
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.4, February 2016

33

Design Pattern Detection using Genetic Algorithm

for Sub-graph Isomorphism to Enhance Software

Reusability

Arti Chaturvedi
School of studies in

 Computer Science and
Applications,

 Jiwaji University, Gwalior
(M.P.)

Manjari Gupta
Department of Computer

Science,
 Faculty of Science,

 Banaras Hindu University,
 Varanasi (U.P.)

Sanjay Kumar Gupta
School of studies in

 Computer Science and
Applications,

 Jiwaji University, Gwalior
(M.P.)

ABSTRACT

 Design patterns have been proposed as a technique to

introduce reuse in design phase. In industry, it is focused to

reuse design patterns as a reusable part when designing a new

application. Reusable Design Pattern, that are proven

solutions to common design problems, to improves many

qualities of applications like Reusability and its

maintainability. If better reusability is required for an

application where design patterns were used, then an

automated tool that can detect the used design pattern in the

application will be useful. Therefore, a reliable design pattern

discovery is required to promote software reusability. The

techniques of finding an isomorphic sub-graph were used to

solve design pattern detection in past. Furthermore, we are

applying a hybrid genetic algorithm for sub-graph

isomorphism problem which uses an incremental approach to

detect design patterns. Moreover, detection is done with

increasing the size of sub-problem step by step. A hybrid GA

is applied to each sub-problem, initialized with the evolved

population of previous step. This proposed work of

identifying and then later reusing of design pattern facilitate to

bring software design in reduced time and consequently

expedite software reusability.

General Terms

Software reusability, Graph representation, Algorithm.

Keywords

Design pattern, UML diagram, sub-graph isomorphism,

genetic algorithm, incremental genetic algorithm.

1. INTRODUCTION
Now a day, software enters deep into our daily life .Therefore,

large and complex applications have greater market demand

for such kind of software development paradigms which

improve the quality and productivity of software

development. There are many possibilities exist in software

reuse that make software development cheaper, easier,

efficient and also lead to appropriate solution of the problem

to quickly cater the market need of software development.

Reuse is considered as main benchmark in software

development to include quality characteristics in lesser

development time. In many ways, reuse is implemented in

software development. Design pattern, library files, classes,

software component, modules, architectural style are the

important techniques used to practice reuse in software

development. Design pattern is one among many techniques

to facilitate reuse to provide complete and more efficient

solution of repeated problem during design of software

development.

The main idea behind a good programming language is the

concept of transformation of modules. If a program is written

as a collection of many modules then it would be easy to

understand and maintain it. Gamma et al [1] had given the

birth of design patterns that can be treated as modules of a

design. Now, one has an idea about design patterns and if they

are used in a design of an application it would be easy to

understand and reuse it in large context of various

applications.

Work of detection design pattern from the existing design

pattern repository will provide support to reuse design part

multiple times if once design effectively. This may save large

amount of time and effort incurred to redesign as solution

same thing in many places in software development paradigm

by the designers, developers and maintainers. Thus, this way

of work makes software development paradigm simple and

also easier to control complexity in new application.

2. RELATIONSHIP GRAPHS

REPRESENTATION
UML diagram of system design as well as design pattern is

converted into graphs. Classes of UML class diagram are

represented as nodes and relationships among classes by

edges. Each node and edge is labeled. The label of each node

is abstract or concrete or concrete sub-class. Thus,
represent it by three tuple (t1, t2, t3) where t1=1 if it is an

abstract class, t2=1 if it is a concrete subclass, and t3=1 if it is

a concrete class, otherwise 0. It can be modified to include

more other attributes of a class. In this initial effort, we are

considering only these labels of class. Each edge is

corresponding to one of the relationships. We assign label 1

for dependency, 2 for generalization, 3 for direct association,

and 4 for aggregation. For the system design represented by

the UML diagram shown in figure 1, the corresponding graph

(MG) is extracted and shown in figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.4, February 2016

34

Fig 1 : UML diagram of system design

Fig 2 : Model Graph (MG) corresponding to system design

Similarly the class diagram and corresponding design pattern

graphs (DPG) are shown in figure 3 and figure 4 for strategy

and command design patterns respectively.

Fig 3: Strategy design pattern and its corresponding graph

(DPG)

Fig 4: Command design pattern and its corresponding

graph (DPG)

3. GRAPH MATCHING ALGORITHM
In this section first will describe how the design pattern

detection issue can be solved by extending the solution of its

sub-problem. Since, we are considering the evolutionary

version of this problem; each sub-problem will have multiple

possible solutions. Some of them will be extendable to the

solution at the next level sub-problem and some are not.

3.1 Chromosome Structure
 Each chromosome represents a particular mapping from sub-

graph of G1 to sub-graph of G2. One of the chromosomes that

give the mapping of G1 to a sub-graph of G2 will be the

solution of the design patterns detection. Our technique uses a

two dimensional array for a chromosome. And population is

represented by three dimensional arrays for Cr. First index

gives the lth chromosome number, second index gives the

vertex of graph G1 and third index gives the vertex of graph

G2. For example, lth chromosome gives the following

matching as shown below:

Chromosome: Cr[l][1][1]=1 & Cr[l][1][2]=b, Cr[l][2][1]=3 &

Cr[l][2][2]=a and Cr[l][3][1]=2 & Cr[l][3][2]=c

3.2 Fitness Function
At first level, to check matching between a two vertex (vi, vi‘)

use the following fitness function fi that computes the

dissimilarity between vertex vi of design pattern graph and the

vertex vi‘ of model graph:

fi = | label of vi- label of vi‘ | + | label of incoming edges of vi-

label of incoming edges of vi‘| + |label of outgoing edges of

vi- label of outgoing edges of vi‘|.

One can enhance this fitness function fi considering number of

predecessors, number of successors, in-degree and out degree

of nodes vi and vi‘. At the next level, define the fitness

function g that computes the dissimilarity of sub-graph of G1

(G1‘) with sub-graph of G2 (G2‘) where Chromosome at this

level represents a mapping of vertices of G1‘ to vertices of

G2‘.

gi = gi-1 + fi + |label of edges from vi to all nodes that have

been previously included in G1‘ – labels of edges from vi‘ to

all corresponding nodes that have been previously included in

G2‘|.

3.3 Crossover
Here, uses the two-point crossover with a repair function since

after two-point crossover , may get an offspring (lth

individual) that may have Cr[l][i][1]= Cr[l][j][1]= a (say) i.e.

mapping node ‗a‘ twice or more. To repair this chromosome,

change the repeated nodes in any chromosome with some

other node that is not included in that chromosome. For

example if Cr[l][i][1]=6 and Cr[l][j][1]=6 and Cr[l][k][1]=6

then will leave Cr[l][i][1]=6 as unchanged but Cr[l][j][1]=6

and Cr[l][k][1]=6 will change and get some other node

number like 4 and 9 respectively, where node number 4 and 9

have not been assigned in any Cr[l][m][1] for any 1<=m<=n.

3.4 Mutation
We use exchange mutation with standard probability.

The standard mutation frequency, defined as the probability of

applying the mutation operator on a ga-gene, is 0.001. For

example, to mutate the lth chromosome one can exchange any

two nodes Cr[l][i][1] and Cr[l][j][2] and thus interchange the

mapping of these two nodes.

3.5 Algorithm Description
Given two graphs, design pattern graph G1 = (V1, E1, u1, v1)

and model graph G2 = (V2, E2, u2, v2), where V1, V2 are set of

nodes, E1, E2, are set of edges, u1, u2 are functions assigning

labels to nodes and v1, v2 are functions assigning labels to

edges in G1 and G2 respectively.

The algorithm is given below

Input: G1 and G2.

Output: Best matching between nodes in DPG and MG (An

injective function g: V1  V2) having minimum fitness

function among all chromosomes found in the last generation.

1. n  the number of vertices in G1

2. m  the number of individuals in a population

3. For i=1 to n-1 do

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.4, February 2016

35

3.1 For j=1 to m do

 Cr[j][i][1] = random value from vertex of G1 not

 Occurring in any previous ith step

 Cr[j][i][2] = random value from vertex of G2 not

 Occurring in any previous ith step

3.2 Apply genetic algorithm on all Cr[j][i] with fitness

 Function described in SinglePairFitness(Cr[j][i][1],

 Cr[j][i][2])

3.3 If (i==1)

 g[j][i]=f[j][i]

 Else

 g[j][i]=calculate fitness of each individual

 Representing sub-graph of G1described in

 SubSolFitness(g[j][i-1],f[j][i], Cr[j][i][1], Cr[j][i][2])

3.4 Store some fixed number of best individuals with their

 Fitness g[j][i].

3.5 If (i==n-1)

Apply crossover and mutation on the population of the current

generation and select the best m individuals from all these

chromosomes generated after crossover and mutation.

3.6 If termination condition is not satisfied

 Go to 3.2

 Else

 Print the best individual with its fitness g[j][i].

End

Procedure: SinglePairFitness (Cr[j][i][1], Cr[j][i][2])

f[j][i] = | label of Cr[j][i][1]- label of Cr[j][i][2]| + | label of

incoming edges of Cr[j][i][1]- label of incoming edges of

Cr[j][i][2]| + |label of outgoing edges of Cr[j][i][1]- label of

outgoing edges of Cr[j][i][2]|

Procedure: SubSolFitness(g[j][i-

1],f[j][i],Cr[j][i][1],Cr[j][i][2])

g[j][i]= g[j][i-1]+f[j][i]+ | label of edges from Cr[j][i-1][1] to

Cr[j][i][1] – labels of edges from Cr[j][i-1][2] to Cr[j][i][2] |

4. RELATED WORK
Many tools and techniques have been proposed by researchers

working in the area of design pattern detection. Combination

of static and dynamic analysis both have been used for

analyzing the source code to identify design patterns. We

emphasized more on those papers where static analysis is

used. DP-Miner [2] is a very famous tool for design pattern

detection. This tool discovers design pattern by defining the

structural characteristics of each design pattern in terms of

weight and matrix. The discovery of design patterns from

source code becomes matching between the two matrices.

Beside matrix, it uses weight to represent the attributes or

operations of each class and its relationships with other

classes. The work done by Wendehals [3] shows that design

pattern detection process is based on an Abstract Syntax

Graph (ASG) representation of the source code. Authors

defined a structural and behavioral pattern for each design

pattern to enable tool based recognition. The source code is

parsed into the ASG representation. This ASG representation

is searched for the structural patterns and if matched that

structural pattern is annotated as a design pattern candidate.

The author‘s further used dynamic analysis to get confidence

on their results getting from static analysis. In [4] authors

defined a set of matrices for describing specific features for

system as well as design patterns. These features are

association and generalization relationships, abstract classes

etc. For each feature, a concrete matrix is created for pattern

as well as for system. In [4], extended the work of [5] where

all of the structural features are treated equally that may dilute

the process of design pattern detection. Paper [4] finds the

solution to this problem by applying weights of the structural

parts of the pattern, so more important parts play more

important role in the process of design pattern detection.

Researchers proposed some other techniques for design

patterns detection using sub-graph isomorphism in [6, 7, 8,

10,11,12,13 and 14]. We also propose a technique for design

pattern detection in [9].

5. CONCLUSION
Till now many problems of software development have been

solved using soft computing techniques. Design pattern

detection is one of the most important problems in reverse

engineering. Reusable design may reduce design,

development and implementation time if detected and used

properly .Further more ample possibility exit in research to

improve software development paradigm to organize and

harmonize the use of design pattern in more efficient manner

to promote reuse and reusability in design phase, based on

certain transformation rules and constraints, so that new

software is not only easy to design from design point of view

but also developed software is easy to enhance. The problem

faced by software industry is that there are number of legacy

software‘s with code only and without software requirement

document and design. It becomes very difficult to maintain

these types of legacy software if requirements are changed or

some errors are found. If one has the idea of design patterns

implementation in the source code then it would be easy to

understand that code and also to maintain it. In this paper,

efforts have been made to show the application of genetic

algorithm in the design pattern detection. We also applied a

hybrid genetic algorithm for sub-graph isomorphism problem

which uses an incremental approach for design pattern

detection. Moreover, this proposed algorithm is analyzed and

discussed with respect to enhance selected software quality

attributes related to software reuse and reusability. Previously,

we solved this by traditional genetic algorithm as well as

using genetic algorithm with neural network. Our future work

includes the implementation of this hybrid genetic algorithm

and comparison of results with previous genetic algorithms

outcomes as well as with other work in this area.

6. REFERENCES
[1] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,

1994. Design patterns: elements of reusable object-

oriented software. Pearson Education.

[2] Dong, J., Lad, D.S. and Zhao, Y., 2007. March. DP-

Miner: Design pattern discovery using matrix.

In Engineering of Computer-Based Systems, 2007.

ECBS'07. 14th Annual IEEE International Conference

and Workshops on the(pp. 371-380). IEEE.

[3] Wendehals, L., 2005. Dynamic Design Pattern

Recognition. Disertation Proposal, Department Of

Computer Science, University of Padeborn.

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.4, February 2016

36

[4] Jakubík, J., 2009. Extension for Design Pattern

Identification Using Similarity Scoring

Algorithm. Information Sciences and Technologies

Bulletin of the ACM Slovakia, 1(1), pp.25-32.

[5] Tsantalis N., Chatzigeorgiou A., Stephanides G.,

Halkidis S. 2006. Design Pattern Using Similarity

Scoring, IEEE transaction on software engineering,

vol.32, no.11.

[6] Pande, A., Gupta, M. and Tripathi, A.K., 2010.

September. DNIT—A new approach for design pattern

detection. In Computer and Communication Technology

(ICCCT), 2010 International Conference on (pp. 545-

550). IEEE.

[7] Pande, A., Gupta, M. and Tripathi, A.K., 2010. July.

Design pattern mining for GIS application using graph

matching techniques. In Computer Science and

Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on (Vol. 3, pp. 477-482). IEEE.

[8] Pande, A., Gupta, M. and Tripathi, A.K., 2010. A new

approach for detecting design patterns by graph

decomposition and graph isomorphism. In Contemporary

Computing (pp. 108-119). Springer Berlin Heidelberg.

[9] Arti chaturvedi , Manjari Gupta ,Sanjay Kumar Gupta ,

―An Idea towards Improving Design Pattern Detection‖,

International Journal of System and Software

Engineering(Volume 3, Issue 2,December 2015), in

press.

[10]].Pande A., Gupta M. 2010. Design Pattern Detection

Using Graph Matching, International Journal of

Computer Engineering and Information Technology

(IJCEIT), Vol 15, No 20, Special Edition pp 59-64.

[11] Pande A.,.Gupta M., Tripathi A.K. 2010. A Decision

Tree Approach for Design Patterns Detection by

Subgraph Isomorphism, In Proc. Of International

Conference on Advances in Information and

Communication Technologies (ICT 2010) published by

Springer, Kochi, Kerela, India. International Journal of

Software Engineering and Its Applications Vol. 5 No. 2,

April, 2011 55 .

[12] Gupta M., Singh R. R., Pande A., Tripathi A.K. 2011.

Design Pattern Mining Using State Space Representation

of graph matching, CCSIT, published by

Springer,Banglore, India.

[13] Gupta M., 2011.Design Pattern Mining Using Greedy

Algorithm for Multileveled Graphs, International Joint

Conference on Information and Communication

Technology, Bhubaneswar, IPM Pvt. Ltd, India.

[14] Gupta M., Singh R.R, Tripathi A.K. 2010. Design

Pattern Detection using Inexact Graph Matching,

International Conference on Communication and

Computational Intelligence, Tamilnadu.

IJCATM : www.ijcaonline.org

