
International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

13

Bangla Character Recognition for Android Devices

Aparajita Chowdhury
Dept. of Computer Science &

Engineering
BRAC University

Dhaka

Abu Foysal
Dept. of Computer Science &

Engineering
BRAC University

Dhaka

Shafiqul Islam
Dept. of Computer Science &

Engineering
BRAC University

Dhaka

ABSTRACT

The main target of the project was to build an Android

application that can extract text from any image that contains

Bengali characters and convert it into an editable document.

There were a few limitations in existing systems which could

be improved further. To recognize more characters and joint

letters, it was decided to work on decreasing the rate of error

to preserve more texts. Tesseract (v3.03) was used to

recognize the characters which utilizes Leptonica Image

Processing library to process image and extracting data from

the image. Joint letters, dangerous ambiguity and contrast

issues were handled to increase efficiency. A record of the

analyzed data and overall progress were kept for future scopes

of improvement.

Keywords

Optical Character Recognition (OCR), Bangla language,

Android, Tesseract, Leptonica.

1. INTRODUCTION
Optical Character Recognition (OCR) is a field of research in

Computer Science that conducts the task of reading text in

image format and converting that into a text form that can be

further modified in the computer. It turns out from the

research that lots of works have been done for OCR purpose.

But none of them are significant enough for Bengali to meet

the need. As a result, an initiative was taken for developing an

Android application for Bengali OCR to preserve Bengali

printed text documents by making softcopies as text files.

2. RELATED WORKS
While planning and making progress for the project, many

research papers related to OCR were gone through. Since the

number of analysis on Bangla OCR was not sufficient enough,

studying the papers for English and Hindi OCR fruitful

information were found for making progress. Smith [1],

helped with his analysis of recognition of Tesseract on

damaged fonts and the number of fonts to train. Moreover,

Omee discusses in their paper about case sensitivity and

“Matra” (line over characters) of Bangla characters [2]. In

addition to that Hasnat [3] in his paper discusses about the

number of attempts undertaken to resolve OCR for printed

texts using HMM (Hidden Markov Model). Zaman [4],

however, mentioned in their research about languages, except

Bengali. Chowdhury [5], on the other hand attempted for

Bangla OCR for non-portable desktop version. There were

many attempts on hand written texts such as Rakshit’s [6].

3. SYSTEM ARCHITECTURE

3.1 Tesseract OCR
From the observation, Tesseract was found to be the most

accurate open-source OCR engine. Tesseract can read a wide

variety of image formats and convert them to text in over 40

different languages. However, Tesseract was originally

designed to recognize English text only. To deal with other

languages and UTF-8 characters, such as Bengali, several

efforts have been made to modify its engine and the training

system [7]. The system structure itself needed to be changed

to make Tesseract able to deal with languages other than

English. Tesseract 3.0 can handle any Unicode character.

However, there were limits as to the range of languages that

Tesseract will be able to successfully detect. Therefore,

adequate actions has been taken to make sure that Bangla

language gets recognized by Tesseract.

Tesseract 3.01 added top-to-bottom languages, and Tesseract

3.02 added Hebrew (right-to-left). Tesseract can currently

handle complex scripts like Arabic with an auxiliary engine

called cube. However, cube, is not yet equipped to detect the

Bangla language. Additionally, it includes “unicharset” to

make multi-language handling easier. This function aided the

use of four different Bangla fonts to train and detect

characters. Though Tesseract is slower with a large character

set language (like Chinese), but it seems to work nonetheless.

Tesseract also takes more time to detect Bangla character

compared to detect English characters. However, it can still

detect Bangla characters which is the main purpose of the

research.

Tesseract 3.03 added new training tool text2image to generate

box/tiff files directly from text. It also has support for PDF

output with searchable text. However, the text is only

searchable, as it will be in PDF format and cannot be edited.

Tesseract v3.03 (rc) is currently the latest available Tesseract

engine, therefore, this engine was used in the research.

Initially, there was a desktop version programmed in the C

programming language. It was only capable of detecting text

from images saved on the computer. However, using tess-two

library Tesseract and Leptonica Image Processing Library can

be used on the Android platform. Tess-two is a fork of the

Tesseract Tools for Android that provides the ability to utilize

the OCR engine on an Android device. The Tesseract Tools

for Android is a set of the following three features:

 Android API

 Tesseract OCR engine

 Leptonica Image Processing Library.

The tess-two comes up with the tools for compiling and

running both Tesseract and Leptonica Image Processing

Library on the Android OS.

3.1.1 Skewness and Ambiguity:
Among all problems related to OCR, one of the most

significant is the ambiguity. It tends to confuse similar letters,

for example “o” and “0” [8]. Moreover, it will be similarly

perplexing for OCR to detect characters on dark backgrounds

[8]. Bengali is much more prone to detection failure having

large set of joint letters.

Image Skewness was also an issue to be noticed in case of

OCR. Skewness refers to the tilt in the bitmapped image of

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

14

the scanned document image for Optical character

Recognition [9]. Pal [10], used the approach of recognizing

the character shapes by a combination of template and feature

matching approach. Images are digitized by flatbed scanner

and subjected to skew correction, line, word and character

segmentation, simple and compound character separation.

They have used a feature based tree classifier for simple

character recognition. Chaudhuri, in their proposed model

[11], used document digitization, skew detection, text line

segmentation and zone separation, word and character

segmentation, character grouping into basic, modifier and

compound character category for both Bangla and Devnagari

(Hindi). Their system showed a good performance for single

font scripts, printed on clear documents. Smith [5] mentions

in his paper, an important part of any document recognition

system is detection of skew in the image of a page. Their

paper presents a new, accurate and robust skew detection

algorithm based on a method for finding rows of text in page

images. Not all image texts are uniformly symmetrical. To get

the skewness of an image it can be converted to a binary file

after making a grayscale from the source image. Next, from

mathematical formulae of distribution, the angle of skewness

is measured. Sarfraz [12] discusses in his paper, an input

image needs to be normalized and converted into a format

accepted by the OCR system. The OCR systems typically

assume that the documents were printed with a single

direction of the text and that the acquisition process did not

introduce a relevant skew. However, practically this

assumption is not very strong and printed document could be

skewed at some angle with the horizontal axis.

 A perfect normal distribution provides tapering

equally from both sides maintaining symmetry.

 In a left skewed distribution left side is longer than

the right side tail.

 In a positively skewed distribution right hand side

tail is longer than the left one.

Figure1: Skewness

In the figure above, one is normal Bell Curve of normal

distribution where it turns out that the average and the peak

are equal. In top the negatively skewed is also called a left

skewed graph. Similarly, positively skewed is a right skewed

graph. There are several methods of calculating skewness.

Formula for calculating skewness:

Pearson’s Formula:

(𝑚𝑒𝑎𝑛 − 𝑚𝑜𝑑𝑒)

𝜎

Table 1: Pearson’s Formula

3.2 Development Environment
This project uses the tess-two library to incorporate Tesseract

and Leptonica Image Processing Library for using in any

Android Platform. To use tess-two, at first, it was built on the

Linux based operating system. For this Ubuntu OS was used.

Tess-two contains an Android library project that provides a

Java API for accessing natively-compiled Tesseract and

Leptonica APIs. Android SDK and Android NDK were used

to build the project in Ubuntu. However, after completing

building the application, the platform was shifted to Windows

Operating System.

The main advantage of this shifting was, some Windows

based softwares like Serak Tesseract Trainer and QT Box

Editor could be used for working with multiple files in batch.

QT could be used to edit and create box files very easily. By

using Serak, the scripting of Tesseract on TIFF/box file pairs

could be automatized. In Ubuntu, all the file names of the

training images and box files in the terminal had to be

manually entered to run Tesseract on them. The number of

files is quite large considering the fact that a huge data set was

being trained. By using Serak, the overall effort is minimized.

The Tesseract engine with tess-two library have been

successfully installed and run using the following

configurations:

1. Ubuntu 14

2. Windows7/8.1/10

3. Android 2.2 +

4. Tesseract v3.03

5. Leptonica Image Processing Library v1.72

6. Four trained data file for four different types of

Bangla language.

3.3 Softwares Used for Training

3.3.1 JTessBoxEditor
jTessBoxEditor v1.4 is a Java based software created by a

Vietnamese company, VietOCR. It is a box file editor and

trainer for Tesseract OCR, which provides the functions to

edit the box data in both Tesseract 2.0x and 3.0x formats and

full automation of Tesseract training. It can read images of

common image formats, including multi-page TIFF. This

program requires Java Runtime Environment 7 or later to

operate. This program was used by Gajoui and Banerjee in

their research to train Tesseract [13], [14], so it was decided to

use it as well.

The editor mode of jTessBoxEditor requires the TIFF/Box

files as input. The images to be used in training should be of

300 DPI and 1 bpp (bit per pixel) black and white or 8 bpp

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

15

grayscale uncompressed TIFF format. For box files, the file

needs to be encoded in UTF-8 format which can be generated

by Tesseract executables with appropriate command-line

options or they can also be created using the built-in

TIFF/Box Generator of jTessBoxEditor.

For the project only TIFF/Box Generator function has been

extensively used. For a given input UTF-8 text file, the

generator produces an image in TIFF format along with a Box

file. The box contains the mapping of the characters that were

in the text file. The generated image is, depending on anti-

aliasing mode enabled, a binary or 8-bpp grayscale,

uncompressed multi-page TIFF with 300-DPI resolution.

Noise has been included in the training image, so that it

results in better trained data. Letter tracking, or spacing

between characters, can be adjusted to eliminate bounding

box overlapping issues. Overlap in the boxes causes huge

problems for Bengali characters. As it is clear that, the

characters in the Bangla alphabet are not uniform in shape. So

creation of the character boundaries in the box files had to be

done very carefully.

3.3.2 QT Box Editor
The QT Box Editor is a tool for adjusting tesseract-ocr box

files. The aim of this project was to provide an easy and

efficient way for editing regardless of file size. The QT Box

Editor is a successor of the tesseract-gui project that is no

longer in development. This software is used to edit already

created box files. This software has been instead of

jTessEditor because QT is much more sophisticated. Editing

boxes in bulk is a very time consuming job. However, with

QT the amount of time needed to process each box file is

reduced significantly. Furthermore, QT has some very useful

functions like insert, merge, split and delete right at the tip of

the mouse. However, multipage TIFF is not supported yet and

due to image quality and space the use of TIFF with

compression or PNG was confirmed. QT was also used by

Banerjee in their research [14].

3.3.3 Serak Tesseract Trainer v0.4
Serak Tesseract Trainer is a front end GUI for Training

Tesseract 3.02. Serak has basically been used to automate the

training process in the Windows OS Environment. Serak has

the feature to create traineddata files using only TIFF/Box file

pairs. Serak was used at the very end of this project to

combine all the TIFF and box files and create a traineddata for

the Tesseract engine. It is very useful when dealing with a

large number of files. In this research, there was a pretty big

character set to deal with. So, manually executing all the

process and functions in creating a traineddata file is very

inefficient and would require a lot of effort.

After successfully creating the traineddata file, it was fed to

Serak and used Serak’s OCR Mode to run Tesseract on

images to detect characters. Using Serak’s OCR Mode one is

able to test and verify the integrity of the data set trained using

the TIFF and box files.

4. WORKFLOW
The development process of Dristee OCR was conducted in

two stages. First part included training and second part

involved implementation of the Android application which

uses the traineddata file and recognizes Bengali text and

converts it into a searchable and editable document.

4.1.1 Training Dristee OCR
This project is completely dependent upon the quality and

quantity of the text that was used for training. While training,

it had to be ensured that there were no mistakes in the

character sets. This is because what one may think of as a

slight error, may end up significantly decreasing the accuracy

of the application. Next, the character set itself is vital, as all

the existing Bengali characters had to be covered.

The number of Bengali characters gets very large, if the joint

letters are considered for training. As this research is about

trying to increase the accuracy, all possible joint letters was

included in the training data. After preparing the text data for

training, they were converted into images using the software

jTessBoxEditor. Four sets of training data file for four fonts

were created. Consequently, using QT Box Editor necessary

changes were made for the box files, making sure that the

characters were correctly mapped inside the boxes.

Additionally, it is essential that there are no overlapping boxes

in the training set, as it may create a shapeclustering error in

later stages of training. Finally, after successfully creating the

box files, Serak Tesseract Trainer was used to automatize the

training process and combine the traineddata file using the

box files.

4.1.2 Executing Dristee OCR
As the project was about developing a real time system for

character detection, the video capture interface of the camera

on our Android Phone was used. The calibration of the

resolution was done so that it can avoid any kind of distortion

like parallax error. After that, some concurrent internal

processes were executed like capturing the image and

preparing it for the OCR. Simultaneously, Leptonica Image

Processing Library was used and the data was handed over to

Tesseract for character recognition.

Ultimately, when the recognition is done by properly

matching with box files and corresponding Unicode

Character, the result will be converted to text format and

shown in the activity window of the application on the

Android device. The text file can be saved in the device for

future use if necessary.

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

16

Figure 2: System Workflow

5. SYSTEM IMPLEMENTATION

5.1 Generating Image Files from Text Files
To start the training process of the application, the images

were needed to train with. So, good quality image files had to

be generated from text. For this purpose, jTessEditor was

used. By using the TIFF/Box Generator method, text can be

easily converted to images in TIFF format directly. TIFF

format image is recommended for training Tesseract. The

software jTessEditor also creates Box files of the characters

given in the text files. Here, the input as txt file for raw text in

the text box was provided. A total of four fonts were trained,

AdorshoLipi, Kalpurush, Nikosh and SolaimanLipi. In

addition to that “noise” was added in jTessBoxEditor, to

artificially add noise to the training images. Adding noise

increases the detection level of the OCR. For this research,

noise value of 5 and the font size 12 were used. Later on, data

set was increased using different font sizes such as, 14, 18, 24

and 36.

It has been found that using a variety of font sizes help

increase the accuracy of the OCR. Initially, font size 12 was

only used for all the texts. However, using the traineddata,

created using these images resulted in poor accuracy.

Therefore, it was decided to increase the font size and create

new sets of training images and box files. With these new

traineddata, it was able to increase the recognition to some

extent.

Figure 3: Detection using only font size 12

Figure 4: Detection after using multiple font sizes

5.2 Types of Characters Used for Training
In this research, all the characters in the Bengali alphabet were

tried to cover; however, Bengali numbers have not been

included in the final data set. During the testing phase, it was

found that including number increases the ambiguity of the

characters. Several other issues were addressed by Datta [15]

in his paper. While most numbers were harmless except for

“২” and “৩”, the OCR was quite frequently confused between

these two numbers. It was also seen to be confusing অ and ঢ

with ৩ on several occasions. This results in decreased overall

accuracy. Moreover, it was chosen not to train the vowel

diacritics (া িা া া া ো ৈা ো ো ...) individually either.

Training with these characters also affects the detection level

of the OCR. This fact was already confirmed by Zaman [2] in

their paper. So, it was concluded that it would be better to

associate these diacritic characters with consonants forcefully

and train them for the OCR application. More information on

the properties of different Bengali scripts can be found at [16].

Lastly, the whole research concentrated on the successful

detection of conjunct consonants. No work has been done to

detect these joint letters precisely.

ই, ঈ -> ২

অ, ঢ-> ৩

Table 2: Numerical Ambiguities

Bangla Vowels অ আ ই ঈ উ ঊ ঋ এ ঐ ঑

঒

Bangla Consonants ও ঔ ক খ গ ঘ ঙ চ ছ জ ঝ

ঞ ট ঠ ড ঢ ণ দ ধ ন ঩ প ফ

ব ভ ম য র ঱ ল ঳ ঴ ড় ঢ় ৞

ৎ া া া

Bangla Conjunct Consonants ন্ঠ ন্ত স্ক স্ক্র ষ্ট ষ্ণ ষ্ক শ্ল হ্ল স্ল ড্ড

ঞ্ঝ...

Bangla Consonants with

diacritics
ও ঔ ঠি ধ ঘ কূ চ ূ েঠ ৈঔ

েক েখ ...

Table 3: Types of characters trained

A total number of 12,191 individual Bengali characters were

trained for the Dristee OCR application. This includes all four

fonts which consists of all possible Bengali characters. The

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

17

majority of this data set consists of conjunct consonants as

they are huge in number, 8971 to be precise.

5.3 Creating Box Files
After converting the text into images, box files had to be

created for them. Box files are simply the mapping of the

characters in the images. QT Box Editor was used for creating

and editing the box files. It is required to merge characters

like ক, া into ক as the vowel diacritics are not desired to be

separate. Doing this in jTessBoxEditor is troublesome,

therefore QT was used.

The Box files contain the characters in the image in Unicode

format as well as their corresponding “Left, Bottom, Right,

Top” position with respect to the dimensions of the images.

5.4 Processing Box Files
After all the box file pairs were created, Tesseract is needed to

be run on each of the images and corresponding box files. For

each of the images and box file pairs, the following command

must be executed:

For Windows Platform Exclusively:

tesseract [lang].[fontname].exp[num].tif

[lang].[fontname].exp[num] box.train

tesseract ben.solaimanlipi.exp0.tif ben.solaimanlipi.exp0

box.train

For All Platforms:

tesseract [lang].[fontname].exp[num].tif

[lang].[fontname].exp[num] box.train.stderr

tesseract ben.solaimanlipi.exp0.tif ben.solaimanlipi.exp0

box.train.stderr

However, it is not feasible to run this command for a large

number of training images. It takes both effort and time to

manually execute all the commands. Therefore, Serak

Tesseract Trainer was used to automate the task. Serak runs

this command relentlessly until all the images and box files

are processed.Executing this command line creates a

[lang].[fontname].exp[num].tr file for every pair. Eg.

ben.solaimanlipi.exp0.tr.

5.5 Computing the Character Set
Next, a unicharset data file must be created, which lets

Tesseract know the set of possible characters it can output.

For this the unicharset_extractor program is needed to be used

on the box files generated above. However, unlike previous

processes, it is not needed to type the same command over

and over for every box file. The name of the box files can be

appended separated by a space.

unicharset_extractor lang.fontname.exp0.box

lang.fontname.expN.box

unicharset_extractor ben.solaimanlipi.exp0.box

ben.solaimanlipi.expN.box

5.5.1 Setting the Unicharset Properties
A new tool and set of data files in 3.03 allow the addition of

extra properties in the unicharset, mostly sizes obtained from

different fonts.

training/set_unicharset_properties -U input_unicharset -O

output_unicharset --script_dir=training/langdata

5.5.2 Font Properties
Subsequently, the font_properties file is needed to be

generated. This file contains all the information about the

style of the text. It controls the style the output receives after

the font is recognized. The font_properties file is a text file

specified by the -F filename option to mftraining.

Each line of the font_properties file is formatted as follows:

<fontname> <italic> <bold> <fixed> <serif> <fraktur>

Here, <fontname> is a string naming the font and <italic>,

<bold>, <fixed>, <serif> and <fraktur> are all simple 0 or 1

flags indicating the respective state of the font.

Eg. solaimanlipi 0 0 0 0 0, means that the font name is

solaimanlipi with no styling present.

6. FEATURES

6.1 Torch and Exposure
From a few observations, it had been seen that the OCR result

in lower light in case of printed text is not satisfactory. A bit

of research was done and monochrome and colored light

model from graphics was discovered to fix this issue. Finally,

it was concluded that using the camera flash will help develop

the result to a great extent. Screen images use emission based

technology. On the other hand, printed document detection

needs to be implemented with reflection based technology. In

the project a package called bracu.ac.bd.ocr.camera was

introduced, here the class CameraConfigurationManager.java

was included. This class utilizes the methods doSetTorch and

setFlashMode to enable flash.

Exposure is another issue to increase the quality of the image

before detection and compromise contrast. This is dealt by

CameraManager.java. Consequently, three exposure levels

called low, medium and high are given as option to the user.

The method setExposureCompensation is used to apply the

exposure.

Figure 5: Before Exposure Control

Figure 6: After Exposure Control

From the test images above, it is observed that the exposure of

the camera plays an important role in image quality. Hence,

efficient detection of the characters depends on it. However, it

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

18

must be acknowledged the fact that not all cameras have the

same exposure level. Therefore, exposure level has been

margined using the minimum and maximum exposure

possible by the camera. Next, this information was

manipulated in setting three exposure levels, low, medium and

high.

7. RESULTS
The traineddata had been tested in both desktop and mobile

version. Precision and recall had been used to calculate the

accuracy of this OCR system [17]. Here, precision is the

fraction of how many retrieved results are correct and recall

gives an estimated fraction of how many positives is returned

by the model. At first, the Android application was tested with

AdorshoLipi and Nikosh without any exposure control. The

result was found to be erratic as the light was not sufficient

due to the fact that the pictures need to be taken from a close

distance from the camera. Therefore, the flashlight on the

Android phone was used to increase the quality of light.

Moreover, manual selection of exposure setting was also

added to help obtain better results. Later, for the fonts

Kalpurush and SolaimanLipi these conditions were handled

and the results are more satisfactory than the previous two

fonts.

Table 4: Desktop Version

Font Precision Recall

AdorshoLipi 87.9% 87.7%

Nikosh 53.9% 55.7%

Kalpurush 54.2% 64.8%

SolaimanLipi 71.1% 75.2%

During the testing, an average precision of 66.8% and recall

of 70.9% for the desktop version were found. For the mobile

version the average precision was 65.5% and recall was

70.0%.

Table 5: Android Version

Font Precision Recall

AdorshoLipi 59.4% 69.8%

Nikosh 53.9% 59.9%

Kalpurush 71.5% 73.0%

SolaimanLipi 77.3% 77.2%

Figure 7: Precision

Figure 8: Recall

8. CONCLUSION
From the extensive research, literature review and related

work, various approaches of handling the shortcomings of

character recognition were observed. However, there still

persist some limitations in the current research, which could

be further improved by deploying other existing methods and

applications. For example, improving accuracy in case of joint

letters in hand-written texts and cursive text. There are also

scopes to improvise different algorithms for example the new

method of feature extraction procedure called zoning and

template matching combined mentioned by Arif [8]. There are

hardly any attempts to create a lexicon of Bengali language

[20]. The few that exists lack colloquial language and proper

noun which are expanding day by day. Therefore, there is still

scope left to build a lexicon for Bengali. There are also scopes

like standardizing encoded language, creation of lexicon for

Bengali characters and camera positioning issues. Moreover,

it would be mesmerizing to integrate with technologies like

Google Glass for real time detection. In addition to that,

experimenting on the contrast issue can also boost up

accuracy in recognition.

In short, the intention was to improve the existing systems

such that the accuracy level could get closer to 100%. The

main objective was trying to make Tesseract recognize

Bengali fonts. Overall, the research was successful in order to

make Tesseract more precise by training space as well as the

joint characters. As a result, a better solution was obtained.

Along with the joint characters, different fonts were

introduced to cover more variations. Finally, the research was

concluded with the complete implementation of a portable

Android application for Bangla OCR. This application is user

friendly and efficient in detecting Bengali characters from

images and converting them to editable text files.

9. ACKNOWLEDGMENTS
The authors thank CSE Department of BRAC University for

providing required resources to accomplish this research.

10. REFERENCES
[1] Smith, R. (2007). An Overview of the Tesseract OCR

Engine. Proc. of 9th ICDAR 2007, Curitiba, Paraná,

Brazil. (pp. 629-633). IEEE Explore.

[2] Omee, F. Y., Himel, S. S., & Bikas, M. A. N. (2011). A

Complete Workflow for Development of Bangla OCR.

International Journal of Computer Applications, 21(9).

[3] Hasnat, M. A., Habib, S. M. M., Khan, M. (2008). A

High Performance Domain Specific OCR for Bangla

International Journal of Computer Applications (0975 – 8887)

Volume 136– No.11, February 2016

19

Script. Novel Algorithms and Techniques in

Telecommunications, Automation and Industrial

Electronics. (pp. 174-178).

[4] Zaman, S. M., & Islam, T. (2012). Application of

Augmented Reality: Mobile Camera Based Bangla Text

Detection and Translation. BRAC University.

[5] Chowdhury, M., T., Islam, M., S., Bipu, B., H. (2015).

Implementation of an Optical Character Recognizer

(OCR) for Bengali language. BRAC University.

[6] Rakshit, S., Ghosal, D., Das, T., Dutta, S., Basu, S.

(2009). Development of a Multi-User Recognition

Engine for Handwritten Bangla Basic Characters and

Digits. Int. Conf. on Information Technology and

Business Intelligence.

[7] Hasnat, M., A., Chowdhury, M., R., Khan, M. (2009).

Integrating Bangla script recognition support in Tesseract

OCR. BRAC University.

[8] Patel, C., Patel, A., & Patel, D. (2012). Optical

Character Recognition by Open Source OCR Tool

Tesseract: A Case Study. International Journal of

Computer Applications, 55(10).

[9] Aithal, P., K., Acharya, U., D., Siddalingaswamy, P., C.

(2013). A Fast and Novel Skew Estimation Approach

using Radon Transform. International Journal of

Computer Information Systems and Industrial

Management Applications (5). (pp. 337-344).

[10] Pal, U., Chaudhuri, B., B. (1994). OCR in Bangla: an

Indo-Bangladeshi language. Proc. of ICPR, Jerusalem,

Israel. (pp. 269-274). IEEE Explore

[11] Chaudhuri, B., B., Pal, U. (1997). An OCR system to

read two Indian language scripts: Bangla and Devnagari

(Hindi). Proc. of 4th ICDAR. Ulm, Germany. (pp. 1011-

1015). IEEE Explore

[12] Sarfraz, M., Zidouri, A., Shahab, S.A. (2005). A novel

approach for skew estimation of document images in

OCR system. International Conference on Computer

Graphics, Imaging and Vision: New Trends. (pp. 175-

180). IEEE Explore.

[13] Gajoui, K., E., Ataa-Allah, F., Oumsis, M. (2015).

Training Tesseract Tool for Amazigh OCR. Recent

Researches in Applied Computer Science. Proc. of 15th

International Conference on Applied Computer Science

(ACS15), Konya, Turkey. (pp.172-179). WSEAS Press.

[14] Banerjee, S. (2012). A Study on Tesseract Open Source

Optical Character Recognition Engine. Jadavpur

University. Retrieved December 13, 2015, from:

http://dspace.jdvu.ac.in /handle/123456789/27793

[15] Datta, S., Chaudhury, S., and Parthasarathy, G. (1992).

On Recognition of Bengali Numerals with

BackPropagation Learning. IEEE International

Conference on Systems, Man and Cybernetics (pp. 94-

99). IEEE Explore.

[16] Abdullah, A., Khan, M. (2007). A Survey on Script

Segmentation for Bangla OCR. BRAC University.

[17] Manning, C., & Schütze, H. (1999). Foundations of

Statistical Natural Language Processing. Cambridge,

Mass. MIT Press.

[18] Arif, S., R. (2007). Bengali Character Recognition using

Feature Extraction. BRAC University.

[19] Hayder, K. (2007). Research Report on Bangla Lexicon.

BRAC University.

IJCATM : www.ijcaonline.org

