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ABSTRACT 

Network reconfiguration aims to minimize network real 

power loss through rearranging the status of open switches. 

The consumers of the distribution networks need a better 

voltage profile for efficient operation of various gadgets. This 

paper thus attempts to develop a new reconfiguration 

algorithm with an objective of improving the voltage profile 

of the distribution network without incurring any additional 

cost for installation of capacitors and tap-changing 

transformers. The algorithm uses a nature-inspired 

biogeography based optimization (BBO) that searches for 

optimal solution through the migration and mutation 

operators.  Test results on a 33 and 69-node distribution 

networks reveal the superiority of the developed method. 

General Terms 

Optimization, evolutionary algorithms 

Keywords 
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Nomenclature 

BBO biogeography based optimization 

 C  branch-to-node matrix that describes the  

topological structure of the distribution 

network 

 GA genetic algorithm 

HSI  habitat suitability index 

ih  thi  habitat 

 LI  vector of load currents 

 bi  vector of branch currents 

mLI ,  equivalent load current at node- m   

maxIter    maximum number of iterations for 

convergence check 
nn  number of nodes 

nb  number of branches  

neh         number of elite habitats 

 PSO particle swarm optimization 
modP  habitat modification probability  

mP  mutation probability 

mLmL jQP    real and reactive power load at node-m 

ll jxr     resistance and reactance of branch- l  
maxS   maximum species count  

SIV  suitability index variable 

jOS  binary variable that represents the topological 

status of j -th branch. It equals ‘1’, if the 

tie/sectionalizing switch is closed, else its 

value is set as ‘0’ 

VPI voltage profile improvement 

mmV    voltage at node-m 

ooV   voltage at source node 

LVM lowest node voltage seen in the network 

NVD net voltage deviations 

 bv  vector of branch voltage drops 

 z  diagonal matrix containing the self-

impedances of all the branches 


 

a set of branches, whose current flow exceed 

the respective thermal limit 

λ  immigration rate 

µ  emigration rate 

cb ww and  penalty factors 

1. INTRODUCTION 
Network reconfiguration is a process of altering the 

topological structures of the distribution feeders by changing 

the open/close status of the sectionalizing and tie switches. 

During normal operating conditions, networks are 

reconfigured to reduce system real power loss, achieve load 

balancing and relieve network overloads. The network 

reconfiguration problem was first solved for loss reduction 

using branch-and-bound-type optimization technique by 

Merlin and Back in the year 1975 [1]. In that method, all 

network switches are initially closed to form a meshed 

network and then the switches are successively opened to 

restore radial configuration. Deterministic mathematical 

approaches involving Benders decomposition [2], and mixed-

integer programming [3,4] have been proposed. A switch 

exchange method has been outlined in [5] and further 

modified in [6]. A heuristic type algorithm to find the tie-

switch position in each loop to reduce the loss has been 

proposed [7]. These algorithms start with a radial 

configuration of the network and modify the network 

configuration using heuristic formulas in order to reduce the 

network loss. They are usually fast but may not achieve the 

optimal configuration. Therefore, metaheuristic algorithms 

such as hyper-cube ant colony optimization [8], bacterial 

foraging optimization algorithm [9], particles swarm 

optimization [10], artificial immune systems [11], adaptive 

imperialist competitive algorithm [12], and genetic algorithms 

[13] have been gradually applied for reconfiguration to reduce 

the network loss. Metaheuristic optimization methods can 

solve the reconfiguration problem without any or fewer 

restrictions on the shape of the cost function curves due to 

their ability to seek the global optimal solution. Moreover, 

these algorithms do not depend on the first and second 

differentials of the objective function. 

Recently, a Biogeography-Based Optimization (BBO), a 

population based meta-heuristic optimization technique 
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sharing information between candidate solutions based on 

their fitness values, has been suggested for solving 

optimization problems by Simon [14]. It has been applied to a 

variety of power system optimization problems [15-18] and 

found to yield satisfactory results.   

The objectives of traditional reconfiguration schemes are to 

reduce network real power loss, achieve load balancing and 

relieve network overloads. These objectives are built from the 

view point of service providers, but the consumers requires 

quality power supply with a voltage nearer to nominal 

voltage. This paper thus aims to develop a new 

reconfiguration scheme that minimizes the net deviation 

between the node voltages and the nominal voltage value, 

using BBO. The method is tested on 33- and 69-node radial 

networks and the results are presented.  

2. BIOGEOGRAPHY BASED 

OPTIMIZATION 
BBO, based on the concept of biogeography, is a stochastic 

optimization technique for solving multimodal optimization 

problems [14]. In BBO, a solution is represented by a habitat-

i  consisting of solution features named Suitability Index 

Variables ( SIV ), which are represented by real numbers.  It is 

represented for a problem with nd  decision variables as 

],,,,[ ,3,2,1, ndiiiii SIVSIVSIVSIVh               (1) 

The suitability of sustaining larger number of species of a 

habitat- i  can be modeled as a fitness measure referred to 

Habitat Suitability Index ( HSI )  as  

),,,,()( ,3,2,1, ndiiiiii SIVSIVSIVSIVfhfHSI 
    

 (2) 

High HSI  represents a better quality solution and low HSI  

denotes an inferior solution. The aim is to find optimal 

solution in terms of SIV  that maximizes the HSI  . 

Each habitat is characterized by its own immigration rate   

and emigration rate  .  A good solution enjoys a higher   

and lower   and vice-versa. The immigration and emigration 

rates are the functions of the number of species in the habitat 

and defined for a habitat containing  k -species as 


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When  maxmax IE  , the immigration and emigration rates 

can be related as  

maxEkk                                   (5) 

A population of candidate solutions is represented as a vector 

of habitats similar to any other evolutionary algorithm. The 

features between the habitats are shared through migration 

operation, which is probabilistically controlled through habitat 

modification probability, modP .  If a habitat ih  in the 

population is selected for modification, then its   is used to 

probabilistically decide whether or not to modify each SIV  in 

that habitat.  The   of other solutions are thereafter used to 

select which of the habitats in the population shall migrate 

randomly chosen SIVs  to the selected solution ih  .  

The cataclysmic events that drastically change the HSI  of a 

habitat is represented by mutation of SIVs . The mutation 

operation modifies a habitat’s SIV  randomly based on 

mutation rate mP  and tends to increase diversity among the 

population, avoids the dominance of highly probable solutions 

and provides a chance of improving the low HSI  solutions.  

Mutation rate of each solution set can be calculated in terms 

of species count probability using the following equation:  


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3. PROBLEM FORMULATION 
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Fig. 1   Eight node example network 

3.1 Distribution Power Flow 
The equivalent load current at node- m  ( mLI , ) of the 

distribution network can be computed from the specified real 

and reactive power loads )( mLmL jQP    as  

*
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The branch currents in terms of equivalent load currents of all 

the nodes of the example network of Fig. 1 can be written as 
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That is, 

     Lb ICi                                   (9) 

The voltage drop across all branches can be computed from 

the relation 

     bb izv                                 (10) 

Similar to Eq. (3), the node voltages can be written in terms of 

branch voltages by the relation  


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nb

j

jbjijooii vCTVV
1

, ,         nni ,,2,1 
  
 (11) 
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3.2 Objective Function 
The objective of the reconfiguration problem is to minimize 

the net voltage deviations (NVD) and can be formulated as  





nn

j

jVNVDMinimize
1

0.1                (12) 

The above objective can be calculated from the node voltages, 

obtained through iteratively solving the distribution power 

flow algorithm of  Eqs. 7, 9, 10 and 11 for a given load data, 

and status of tie and sectionalizing switches. 

3.3 Radial Topology Constraint 
The switching operation may sometimes make certain nodes 

disconnected from the live network, thereby making the 

configuration not radial. A check is therefore made for the 

status of tie and sectionalizing switches as to whether the 

resulting configuration is radial. If the network is radial, the 

entries in the first row of  C  matrix are binary ones. This can 

be imposed as a constraint in the reconfigurations problem as 

0
1

,1 


nnC
nn

j

j

            

               (13) 

If the above constraint is not satisfied, the network is either 

not radial or a group of loads is disconnected from service. 

3.4 Line Flow Constraint 
The resulting flows in the lines should not exceed their 

respective thermal limits. It is represented by a constraint 

max

jj ii                          (14) 

4. PROPOSED METHOD 
The aim of this section is to develop a BBO based 

reconfiguration method (BRM) for improving the voltage 

profile (VP). It involves representation of problem variables 

and formation of a HSI  function. 

The decision variable in BRM is the open-switch numbers. 

Each habitat of the BBO is therefore represented in vector 

form to denote the open-switches as  

 nOSOSOSh ,, 21                           (15) 

The BBO generates real numbers and hence to obtain integer 

values for open-switches, the real numbers are rounded off to 

the nearest integer values. The HSI function can be built from 

the problem objective function and radial topology constraint 

as 
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 (16) 

An initial population of habitats is obtained by generating 

random values within their respective limits to every 

individual in the population. For each habitat in the 

population, the NVD is calculated by the procedure discussed 

in section-3, after altering the network topology according to 

the status of open-switches, and then the HSI  is computed. 

The migration and mutation operations are performed for non-

elite habitats with a view of maximizing the HSI . This 

process is continued till convergence. The algorithmic steps of 

the proposed BRM are summarized below. 

1. Read reconfiguration problem data 

2. Choose BBO parameters such as ,nh  ,neh ,maxI ,maxE

modP , 
maxIter  

3. Randomly generate SIVs  to form the population.  

4. For each habitat,  

 Obtain the details of open-switches from the SIV  

values 

 Alter the distribution network according to the 

details of open-switches 

 Carryout distribution power flow and then compute 

NVD using Eq. (12) 

 Evaluate HSI  using Eq. (16) 

5. Identify neh  elite habitats having highest HSI  and 

retain them as it is without making any modifications. 

6. Perform migration probabilistically on those SIVs  of 

non-elite habitats. 

7. Perform mutation operation probabilistically on those 

non-elite habitats 

8. Check for convergence. If converged, go to next step. 

Else, go to step (4). 

9. The open-switches in the best habitat represent the 

optimal solution. 

10. Stop. 

5. NUMERICAL RESULTS 
The BRM is tested on two standard distribution networks. The 

first one is a 12.66 kV, 33 node network, which consists of 5 

normally open switches and 32 normally closed switches. The 

normally open tie-switches are 33, 34, 35, 36 and 37, and the 

normally closed switches are 1 to 32. The line data and load 

data of this network are given in [19], and the total real and 

reactive power loads on the network are 3715 kW and 2300 

kVar, respectively. The second test network is a 12.66 kV, 69 

node network comprising of 5 tie-loops. The network data of 

the initial configuration is available in [20]. The total active 

and reactive network loads are 3802.19 kW and 2694.60 

kVar, respectively. 

The reconfiguration problem for this case is solved by GA and 

PSO in addition to solving by BRM.  In this regard, the same 

set of decision variables and fitness/cost function, involved in 

the BRM, are used to develop the GA and PSO approaches. 

The results of 33 node network, containing details of open-

switches, NVD and lowest voltage magnitude (LVM), before 

and after reconfiguration are presented in Table-1. It is very 

clear from the results that the proposed BRM reduces the 

initial NVD of 1.8046 to 1.0668, which leads to %VP 

improvement  (%VPI) of 40.88%, while the GA and PSO 

offer 39.45% and 39.79% of %VPI. The LVM of the BRM is 

better than those of the GA and PSO. The VP for 33 node 

system before and after reconfiguration is pictorially depicted 

in Fig.A.1. It is seen from the figure that there is significant 

improvement in the VP after reconfiguration. It increases the 

LVM seen in the network from 0.9038 to 0.9327 per unit.  
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Table.1  Summary of Results for 33 node network 

 Open-switches NVD LVM 

Initial Configuration 33,34,35,36,37 1.8046 0.9038 

BRM 7,14, 9,17,28 1.0668 0.9327 

GA 33,34,10,17,28 1.0927 0.9313 

PSO 33,34,11,36,28 1.0865 0.9319 

 

The details of open-switches, NVD and LVM before and after 

reconfiguration for 69-node network are presented  in Table-

2. It is obvious from the results that the proposed BRM is able 

to reduce the initial NVD of 1.8370 to 0.8273, which is leads 

to %VPI of 54.96%, while the GA and PSO offer 49.98% and 

54.16% of %VPI. The LVM of all the three methods is found 

to lie in between the lower and upper limits. The VP for 69 

node system before and after reconfiguration of the proposed 

BRM is pictorially depicted in Fig. A.2. It can be observed 

from the figure that there is considerable improvement in the 

VP after reconfiguration.  

Table.2  Summary of Results for 69 node network 

 Open -switches NVD LVM 

Initial Configuration 69,70,71,72,73 1.8370 0.9092 

BRM 14,57,64,69,70  0.8273 0.9382 

GA 69,14,70,56,61  0.9189 0.9495 

PSO 69,14,70,58,62 0.8421 0.9483 

 

It is very clear from these results that the proposed BRM 

offers a better configuration that reduces the NVD for both the 

test networks and offers a good VP.  

6. CONCLUSIONS 
A simple BBO based reconfiguration scheme for 

minimization of NVD of radial distribution networks has been 

developed. This method uses a simple distribution power flow 

taking into the status of open-switches for calculating the 

NVD. It uses a simple mechanism for checking the radial 

nature of the network. The results on 33 and 69 node networks 

have clearly indicated that the proposed method is able to 

offer a better VP without any additional infrastructural cost. 

The algorithm is suitable for practical implementation on 

networks of any size. The method can be further modified to 

enhance voltage stability of the distribution networks. 
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9. APPENDIX 

 

Fig. A.1  VP of 33 node network 

 

Fig. A.2   VP of 69 node network

 

0.88

0.9

0.92

0.94

0.96

0.98

1

1 4 7 10 13 16 19 22 25 28 31

V
o

lt
ag

e
 M

ag
n

it
u

d
e

Node Numbers

Initial BRM

0.88

0.9

0.92

0.94

0.96

0.98

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

V
o

lt
ag

e
 M

ag
n

it
u

d
e

Node Numbers

Initial BRM

IJCATM : www.ijcaonline.org 


