
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

4

Dynamic with Dictionary Technique for Arabic Text

Compression

Fatima Thaher Ahmad Aburomman

ABSTRACT

In this research paper we build a new, reliable, and sufficient

algorithm for Arabic text language. The proposed algorithm

should combine the features of the Huffman and Lempel Ziv

algorithms, and is expected be able to reduce the general

compression ratio .

Our approach is different from Huffman algorithm in the

sense that it assigns codes to n-gram symbols where n is a

positive integer that is greater than or equal to one. Compared

to Huffman algorithm, which assigns a code to each symbol

individually, our approach is expected to assign codes to

symbols in average.

Our approach is different from Lempel Ziv algorithm in the

sense that the size of dictionary that we build does not grow in

an uncontrolled manner. The size of the dictionary is fixed

and its size can be expected prior to process the text files that

are to be compressed. This is because the size of each word in

the dictionary we build is fixed and is equal to n. So for

example, given that the number of different symbols in the

text file at hand is m and that n is 2, the total number of

entries in the dictionary that we propose to build will be m*m

in the worst case.

Keywords

Data compression, Text compression, Arabic Text File data

compression.

1. INTRODUCTION
Different types of data are produced, stored, transmitted or

exchanged. For example, mobile phone messaging is widely

used nowadays to exchange data. Transferring data among

mobile devices or computers can be time consuming.

Moreover, storing such enormous amount of data can be

prohibitively expensive (Omer and Khatatneh, 2010). For

these reasons, there has been a demand to reduce the amount

of data before saving or transferring it. This process of

reduction in the amount of data is called Data Compression.

Data compression is the process of representing a document

by using less space (Omer and Khatatneh, 2010).

1.1 Data Decompression
The word compression implies two processes: compression

process and decompression process (ibid, 2006). In many

papers, decompression process is not mentioned as

compression process, because it is obvious and easy to be

derived from the compressed file.

According to the efficiency of data that is to be decompressed,

the compression techniques can be classified to two main

categories:

 Lossless (reversible) data compression

 Lossy (irreversible) data compression

Data compression can be lossless if the decompressed data is

the same as the original data before being compressed; this is

like in Text compression, and medical image compression.

(Al-Daoud, 2010; Ida Mengyi Pu, 2006)

The data compression is lossy if the decompressed data loses

parts or some details of its original content during the

compression process. Sometimes these details can't be easily

noticeable/visible, such as in multimedia images and videos

(ibid, 2006).

1.2 Text Compression
Text file compression is the process of transforming string of

characters to another new shorter one by using less space and

without losing the data content (Hjouj Btoush et. al, 2008; Al-

Daoud, 2010; Omer and Khatatneh, 2010). There are many

text compression techniques, but the preferred technique over

the others can be based on the following criteria: (Musa et.al,

2010; Hjouj Btoush et. al, 2008)

 Compression speed or time consumed to complete

the compression process.

 Amount of memory size consumed to complete the

compression process.

 The implementation complexity (ease of

implementing).

 The compression ratio bit/char.

 All of these criteria, joined together, play a major role in

deciding which compression algorithm is the best. (Elabdalla

and Irshid, 2001).

Thus, in the last few years, many researches/studies have been

done in the text compression field to develop new efficient

text compression techniques that achieve these criteria (ibid,

2001).

1.2.1 Text Compression Techniques
Text compression technique can be divided into two main

methods: (Musa et.al, 2010)

 Static text compression.

 Dynamic (dictionary) text compression.

Each of these two methods has its own compression algorithm

and its requirements.

1.2.1.1 Static Text Compression
Using Huffman algorithm in the static text compression

approach, a given string is mapped to a predefined codeword

(dictionary), so it is classified as file-independent, based on

the frequency of the given string in the original text file. The

strings with high frequency are mapped to short codeword,

while small frequency strings are mapped to long codeword.

(Al-Daoud, 2010; Omer and Khatatneh, 2010).

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

5

1.2.1.2 Dynamic Text Compression
In the dynamic text compression method the compression

process is performed by mapping the given string to codeword

that changes from text file to another (file-dependent), Lempel

Ziv algorithm is used in this method (Musa et.al, 2010, Al-

Daoud, 2010, Omer and Khatatneh, 2010).

1.2.2 Text Compression Algorithms
There are many text compression algorithms studied in

computer science. These algorithms are different from each

other in terms of efficiency (Hjouj Btoush et. al, 2008).

1.2.2.1 Huffman Algorithm
Huffman algorithm is the most widespread source technique

in data compression (Elabdalla and Irshid, 2001). David

Huffman invented it in 1952 (Musa et.al, 2010). The idea

began when Professor Rober M. Fano assigned a problem of

finding the most efficient binary code in a term paper.

Huffman solved this problem based on the frequency sorted

binary tree, which is the most efficient method (Wordiq,

2010). Later on, Huffman developed his method by building

the bottom up tree instead of his professor method that builds

the tree from top to down (Wordiq, 2010).

Huffman algorithm can save from 20% to 90% typical,

depending on the characteristics of the data being compressed

(Coremen, 2002). It uses a "defined-word" scheme where

sequences of input symbols are transmitted using variable

length code (Bently et. al, 1986). It is based on building
bottom up tree for input symbols and giving short code for the

relatively frequent symbols and long code for infrequent
(Elabdalla and Irshid, 2001; Ghawanmeh et. al, 2006; Hjouj

Btoush et. al, 2008).

However, the drawback of Huffman algorithms is that it does

better with small files than large ones (Hjouj Btoush et. al,

2008).

1.2.2.2 LZW Algorithm
Lempel Ziv algorithm is the general algorithm that works on

almost any type of data (Hjouj Btoush et. al, 2008). It

transmits strings of characters to a single code using fixed

length code (ibid, 2008). It is based on building a table of

strings and adding every new string of character to this table,

and it does better with large files rather than small files (ibid,

2008).

There are many types of data such as text, image, sound, and

any combination of all these data such as video. However, in

this research we are concerned with textual data compression

which is an approach of text compression field (Elabdalla and

Irshid, 2001; Hjouj Btoush et. al, 2008).

1.3 Dynamic and Dictionary-based

Technique
Moreover, the Arabic language suffers from the absence of

efficient algorithms for text compression. The availability of

such algorithms is one of the biggest challenges that face the

Arabic language in the text compression field.

In this research proposal, we try to build a new, reliable and

sufficient algorithm for Arabic text language. The proposed

algorithm should combine the features of the Huffman and

Lempel Ziv algorithms, and is expected be able to reduce the

general compression ratio .

Our approach is different from Huffman algorithm in the

sense that it assigns codes to n-gram symbols where n is a

positive integer that is greater than, or equal to one. Compared

to Huffman algorithm, which assigns a code to each symbol

individually, our approach is expected to assign codes to

symbols in average.

Our approach is different from Lempel Ziv algorithm in the

sense that the size of the dictionary that we have built does not

grow in an uncontrolled manner. The size of the dictionary is

fixed and its size can be expected prior to processing the text

files that are to be compressed. This is because the size of

each word in the dictionary we have built is fixed and is equal

to n. So for example, given that the number of different

symbols in the text file at hand is m and that n is 2, the total

number of entries in the dictionary that we propose to build

will be m*m in the worst case.

2. LITERATURE REVIEW (RELATED

WORK)
In the last few years, a number of research papers/studies

were published that cover the text compression for Arabic

files. However, in the literature review we will focus only on

the most recent available Arabic texts compression researches

that have been carried out.

A group of researchers introduced a new technique, based on

a dynamic mapping rather than static to minimize the

compression ratio of Arabic texts using bitwise Lempel Ziv

algorithm (Musa et.al, 2010). This technique is based on

mapping each character in the input Arabic Text File (ATF) to

its corresponding code word using static or dynamic scheme,

then splitting the file into sub files to apply Lempel Ziv

algorithm on each sub file that have smaller size than the

original file individually. (Musa et.al, 2010).

Below is the abstract model of compression and de-

compression process based on the mapping scheme adapted

from Musa et.al, 2010.

 AT encoder

Compression

algorithm

(e.g, LZ-78)

Compressed

file

Decompression

algorithm

(e.g, LZ-78)

AT encoder
Arabic

text

(AT)

Original

(AT)

-Available Arabic characters

- Extension order (n)

-Binary representation length (L)

AT

analyzer

Header file

Compression process De-compression process

 Fig 1: The abstract model of compression and de-

compression process based on mapping scheme (Musa

et.al, 2010).

Moreover, this research divides its work to two main parts:

1. Preprocess :character mapping schemes

2. Bitwise Lempel Ziv algorithm.

The mapping process is based on that the large character's

frequency will take large hamming weight using this rule:

 

!

!!

K

KNN
K

N















International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

6

In the static scheme, however, each character is given a code

word according to the ASCII table, the dictionary table size is

equal to the number of characters in the file, but in the

dynamic scheme, each character is given a code according to

its frequency, so the size of dictionary table will be less than

that in the static scheme, and it depends on the frequency of

characters in the file and the file size. The dynamic scheme is

considered to be time-consuming, because of the time

consumed to construct the mapping table; yet, the advantages

of using the dynamic scheme over the static scheme according

to Musa et. al are: First, compression ratio will be decreased.

Second, speed will be higher and finally, this scheme can be

used for any type of text files (file-dependent) (Musa et.al,

2010).

The next step is applying Bitwise Lempel Zive compression

process, depending on the extension-order (n). In this

technique, the extension- order is equal to two.

The compression dictionary is initialized by values equal to

(2n), then; the algorithm will read the input stream as block of

2 bits. In addition, check if this block is in the table or not, if it

exists, the algorithm reads the second block and checks the

existence of these two blocks together, if not it adds this block

to the table.

After reading all input stream, the algorithm splits each row

into the table into two parts. The second part contains one

block, then checks the first part to find out in which row was

it, so as to present it as a pair of (numerical value-index, the

second block).

The L value indicates the number of rows presented in pairs,

now each pair is mapped to its compressed value by

presenting the value of (L+ n) in binary.

All this process is presented in the figure below adapted from

Musa et.al, 2010

11 11 00 11 11 11 11

Binary input stream

Compression dictionary

Index Subsequence

1.

2.

3.

4.

5.

6.

7.

00

01

10

11

11 11

00 11

11 11 11

(4, 11)

(1, 11)

(5, 11)

10 01 10 01 11 10 11 1

Compressed input stream

Fig 2: Examples of bitwise LZ-78 compression algorithm

with extension-order 2 (Musa et.al, 2010).

This technique was applied on different text files such as

txt " and.الرحيق المختوم " تحفة العروس " .txt" . It has achieved a

compression ratio within 4.25 to 4.7 bit/characters (Musa

et.al, 2010). However, in our proposed study, we will use the

dynamic method to mapping a string of data from the source

file instead of characters, and we will examine our algorithm

on the same text files that were used, as well as any additional

text file.

The dynamic Huffman coding was applied on Arabic and

English texts, using variable length bit coding (Ghawanmeh

et. al, 2006). It splits the task of compression into two

processes: the first is encoding process: representing the text

message with fewer bits by concatenating the codes of

consecutive characters together. Hence, it is easier to decide

the start and the end of each code, so as to guarantee that no

code would share the prefix of the other (ibid., 2006). The

second is decoding process in which reconstructing the

original message from the compressed representation is done

by binary tree (ibid, 2006). However, in our proposed study

we will apply Huffman encoded on the dictionary table itself

instead of applying it on each character, which will decrease

the time consumed in building and processing the binary tree.

The example below is adapted from this paper, it is applied on

an Arabic text, if we have the message " ,"بسم الله الرحمه الرحيم

and then the Huffman data compression will be as shown

below:

Table 1: Huffman data compression (Ghawanmeh et. al,

2006)

Symbol Occurrence Probability Codeword

 000001 1/22 1 ب

 000000 1/22 1 س

 101 3/22 3 م

 001 3/22 3 ا

 01 4/22 4 ل

 10000 1/22 1 هـ

 1001 2/22 2 ر

 0001 2/22 2 ح

 10001 1/22 1 ن

 00001 1/22 1 ي

Space 3 3/22 11

Sum 22 1

 The required size to store this message is (176) bits.

 The compression ratio is equal to (42.61%)

The tree for this example is illustrated in the figure below:

 space

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1
1

1

1

1

1

Fig 3: Huffman tree (Ghawanmeh et. al, 2006)

Abdel-Rahman et al, 2006 showed that the entropy of Arabic

Text Files (ATF) can be highly reduced if the source text

characters are mapped according to their frequency, then the

resulting files splitted into several sub files; each with one or

more bit. This technique can be exploited to device

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

7

compression algorithm with better compression ratio.

Moreover, it proved that all Arabic characters could be

encoded using 7 bits only, wherein the most Arabic character

needs actually only 6 bits (Jaradat, Irshid and Nassar, 2006).

This study can be summarized as follow:

1. It starts by mapping each character in the original

text to 8-bits codeword based on its occurrences

using Huffman and arithmetic coding techniques,

the result of this step is a non- ASCII binary file.

2. It split the result binary file into two, four or eight

sub-files with equal parts of the original file, these

sub-files are used to achieve better compression

ratio by applying bit-wise rather than character-wise

in each sub-file; individually.

 In our proposed algorithm we have a different file size, so

splitting it in such cases will not do any better, so we propose

to take it as a whole and apply Lempel Ziv algorithm to utilize

a table based compression for repeated n-grams strings in the

input file, then the table based itself is often a Huffman

encoded.

In 2010, Daoud presented a new combined method of root

dictionaries and proposed coding scheme, his method is based

on decomposing the word to its root and its affix, and then

storing it in a dictionary. This dictionary contains 8000 three-

character root and 700 four-character root (Al-Daoud, 2010).

Daoud, presented in his paper the Arabic language features

that are not taken by the Arabic compression algorithms, these

features are:

 Highly inflected and derived language.

 Syntactical.

 Phonological.

 Morphological.

 Diacritical, which called "Tashkeel".

 Semantical.

 However, Daoud have manipulated with the Arabic

morphological feature, by extracting it to increase the

compression rate and decrease the computational cost, he

explained that all words in Arabic are derived from a list of

roots.

In our proposed algorithm, we deal with these types of Arabic

text such as:

 Text without diacritical text.

 Partially diacritical text, such as a text contains parts

of Al- Qur'an verses.

Another study was done in 2010 in which the researchers

described a new technique for Arabic short text messages sent

by mobile phone. The study used different schemes from

different sources: such as, splitting files and hybrid dynamic

coding, then it applied the statistical Huffman tree in a method

similar to that used for fax machine code. The long codes are

given to the short frequency characters, and the long

frequency takes the short code (Omer and Khatatneh, 2010).

3. DYNAMIC AND DICTIONARY-

BASED TECHNIQUE

3.1 Introduction
By analyzing this technique, the current algorithm provides a

new technique for compressing text files and combining the

features of the two algorithms (Huffman and Lempel ZIV).

Our improvement for these two algorithms was done in two

steps:

1. Change the number of grouped characters, by

allowing the program to read (n) character at a

time, which we called (n-gram) where n is

appositive integer number of characters greater

than or equal to one (n>=1).

 When (n) is equal to one, this is the same as

normal Huffman that reads each characters

individually.

 If (n) is equal to two, the program will read two

characters at a time, and etc.

2. Change the method that compresses the original

text, based on "window-size w", where (w) is

appositive integer number greater than or equal to

two and less than or equal to five (between two

and five 2 <= w <= 5).

Window size: is the number of characters that are compressed

at a time.

 When (w) is equal to one is the same as Normal

Huffman, so we assume (w) greater than or equal to

two.

The figure below shows our proposed model for Dynamic and

Dictionary-based technique.

Fig 4: Model of Dynamic-Dictionary based technique.

 The text file can be either English or Arabic text file

with different size and with characters and symbols

text.

1. The first step is to analyze the text by reading it in

integer positive value of characters at a time based

on the n-gram.

n-gram: is a positive integer number greater than or equal to

one, refers to the number of characters taken together at a

time.

This is the first improvement in normal Huffman. Because we

deal not only with English text files but also with Arabic text

files, we need to read each Arabic character with its

inflections, so we assume (n=1, 2) and read each two

characters and calculate its frequencies.

 We can use n =1, when the Arabic text file doesn’t

have inflections

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

8

 We can use n =2, when the Arabic text file has

inflections

 We assume n =2, to be suitable for different types of

Arabic and English text files.

After reading the text characters based on n-gram, we

calculate the frequencies for each n-gram.

The output of this process is a table from each n-gram

character (n=1 and 2) and its frequency.

1. The next step is to build the binary tree, using the

table designed in the previous process. This process

is the most important process preparing to assign a

code for each n-gram characters.

The output of this process is a table from each n-gram

character, its frequency and it's coding.

2. This step is the final step called Compression to

produce a compressed file. In this step, we will

replace ``each n-gram character with its coding

based on something called window-size w, which is

the most important improvement to minimize the

number of bits used to describe the original text to

achieve compression ratio less than the original

value.

Window-size: is a positive integer number between two and

five, refers to the number of characters that will be used each

time to be compressed.

If we assume window-size starts from one then this process is

like a normal Huffman, where each character is replaced with

its code individually, so we consider that window-size starts

from two.

 When w = 2, we compress each two characters

together at a time and compress them.

 When w = 3, we compress each three

characters together at a time and compress

them.

 When w = 4, we compress each four characters

together at a time and compress them.

 When w =5, we compress each five characters

together at a time and compress them.

1. In this process, the original text is replaced with a

coding text based on window-size, and then this

code is saved in a file.

3.2 Tiny- Corpus example
If we have this tiny corpus as example: " مذدُ لله الححَ .” which is 12

characters length (m=12).

1. By applying the first step, the tables below present

all possible characters for different n-gram and their

frequencies.

Table 2: Character-frequency table when (n = 1) and (n =

2).

Num

ber

Char

acter

Freq

uency

numb

er

Char

acter

Freq

uency

 1 "ال" -2- 1 "ا" -1-

 1 "لح" -4- 3 "ل" -3-

Num

ber

Char

acter

Freq

uency

numb

er

Char

acter

Freq

uency

 1 "ححَ " -6- 1 "ح" -5-

م" -8- 1 " حَ " -7- 1 " حَ

 1 "مذ" -10- 1 "م" -9-

 1 "ددُ " -12- 1 "د" -11-

 1 " دُ " -14- 2 " دُ " -13-

-15- space 1 -16- "1 " ل

 1 "له" -18- 1 "لل" -17-

" -20- 1 "ه" -19- .ه " 1

1. In this step, we will build the binary tree from this

table to assign a code for each n-gram

 The output of this process is a table from each n-

gram character, its frequency, its code, and code

length.

The table below presents the final table before the

compression process.

Table 3: Final Table when (n = 1) and (n = 2)

Char. Freq. Code Code

Length

Char. Freq. Code Code

Leng

th

 4 0011 1 "ال" 4 0010 1 "ا"

 4 0000 1 "لح" 4 0001 1 "ح"

 4 0110 1 "ححَ " 4 0111 1 " حَ "

م" 4 0101 1 "م" 4 0100 1 " حَ

 5 11010 1 "مذ" 5 11011 1 "د"

 5 11000 1 "ددُ " 5 11001 1 " دُ "

 Space 1 11111 5 5 11110 1 " دُ "

 5 11101 1 "لل" 5 11100 1 " ل"

 5 10011 1 "ه" 5 10010 1 "له"

" .ه 3 101 1 "ل" 4 1000 1 "

 As we see in this table, when the frequency

increases, the number of bits needed to code this

character will decrease, this is the efficiency that

our technique has proposes.

1. In this process we will compress the original text

 مذدُ لله .الححَ (when w=2) CT2.

001101101101011110111011000  Code length =

27

 مذدُ لله .الححَ (when w=3) CT3.

001000000111110101111010110010  Code

length = 30

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.9, February 2016

9

 مذدُ لله .الححَ (when w=4) CT4.

00110110110101111010110010  Code length =

26

 مذدُ لله .الححَ (when w=5) CT5.

00100000010011000111001011000  Code length

= 29

4. CONCLUSION
In this study, a new technique for compressing text files based

on of D-DBT is presented. The proposed technique tries to

compress text files with compression ratio less than the

original value using n-gram and window size.

The proposed technique can be used to reduce the size of both

Arabic and English text files; in order to be transferred

through transmitted channels, or stored on a disk. The

efficiency of this technique is generating dynamic dictionary

from n-gram characters, and splitting the text file into groups

of size equal to window-size, then represent each group by its

code from the dictionary using the minimum number of bits

based on calculating many solutions for each window-size,

then select the minimum one.

By using both n-gram and window size together, the produced

text files have compression ratio less than either using n-gram

alone such as in Huffman, or window-size alone such as in

LZW.

Moreover, the proposed technique compresses the text files

with average compression ratio that is equal to 43.87% using

window-size that is equal to four.

The properties of this technique over other algorithms could

be summarized in the following points:

1. It can be used for different text file sizes.

2. It uses n- gram technique together with window size.

3. It uses different text files either Arabic or English.

4. Simple and easy to implement.

5. The average compression ratio achieved is 43.87% using

CT4.

However, more research is needed; we recommend an

improvement to this technique by trying to apply it on a large

number of text files, and on other languages as well.

Moreover, we hope that through further research in the future

to increase the window size in order to reach to a point where

the compression ratio will have the smallest value.

5. REFERENCES
[1] Al-Daoud, A. (2010). "Morphological Analysis and

Diacritical Arabic Text Compression." International

journal of ACM Jordan (ISSN 2078-7952).

[2] Bently J. L., Sleator D. D., Trajan R. E. and Wel V. K.,

(1986). "A Locally Adaptive Data Compression Scheme.

Communications ACM. 29(4): 320-330.

[3] Blelloch, E., (2002). "Introduction to Data

Compression." Computer Science Department, Carnegie

Mellon University.

[4] Cheok Yan Cheng, "Introduction On Text Compression

Using Lempel, Ziv, Welch (LZW) method".

[5] Coremen, Thomas H., Charles E. Leiserson, Ronald L.

Rivest. (2002). "Introduction to Algorithms." Second

Edition.

[6] Elabdalla, A. R. and Irshid, M. I.,(2001). "An efficient

bitwise Huffman coding technique based on source

mapping." Computer and electrical engineering 27(1):

265 – 272.

[7] Ghawanmeh, S.; Al-Shalabi, R. and Kanaan, G., (2006).

"Efficient Data Compression Sheme using Dynamic

Huffman Code Applied on Arabic Language." J.

Comput. Sci. 2(1): 885-888.

http://www.scipub.org/fulltext/jcs212885-888.pdf

[8] Hjouj Btoush M, siddiqi, M., J.; Akhgar, B. and

Dawawdeh, Z. (2008) "Observation on Compressing

Text Files of Varying Length". Proceedings of ITNG.

[9] Ida Mengyi Pu. (2006).

"Fundamental_Data_Compression".

[10] Jaradat, A. M.; Irshid, M.I. and Nassar, T. T., (2006).

"Entropy Reduction of Arabic Text Files."Asian

J.Inform.Technol.5(1):578583.

http://medwelljournals.com/fillext/ajit/2006/578-583.pdf

[11] Musa, A.; Al-Damour, A., Fraij, F.; Al-Khaleel, O. And

Irshid, M. (2010). "A Dynamic and Secure Arabic Text

Compression Technique Using Bitwise Lempel-Zive

Algorithm." Information technology journal 9(4):673-

679.

[12] Omer, I. and Khatatneh, K. (2010). "Arabic Short Text

Compression." J. Comput. Sci. 6(1): 24-28.

[13] Arabic-Language, Arabic language history (2011),

Retrieved March 22, 2011 from http://www.arabic-

language.org/arabic/history.asp

[14] Arturo San Emeterio Campos, Huffman Algorithm,

making codes from probability, Retrieved March 22,

2011 from http:// www.arturocampos.com/cp_ch3-1.html

[15] Matt Powell, University of Canterbury, Retrieved March

22, 2011 from http://corpus.canterbury.ac.nz

[16] Wordiq, Huffman Algorithm – Definition (2010),

Retrieved March 20, 2011 from

http://wordiq.com/definition/Huffman_coding.

IJCATM : www.ijcaonline.org

