in a signal with

the help of comparing by estimating the desired noise signal.

10. REFERENCES
[1] S. Jeyantha Jafina Juliet Jacquet , M. Varghese “ Role

Based and Energy Efficient Trust System for Clustered

Wsn.” IOSR Journal of Computer Engineering, Volume

16, Issue 2, Ver. 1(Mar-Apr. 2014), pp 44-48.

[2] Abhijit Das, Soumya Sankar Basu, Atal Chaudhuri, “ A

Novel Security Scheme for Wireless Adhoc Network”.

[3] Abhijit Das, Atiqur Rahman, Soumya Sankar Basu, Atal

Chaudhuri, “Energy Aware Topology Security Scheme

for Mobile Ad Hoc Network” .

[4] Jashanvir Kaur, Er. Sukhwinder Singh Sran, “SBPGP

Security based Model in Large Scale Manets”

International Journal of Wireless Networks and

Communications, Volume 5, Number 1(2013), pp 1-10 .

[5] Eli Brookner, "Tracking and Kalman Filtering Made

Easy," Wiley-Interscience, April 1998

[6] Mayiatis, D. E., "Comparison of an Alpha-Beta and

Kalman Filter in Track While Scan Radars," NAVAL

POSTGRADUATE SCHOOL MONTEREY

CA, Diplomarbeit, 1976. http://www.stealthskater.com/

Documents/Radar_02.pdf [21 March, 2013]

[7] Wikipedia, “Alpha beta filter,” 6 February 2013.

[Online]. Available:

http://en.wikipedia.org/wiki/Alpha_beta_filter

[8] Nidh Mittal, Janish “ Performance Evaluation of AODV

and DSDV under Seniority based Pretty Good Privacy

Model ” International Journal of Scientific and

Engineering Research, Volume 4, Issue 6, June 2013, pp

943-949.

[9] Prakash C. Gupta “Data Communications “ Publisher-

Prentice Hall of India, Version May 1999, pp-59.

[10] John Davies ” Use of Kalman filters in time and

frequency analysis .” National Physical Laboratory, 1st

May, 2011.

[11] Welch, G and Bishop, “An Introduction to the Kalman

Filter .” http://www.cs.unc.edu/~welch/kalman/, 2001

0

10

20

30

40

50

60

70

Alpha Beta

Kalman

IJCATM : www.ijcaonline.org

