
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.4, February 2016

28

A Proposed System for Real Time Adaptive N Version

Programming

Pooja Yadav
Bharat Electronics Limited,

Ghaziabad – 201010,
Uttar Pradesh, India.

Shilpa Singh
Bharat Electronics Limited,

Ghaziabad – 201010,
Uttar Pradesh, India.

Ajay More
National Informatics Center

New Delhi,
India.

ABSTRACT

N-version programming is a fault tolerance technique that

depends on a generic decision algorithm to determine a

consensus result from the results delivered by two or more

member versions of the software. In N-version programming,

N teams of developers work independently on N unique but

equivalent implementations of the same program. The major

objectives of the NVP process are to maximize the

independence of version development and to employ design

diversity in order to minimize the probability that two or more

member versions will produce similar erroneous results that

coincide in time for a decision (consensus) action. But this

fault-tolerance technique has been criticized for its statistical

assumptions and high cost. A solution is proposed in which

there are N versions of the software out of which t versions

implement only a subset of the entire functionality which is

highly critical while (N – t) versions implement the entire

functionality. One of the biggest hurdles in using N version

programming for fault tolerance is its high implementation

cost. This proposed technique minimizes the cost of

implementation while improving the efficiency and reliability

of the system.

Keywords

N version programming, fault tolerance, reliability, real time

systems

1. INTRODUCTION
Multi-version or N-version programming [1, 2] has been

proposed as a method of providing fault tolerance in software

where high reliability is a major concern. The approach

requires independent development of multiple versions (i.e.

„„N‟‟) of a software for some application. These versions are

executed in parallel in the application environment; each

receives identical inputs and each produces its output which is

independent from all other versions. The outputs are collected

by a voter or decision software and, in principle; they should

all be the same. In practice there may be some disagreement.

If this occurs, the results of the majority (assuming there is

one) are assumed to be the correct output, and this is the

output used by the system.

The basic technique for NVP as described in [3] is as follows-

i. The basic functional units of the software system

consist of N parallel independent versions of

programs with identical functionality: version 1,

version 2. . . version N.

ii. The system input is given to all the N versions.

iii. The individual output for each version is fed to

decision software.

iv. The decision software determines the system output

using a specific decision algorithm.

Refer Fig.1 for block diagram of N-version

programming

1.1 Example used in the Proposed System

for N Version Programming
The proposed system will be explained through the example

of missile control system. The missile control system will

implement the following functionalities

1. Implementation of missile firing order.

2. Automatic positioning of missile according to

direction of target.

3. Display of planned missile trajectory on map

according to latitude and longitude of source and

destination.

4. Generation of Air space clearance for the missile

which means there should be no civil or military

aircraft (which is not the target) in the path of the

missile.

5. Whether status monitoring.

6. Entry of location and parameters of other weapons

in the database.

7. Suggestion of alternate Weapon solutions.

8. Fuel status entry.

9. Payload entry (type and quantity).

10. Entry of on duty officer.

11. Configuration of duty timing of officer.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.4, February 2016

29

Figure 1: Block Diagram of N version programming technique

Here, the first four functionalities i.e. implementation of

missile firing order, automatic positioning of missile, display

of missile trajectory and generation of air space clearance are

highly critical while the others are non critical. These highly

critical functionalities must be separated from non critical

functionality so that even if there is a system failure due to

some unwanted condition in the non critical functionality the

critical functionality is still operational.

In this implementation of N Version programming the

software containing all the eleven functionalities will be

replicated (N - t) times using different design techniques.

Also there will be t replicas of the software containing only

the first four functionalities which are highly critical.

This will save the software implementation cost as well as

hardware cost while improving the efficiency and reliability

of the software. Also, a cost comparison between the old

system which replicates the software containing the entire

functionalities N times and the newly proposed system will be

shown.

2. A DESIGN PARADIGM FOR N

VERSION PROGRAMMING IN

REAL TIME SYSTEMS
All N versions of the software have to be developed

independently by separate development teams. “Independent

development of programs” here means that the programming

efforts are carried out by N individuals or groups that do not

interact with each other regarding the programming process.

Wherever possible, different algorithms and programming

languages are used in each effort. First, the initial

specifications of the software are developed. The initial

specification is a formal specification in a specification

language. The goal of the initial specification is to state the

functional requirements of the software completely and

unambiguously, while leaving the widest possible choice of

implementations to the N programming efforts [4].

A major observation concerning N-version programming is

that its success as a method for on-line tolerance of software

faults depends on whether the residual software faults in each

version of the program are distinguishable (i.e., no two

versions of the software exhibit identical faults). The NVP

approach was motivated by the “fundamental conjecture that

the independence of programming efforts will greatly reduce

the probability of identical software faults occurring in two or

more versions of the program” [4].

Diversity of implementation should be stated in the

specifications of all N versions of the software. Diversity may

be specified in one or more of the following elements of the

NVP process: training, experience, and location of

implementing personnel; application algorithms and data

structures used; programming languages used for

implementation; software development life cycle used (for

example one version may be developed using waterfall model,

other may be developed using spiral model and some other

may use evolutionary model); programming tools and

environments; testing methods and tools. The purpose of such

required diversity is to minimize the opportunities for

common causes of software faults in two or more versions

(e.g., compiler bugs, ambiguous algorithm statements, etc.),

and to increase the probabilities of significantly diverse

approaches to version development. It is also possible to

impose differing diversity requirements for separate software

development stages, such as design, coding, testing etc [2].

Also, special dedicated hardware processors might have to be

implemented or procured in advance for the execution of NVS

systems, especially when the NVS supporting environments

need to operate under certain stringent requirements (e.g.,

timing constraints in real time systems accurate supervision,

efficient CPUs, etc.). Diversity in version implementation can

also attained by using hardware of different specifications for

each version. The options of combining software and

hardware diversity for a hybrid configuration could also be

considered [5], [6], [7].

The objectives of introducing diversity in implementation are

[8]:

1. To reduce the possibility of same oversights,

mistakes, and inconsistencies in the process of

software development and testing in all versions;

2. To eliminate most perceivable causes of related

design faults in the independently generated

versions of a program, and to identify causes of

those which slip through the design process;

Input

Version 1

Version 2

Version N

Decision

Algorithm

Output

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.4, February 2016

30

3. To minimize the probability that two or more

versions will produce similar erroneous results that

occur at the same time.

The above objectives are highly essential for real time

systems as the accurate output must be obtained under highly

stringent timing constraints. There may be severe

consequences if the output misses the deadline.

3. PROPOSED SYSTEM
N Version programming technique can be modified in the

following manner to suit the requirements of real time

systems and also to maximize reliability and minimize cost.

In the proposed system, it is assumed that the amount of

processing required for implementation of critical

functionality in software is much less than the amount of

processing required for non critical functionality.

Refer Fig.2 for block diagram for proposed system.

Total no. of software versions = N

No. of versions containing critical functionality only = t

No. of versions containing complete (critical + non critical)

functionality = N – t

Also, t > (N - t), as there must be more number of replicas for

critical functionality. There should be some replicas for

complete (critical + non critical) functionality also so that the

system functionality does not degrade even if some of the

software versions (critical or non critical) fail. At the same

time the number of complete versions is kept much less than

the number of critical versions in order to save cost but retain

the reliability which would have been achieved by N complete

versions.

Here the t versions of the software containing critical

functionalities also receive the same inputs as the (N – t)

versions containing critical + non critical functionality. But

the t versions of the software discard the inputs which are not

required for critical functionality.

3.1 Decision Algorithm for Proposed

System

The decision algorithm for the proposed system is described

below. This decision algorithm is more suitable for real time

systems where strict timing constraints need to be followed.

For explaining this algorithm a variable “Critical_flag” is used

for determining if the output required is critical. If

Critical_flag is equal to 1 the output required is critical

otherwise the output is non critical. Also, a variable “flag” is

used to determine if the critical output has already been

obtained. Initially the value of flag is 0. It is set to 1 whenever

the critical output is obtained otherwise it remains 0. It is

assumed that the actual deadline of completing the critical

task (for example implementation of missile firing order) is b

units of time. This algorithm assures that this critical task is

completed in a units of time where a is slightly less than b.

This is done to ensure that the system never misses the

deadline.

Figure 2: Block Diagram for Proposed System

Begin

Set flag=0

If ((Critical_flag == 1) && (flag==0))

{

 Receive output from t critical functionality versions

(version 1, 2 ….t)

 Wait (a units of time)

 If (number of outputs received > 0)

 {

Compare the output from one or more t critical functionality

versions received within a units of time and forward the

majority result as output.

 }

 Set flag=1

}Else if ((Critical_flag == 1) && (flag!=1))

{

 Wait ((b – a) units of time)

Input

Version 1

Version 2

Version 1

Decision

Algorithm

Output

Version (N – t)

Version 2

Version t

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.4, February 2016

31

 Receive critical output from any of the N versions (version

1, 2 ….N)

 Compare the output from one or more of the N versions

obtained within (b - a) units of time and forward the majority

result as output.

 Set flag = 1

}

Else if (Critical_flag == 0)

{

 Receive output from (N – t) non critical functionality

versions (version 1, 2 …. (N - t))

 Compare output from (N – t) complete functionality

versions and forward the majority result as output.

}

End

The t critical functionality versions are programmed to give

the output in a units of time. For critical functionality, the

decision algorithm waits for a units of time for obtaining the

output from the t critical functionality versions. If it obtains

the output from one or more t critical functionality versions

within a units of time it takes these outputs as input and

outputs the result which is obtained from the majority of the t

versions. It sets the value of variable flag to 1.

In the extremely rare case if all the t critical functionality

versions fail to give the output within a units of time, the

decision algorithm waits for another (b - a) units of time. This

time the decision algorithm considers the output of all the N

versions (critical functionality versions as well as complete

functionality versions) and if it obtains the critical output from

one or more of the N versions, it takes this output as input and

outputs the result which is obtained from the majority of the N

versions. For all normal cases output from t critical versions is

used for critical functionality because response time is much

smaller in t critical versions than (N – t) complete versions (t

critical versions take less processing time due to absence of

non critical tasks).

For non critical functionality, the decision algorithm takes the

output from the (N – t) complete functionality versions as

input and outputs the result which is obtained from the

majority of the (N - t) versions. Here there are no timing

constraints as the functionality is not critical

3.2 Advantages of Proposed System

3.2.1 Cost Saving
Old system consists of only N complete functionality versions

of the software. Proposed system consists of (N - t) complete

functionality versions and t critical functionality versions of

the software.

Table 1. Comparison of cost of old system and proposed

system

Requirements Old system Proposed system

Hardware All high end

processors

(N - t) high end

processors and t

low end

processors

Cost High Significantly

lower as compared

to old system

Cost of old system:

Total no. of software versions = N

All N versions of the software have been developed

independently by separate development teams and contain

complete functionality of the software.

Let cost of Hardware system to be used for running each

complete functionality version software be $A

Total Cost of hardware = N* $A----------------- (1)

Cost of proposed system
Total no. of software versions = N

No. of versions containing critical functionality only = t

No. of versions containing complete (critical + non critical)

functionality = (N - t)

All (N - t) complete functionality versions and t critical

functionality versions of the software have been developed

independently by separate development teams and contain

complete functionality of the software.

Let cost of Hardware system to be used for running each

critical functionality version software be $B

 $A >> $B, high end processors are much more costly as

compared to low end processors.

Total Cost of hardware = ((N-t) * $A) + (t * $B)-------- (2)

By using equations (1) and (2),

[N* $A] >> [((N-t) * $A) + (t * $B)]

Hence, the total cost of old system is much higher than the

total cost of proposed system.

3.2.2 Higher Reliability
Since the critical t versions contain only a small part of the

complete software reliability is greatly enhanced as there are

less chances of system failure due to memory leakage,

segmentation fault etc which are encountered in large

software systems.

Since all the versions work in parallel, the system is

considered to be operational if any one of the N versions is

available and the system is considered failed when all parts

fail. The reliability of parallel systems as given in [9] is:

If there n parallel connected components, with reliability of

Rk(t) for kth component.

Then the total failure probability is,

 𝑄 𝑡 = 𝑄𝑖 𝑡 = (1 − 𝑅𝑖 (𝑡))𝑛
𝑖=1

𝑛
𝑖=1 -------(3)

Therefore the total reliability is,

𝑅 𝑡 = 1 − 𝑄 𝑡 = 1 − (1 − 𝑅𝑖(𝑡))𝑛
𝑖=1 ------(4)

Reliability increases with increase in the number of parallel

components.

The implications of the above equation are that the combined

reliability of two components in parallel is always much

higher than the highest reliability of its individual components

[10].

Therefore, according to equation (4) the reliability of

Rnew = 1 – [(1 – R1)t(1 – R2)(N - t)]----------------(5)

Where R1 is the combined reliability of t critical functionality

versions working in parallel and R2 is the combined reliability

of (N – t) complete functionality versions working in parallel.

 According to equation (4) the reliability of old system is,

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.4, February 2016

32

Rold = 1 – [(1 – R2)N]-----------------------------(6)

Since, R1 > R2 then according to equations (5) and (6) Rnew >

Rold, because combined reliability of parallel system is always

much higher than the highest reliability of its individual

components and the highest reliability of t critical

functionality versions is more than the highest reliability of (N

– t) complete functionality versions.

3.2.3 Other Advantages
1. Also since all the critical t versions are developed

independently by separate teams and are also

relatively smaller as compared to (N - t) complete

versions the chances of human error in coding,

design etc is greatly reduced.

2. Complete and through testing of smaller critical

functionality versions can be done in a cost effective

and efficient manner. It is also less time consuming

as compared to testing the larger complete

functionality versions of the software.

4. CONCLUSION AND FURTHER

SCOPE
The proposed system of N version programming is found to

be highly suitable for mission critical real time systems where

some critical output is required within a fixed deadline. As

NVP is based on design diversity technique, the built program

will fail independently and with low probability of

coincidental failures. This ensures that one of the other

versions will continue to provide the required functionality.

This system provides a high degree of fault tolerance which is

required for safety critical systems. Also this system is proved

to be highly reliable and cost effective. This system can be

used for various defense applications such as missile control

system, real time wireless communication and various other

army, navy and air force systems. Such a system can be

extended for use in medical applications, industrial plant

controllers as well as safety critical systems where reliability

and fault tolerance are criteria of major concern.

5. ACKNOWLEDGEMENT
The authors wish to thank Prof. D.S. Yadav, Director,

Government Engineering College, Banda, U.P., India, and Mr.

Dhananjay Pandey, Accreditation Officer, Quality Council of

India, New Delhi for their valuable suggestions and

unconditional support for the revision of this paper.

6. REFERENCES
[1] L. Chen and A. Avizienis, „„N-version programming: A

fault-tolerance approach to reliability of software

operation,‟‟ Digest of Papers FTCS-8: Eighth Annual

International Conference on Fault Tolerant Computing,

Toulouse, France, pp. 3-9, June 1978.

[2] A. A. Aviˇzienis. The Methodology of N-Version

Programming, chapter 2. John Wiley and Sons, 1995.

[3] Jeff Tian, Software Quality Engineering: Testing,

Quality Assurance, and Quantifiable Improvement, John

Wiley and Sons, 2005, pp. 272-275.

[4] A. Aviˇzienis and L. Chen. “On the implementation of

N-version programming for software fault tolerance

during execution”. In Proc. IEEE COMPSAC 77, pages

149–155, November 1977.

[5] K.H. Kim, „„Distributed Execution of Recovery Blocks:

An Approach to Uniform Treatment of Hardware and

Software Faults,‟‟ in Proceedings IEEE 4th International

Conference on Distributed Computing Systems, pp. 526-

532, San Francisco, California, May 1984.

[6] J.-C. Laprie, „„Hardware-and-Software

Dependability Evaluation,‟‟ in Proceedings 11th World

IFIP Congress, pp. 109-114, San Francisco, California,

September 1989.

[7] J. Lala, L. Alger, S. Friend, G. Greeley, S. Sacco, and S.

Adams, „„Study of A Unified Hardware and Software

Fault Tolerant Architecture,‟‟ Report No. 181759, NASA

Contract No. NAS1-18061, January 1989.

[8] Michael R. Lyu, Algirdas Avižienis, “Assuring Design

Diversity in N-Version Software: A Design Paradigm

for N-Version Programming”, in Chapter Dependable

Computing for Critical Applications 2 Volume 6 of the

series Dependable Computing and Fault-Tolerant

Systems pp 197-218, 1992.

[9] Romeu, J.L. Reliability Estimations for Exponential Life,

RAC START, Volume 10, Number 7.

[10] Hoyland, A. and M. Rausand, System Reliability Theory:

Models and Statistical Methods, Wiley, NY, 1994.

IJCATM : www.ijcaonline.org

http://link.springer.com/book/10.1007/978-3-7091-9198-9
http://link.springer.com/book/10.1007/978-3-7091-9198-9
http://link.springer.com/book/10.1007/978-3-7091-9198-9
http://link.springer.com/bookseries/1100
http://link.springer.com/bookseries/1100

