
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

36

Parallel Quick Sort using Thread Pool Pattern

Somshubra Majumdar
D. J. Sanghvi College of

Engineering
Mumbai, India

Ishaan Jain
D. J. Sanghvi College of

Engineering
Mumbai, India

Aruna Gawade
D. J. Sanghvi College of

Engineering
Mumbai, India

ABSTRACT
Sorting algorithms, their implementations and their

applications in modern computing necessitates improvements

for sorting large data sets quickly and efficiently. This paper

will analyze the performance of a multi-threaded quick sort

implemented using the thread pool pattern. The analysis will

be done by comparing the time required to sort various data

sets and their memory constraints, against the native sorting

implementations of the Dual Pivot Quicksort and Merge Sort

using the Fork-Join framework in the Oracle Java 8

programming language. Analysis is done of the effect of

different number of processor (cores) of the test machine, as

well as the performance barrier due to the initial time taken to

create “p” threads, p being the number of processors. This

paper also analyzes the limitations of the inbuilt Java method

Arrays.parallelSort() and how the proposed system overcomes

this problem. Finally, it also discuss possible improvements to

the proposed system to further improve its performance.

Keywords
Sorting, Multithreading, Object oriented programming,

Parallel algorithms

1. INTRODUCTION
Sorting is defined as the operation of arranging an unordered

collection of elements into monotonically increasing (or

decreasing) order. Specifically, S = {a1, a2 ………….an} be a

sequence of n elements in random order; sorting transforms S

into monotonically increasing sequence S‟= {a1 ‟, a2

‟…………… an ‟} such that ai ‟≤ aj‟ for 1≤ i ≤ j ≤ n, and S‟ is

a permutation of S [1].

Sorting large data sets is a requirement for several modern

applications. There are several different sorting algorithms

which have been analyzed in great detail. Sorted data sets

possess several important properties, enabling efficient

searching and statistical analysis. Binary search is one of the

fastest searching algorithms which operates only on sorted

data sets.

Seeing how sorting in useful in many other domains, it is

important for sorting algorithms to be fast and efficient.

General purpose sorting algorithms must be designed, which

offer efficient use of available processors, main memory as

well as reduce the overall time required to sort various data

sets.

In computer science, a thread is a small sequence of

instructions that can be performed independently by a

processor. Multi-threading is possible within a process,

wherein they share resources such as instructions and context.

[2, 3].

Multithreaded applications provide advantages such as [2, 4]:

● If the main thread of a single-threaded application

blocks the flow of execution, the entire application

can appear to freeze. Multi-threading prevents the

operating system from freezing, as seen in the case

of single threaded processes. By transferring a long

task to a worker thread that runs parallel to the main

thread, the application remains responsive to user

input while executing background tasks.

● Multi-threaded programs work best on a multi-

processor system, since they distribute executable

tasks onto processors that execute each task in

parallel.

● Multi-threading allows multiple clients to access an

application concurrently.

● Multi-threaded applications can also utilize the

system better. Multiple processors can execute in

parallel and improve the throughput.

In version 7 of the Oracle Java Development Kit (JDK),

“Dual-Pivot Quicksort” by Vladimir Yaroslavskiy, Jon

Bentley, and Joshua Bloch has been implemented as the

Arrays.sort() method [5]. Since this algorithm offers

𝑂(𝑛 𝑙𝑜𝑔(𝑛)) performance on many data sets, it is usually

faster than a 1-pivot Quicksort implementation [5]. While this

sorting method is fast and efficient for relatively small data

sets (n < 1 million), its performance degrades at large data sets

(n >10 million). One can make use of threads and Thread

Pools introduced in version 5 of the JDK to perform a

multithreaded variant of Quicksort to significantly reduce sort

times.

Oracle has also implemented in version 8 of the JDK, a

multithreaded Merge Sort algorithm which can be invoked by

the method Arrays.parallelSort(). This algorithm is a parallel

sort-merge that divides the array into sorted subsets that are

subsequently merged. When the subset length reaches a lower

bound threshold, the subset is sorted using an appropriate

serial sorting algorithm. The algorithm requires a working

space as large as the size of the original array. The Fork-Join

thread pool is used to execute parallel tasks [5].

Quicksort is an unstable sorting algorithm, meaning it does

not preserve the relative order of equal items. It is also an in

place sorting algorithm requiring only small amounts of

memory to sort data sets [6]. It has an average sort complexity

of 𝑂(𝑛 𝑙𝑜𝑔(𝑛)), but degrades to 𝑂(𝑛2) under rare

circumstances. Generally, it out performs most of the other

𝑂(𝑛 𝑙𝑜𝑔(𝑛)) algorithms [7].

Quicksort is a divide and conquer algorithm. Initially, it splits

the array into two sub-arrays: the lower items and the higher

items respectively. It then recursively sorts these sub-arrays.

Its algorithm can be described as [6]:

1. Pick a pivot element from the array.

2. Partition the array such that, all the elements to the

left of the pivot have values less than the value of

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

37

the pivot, and all elements to the right of the pivot

have values greater than the pivot value.

3. Recursively perform the above steps over the

generated sub-arrays, until completely sorted sub-

arrays are obtained.

After performing the above steps, the array has been

partitioned into three sub-arrays:

1. Values less than the pivot

2. The pivot value

3. Values greater than the pivot

However, post-partition the sorting of the new sub-sequences

can be performed in parallel as there is no collision. Thus, the

algorithm is trivial to parallelize [8].

The choice of pivot elements affects the performance of the

algorithm since Quicksort is data dependent. Sorting

algorithms are said to be data dependent if their performance

depends on the type of data sets provided to them. Some

standard types are nearly sorted data set, completely sorted

data set and reverse sorted data set. Usually selecting the

middle value of the list/sub-list as the pivot value prevents

most degradations in performance. Calculation of the middle

value index is usually done using (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2 [4].

However, this may cause integer overflow, and yield a

negative index. To avoid this, the middle value index can be

obtained using (𝑙𝑜𝑤 + ((ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤) / 2)), or its

equivalent ((𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ) >>> 1) [4]. Also, to reduce the

recursive component, one may sort the data directly using

some other algorithm such as Insertion Sort for very small

subsets of the data set. This can greatly reduce the space

requirement of stack memory as well as reduce computation

time.

The structure of the paper is as follows: In Section 3 analysis

of Java‟s inbuilt functions, namely Arrays.sort() and

Arrays.parallelSort() is performed. Section 4 describes the

theory behind the proposed algorithm as well as the system

itself. Section 5 compare the performance of the proposed

system with respect to the Java functions mentioned in

Section 3. The paper concludes with Section 6.

2. LITERATURE SURVEY
The concept of multi-threaded Quicksort has been well

studied and analyzed over several decades. Ranging from

Oracle‟s official documentation on Java SE 8 to papers by

other researchers, there have been multiple improvements in

the efficiency of the implementations of the Quicksort

algorithm as well as its parallel variants.

Originally Quicksort (developed by C.A.R. Hoare) was

implemented using recursion to divide the given array of

unsorted values into smaller, more easily sortable sub-lists [1].

These sub-lists are either further divided, or deemed to be

sorted and requiring no further splitting. A parallel

implementation of Quicksort was a good choice for two

reasons. Firstly, it is one of the fastest sorting algorithms for

an average case. Secondly, Quicksort has a natural

concurrency, that is, when it calls itself recursively, the two

recursive calls can be executed simultaneously since the

subsets are disjoint.

Studies have been conducted on parallel quick sort

implementation in the SUN Enterprise 10000 systems [9]. It is

a cache efficient implementation using overlapping fine grain

parallelism to improve efficiency. Their research indicates

that their implementation is 50% faster than parallel Sample

Sort implementation. Generally it is observed that sample sort

outperforms Quicksort in most data sets, however the parallel

implementations of Quicksort can be made to sort even very

large data sets quickly.

Modern computers have multiple processors which act as a

single logical unit. Utilizing multiple processors to

asynchronously execute independent tasks relevant to a single

program is referred to as multithreading, which is often

managed by the overlying operating system. However there is

an overhead involved in creating, managing, executing and

destroying threads by the operating system. Thus, the thread

pool pattern was introduced [10]. A thread pool creates a

cache of running threads on startup which wait to execute

tasks supplied to them via a work queue. As tasks are

submitted, each task is allocated to a thread in the pool ready

to accept and execute a task. If there are too many tasks, and

no available threads to execute them, then the tasks remain in

the work queue until they are assigned their thread for

execution.

Sorting has multiple applications [11] such as removing

duplicate values, median and order statistics calculations. It is

used in algorithms such as Prim‟s and Kruskals to calculate

the shortest sequence between two points. It is also used in

Djikstras algorithm to compute the shortest distance between

two points in a graph. Sorting is also used before performing

Binary Search in order to rapidly find the required item.

Huffman Compression algorithm also utilizes sorting

algorithms to quickly find the two smallest weighted items

and to produce the concatenated value. It is also used in String

processing algorithms.

3. ANALYSIS OF JAVA’S INBUILT

FUNCTIONS
To compare the performance between Oracle Java sorting

methods [5] and the proposed system, random data sets of

varying size were selected for analysis. The data sets are

generated at run time using the inbuilt Random class, thus

generating pseudo-random data values. Due to main memory

limitations, data set size has an upper bound of 800 million

integer type data items. Size of each integer type data item is

4 bytes on Windows operating systems.

As a baseline, identical data sets were sorted using the inbuilt

Java methods (Arrays.sort() and Arrays.parallelSort()) to

compare the time required to sort each data set. To improve

accuracy of comparison between the methods, multiple data

sets were generated for each size quantum. As the size of the

data sets increased exponentially, the time required to sort the

sets increased proportionally. Due to this, for larger data set

sizes, fewer numbers of data sets were compared. Due to the

Java 8 Arrays.parallelSort() algorithm utilizing Merge Sort as

its base algorithm, it is limited to 100 million data items on

the proposed system. This is because Merge Sort is an

external sort, requiring an auxiliary working array of same

size „n‟ as the data set given as input.

The following figures describe the time in milliseconds

required to sort „n‟ data items by either Arrays.sort() or

Arrays.parallelSort(). The blue line represents the time

required by Arrays.sort(), while the yellow line represents the

time required by Arrays.parallelSort(). The computation time

was calculated on an Intel i5 processor 4 core machine (2

physical, 4 logical) and 8 GB of RAM.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

38

Figure 3.1 Time (in milliseconds) required to sort 100 data

sets each having 10 million items

Figure 3.2 Time (in milliseconds) required to sort 10 data

sets each having 100 million items

As the figures suggest, the sorting time for the single threaded

Dual Pivot Quicksort used in Arrays.sort() requires at least

twice the time to sort the same data set as the multi-threaded

Arrays.parallelSort(). On a machine with 4 processors, the

parallel execution of Arrays.parallelSort() provides nearly

100% gain in performance.

4. PROPOSED SYSTEM: MULTI-

THREADED QUICK SORT WITH

THREAD POOL
In computer programming, a thread pool pattern is a

collection of threads in a synchronized blocking queue

designed to perform multiple tasks in parallel. The output of

the finished tasks can be queued, or they may return no output

[10]. In most cases, the number of tasks outnumber that of

threads. On completion of a task, the thread requisitions the

next queued task until all tasks are completed. The thread can

then end, or wait until the next task arrives [12].

The degree of parallelism can be altered to provide optimum

performance. Additionally, the degree of parallelism can be

dynamically determined based on the number of tasks

awaiting execution. The algorithm used to administrate the

creation and destruction of threads impacts overall

performance [8, 9]:

● Creation of a large number of threads wastes

computational resources

● Destruction of a large number of threads causes the

system to waste time recreating them

● Sudden increase in the number of required threads

results in poor client performance

● Sudden destruction of threads may starve other

processes of resources

This method is a combination of the aforementioned 3

techniques of Quicksort, multithreading and thread pool

pattern to make the sorting process faster for larger data sets

compared to the Java implementation of Arrays.sort() and

Arrays.parallelSort() while also caching the threads to avoid

recreation of additional threads.

The algorithm is backed by the task queue held by the Thread

Pool, which caches “p” threads for as long as the sorting task

is not completed, “p” being the maximum number of available

processors. A task can be defined as a set of executable

statements that are passed to the Thread Pool to be executed

[10]. The task queue must be a synchronized blocking queue.

Also, “n” is considered to be the size of the data set being

sorted.

The algorithm can be simply described as:

Algorithm ParallelQuicksort(data_set, n, p)

{

threshold : = (p > 1)? (1 + n / (p << 3)): n

submitToThreadPool (PQuicksort (data_set, 0, n - 1))

wait for all threads to complete execution

}

Algorithm PQuicksort (data_set, low, high)

{

if ((high - low) < threshold)

 sortDirectly (data_set, low, high)

else

{

i := low, j := high

pivot:= data_set[(low + (high-low)/2)

while i <= j {

 while data_set[i] < pivot {

 increment i

 }

 while data_set[j] > pivot {

 decrement j

 }

 if i <= j {

 swap data_set[i] with data_set[j]

 increment i

 decrement j

 }

}

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

39

if low < j

 submitToThreadPool(PQuicksort(data_set, low, j))

if i < high

 submitToThreadPool (PQuicksort(data_set, i, high)

}

}

In the above algorithm, to limit the number of threads utilized

by the executor, first check if the dataset size if smaller than

the threshold defined. If so, then it is directly sorted using

another sorting algorithm, such as Insertion sort (if n < 35) or

with a non-parallel Quick Sort (n > 1000). Otherwise,

partition the data set into 2 sets as described above, as well as

swap values if necessary.

Recursion is not permitted as long as the data set is larger than

the threshold, that is, other than in sortDirectly(). Instead, the

algorithm submits the two possible recursive components of

PQuicksort using different parameters for the low and high

values, to the task queue in the Thread Pool. Then, the new

tasks are atomically removed from the task queue and

subsequently executed by the assigned thread. However, if no

thread is ready to accept new tasks, then the task must wait in

the task queue

This implies that the cost of recursion is now replaced with

the initial cost of creating “p” threads for the Thread Pool.

Since threads are cached, thus all “p” threads are active

throughout the execution of the sorting algorithm. The cost of

recursion is dependent on the stack, the number of recursive

calls and the time required to return to the calling function,

which reduces performance. Instead, one may parallelize the

recursive components and replace the recurring cost of

recursion with the one time cost of creating the “p” threads.

5. ANALYSIS OF PERFORMANCE OF

PROPOSED SYSTEM
While the performance of the Arrays.parallelSort() is far

better than the single threaded Arrays.sort(), it outperforms

the latter algorithm only in large data sets (n > 1 million).

Another major drawback of Arrays.parallelSort() is the fact

that, due to its base algorithm being Merge Sort, it requires a

working array of size “n” to execute the sorting algorithm.

The proposed method for using Thread Pool pattern to

implement Quicksort seeks to improve upon the existing

Arrays.parallelSort() function in terms of speed and memory

requirement.

While the proposed method may improve the aforementioned

performance factors, one must keep in mind that as a

multithreaded sorting mechanism, the proposed method is

highly dependent on the maximum number of processors as

well as the maximum available physical memory (RAM)

available. The performance of this system has been analyzed

using a machine with a maximum of 8GB of RAM and an

Intel i3 processor (processor clock frequency is 2.8 GHz) with

2 physical (4 logical) cores and a second machine having a

maximum of 8 GB of RAM and an Intel i5 processor

(processor clock frequency is 2.9 GHz) with 2 physical (4

logical) cores. Performance of the proposed method will vary

on systems with varying measure of available RAM or

processor clock speeds or number of available processors.

Hence the proposed method has been tested on 2 different

machines to keep a broader view of the comparison between

the proposed and the existing functions.

Note that Java Virtual Machine (JVM) is allocate at most

2048 megabytes for the application heap, using -Xmx2048m

as the command line JVM argument. Using these constraints,

one can create and sort a data set of maximum size close to

350 million integer data items. However, upon testing

Arrays.parallelSort() using n > 160 million data items, it is

found that the program quits execution due to an

OutOfMemoryError. This is due to the 𝑂(𝑛) memory space

required as a working array for Merge Sort. Thus, test the

proposed algorithm and Arrays.parallelSort() at n <= 100

million. Having seen no such error due to the proposed

algorithm or Arrays.sort(), even at the system limit of 350

million data items, one may consider a few tests at n = 350

million (approximately 1335 Megabytes of RAM).

The following figures are the results of comparing the

proposed system with the Java sorting functions Arrays.sort()

and Arrays.parallelSort(). The results are shown as percentage

gain or loss when the execution time (in milliseconds) of the

proposed system is compared to execution time of

Arrays.sort() or Arrays.parallelSort(). Note that the blue lines

represent the percentage gain/loss when comparing the

proposed system with Arrays.sort(), while the yellow lines

represent the same when comparing the proposed system with

Arrays.parallelSort().

Figure 5.1 Percentage loss on 200 data sets of 1000 items

each on first 4-core machine

Note that the time required to sort small data sets (n < 1000)

by Arrays.sort() or Arrays.parallelSort() is calculated as 0

milliseconds (actual execution time is approximately 200-250

microseconds). Proposed system however requires some time

in creating the thread pool itself, thus the execution time is

greater than 1 millisecond. Due to this, the comparison figures

at n = 1000 produces a large loss percentage with spikes due

to thread pool creation time as shown in above figure.

Figure 5.2 Percentage gain on 200 data sets of 10 million

items each on second 4-core machine

As seen in the above image, the blue line indicates an average

performance gain of 150% over Arrays.sort(), while the

yellow line indicates a more modest performance gain of 20%

over Arrays.parallelSort().

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

40

Figure 5.3 Percentage gain on 10 data sets of 100 million

items each on second 4-core machine

Figure 5.4 Percentage gain on 5 data sets of 350 million

items each on an 8-core machine

As seen, the figures comparing the proposed system and

Arrays.parallelSort() for data sets of very large size (greater

than 100 million items) have not been shown, as explained

above. Above are a few figures comparing the proposed

system to Arrays.sort() at data set sizes of over 100 million

data items, since only Arrays.sort() does not crash during

execution.

Note that the last two data set (n = 200 and 350 million data

items) is sorted on a different machine, having an i7 processor

with 8 cores (4 physical, 8 logical) having 8 GB of RAM.

This was done to indicate that the performance of the

proposed system will improve with the increase in number of

available processors, as seen by the nearly 350% gain in

performance compared to the 125-150% gain as seen on the

other machines.

Table 5.1 Tabularization of results

Array

size

Arrays.

sort()

(ms)

Arrays.parallelSort()

(ms)

Proposed

System

(ms)

1,000 0 0 2

1

Million

90 43 40

5

Million

446 206 172

10

Million

947 437 386

20

Million

1954 845 771

50

Million

5063 2328 2013

100

Million

11379 4844 4523

200

Million

21961 - 8614

350

Million

40941 - 9034

The above table summarizes the results empirically obtained

in this section. The values that are shown are the average

execution times for sorting data sets using the respective

methods.

For the dataset with a size of 1000 items, it is seen that

Arrays.sort() and Arrays.parallelSort() have an execution time

of 0 milliseconds, while internally the time taken is on

average is less than 1 millisecond, and can be considered

negligible.

For the datasets with a size of greater than 160 million data

elements, Arrays.parallelSort() fails due to an

OutOfMemoryError, giving no output.

6. CONCLUSION
Quicksort is widely considered to be one of the fastest,

general purpose sorting algorithm. Due to its divide and

conquer strategy, it can be implemented to execute on

multiple processors to speed up sorting. The proposed

algorithm implements a multithreaded Quicksort using a

thread pool and have analyzed its performance in comparison

with native Oracle Java implementations of the single

threaded Dual Pivot Quicksort used in Arrays.sort() and the

multithreaded Merge Sort using the Fork-Join Pool in

Arrays.parallelSort(). Computational experiments have shown

us that our algorithm outperforms Arrays.sort() when the data

set is not trivial (over 1 million data items) and, on average, it

outperforms Arrays.parallelSort().

7. FUTURE WORK
Our system provides reasonable performance benefits over the

inbuilt functions of Arrays.sort() and Arrays.parallelSort(),

however there are still improvements which can be made.

Quicksort is inherently an unstable sort, and does not maintain

the relative order of data items. It is possible to utilize the

same method to parallelize other sorting algorithms which

include Merge Sort, Sample Sort and Heap Sort. Also,

currently the calculation of the partition pointers (i and j) is

done sequentially. However, it is possible to also parallelize

the calculation of these pointers, thus one can hope to achieve

a minor gain in the execution speed of the algorithm to

improve the performance of this system.

8. ACKNOWLEDGEMENTS
The authors humbly acknowledge the invaluable contributions

of Professor Aruna Gawade for her help and guidance in

developing this document.

9. REFERENCES
[1] “Parallel Programming in C with MPI and OpenMP”.

M. J. Quinn, Tata McGraw Hill Publications, 2003, p.

338

[2] “Java Thread Programming”, Paul Hyde, ISBN 0-672-

31585-8.

[3] “Multi-Threaded Programming in C++”, Mark

Walmsley, Springer, ISBN 1-85233-146-1.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.7, February 2016

41

[4] “Algorithms In C: Fundamentals, Data Structures,

Sorting, Searching, Parts 1-4 (3 ed.)”.Sedgewick, Robet

(1 September 1998).

[5] “Arrays (Java Platform SE 8)."Arrays (Java Platform SE

8). Web. 28 Mar. 2015.

[6] <http://docs.oracle.com/javase/8/docs/api/java/util/Array

s.html>. “The Art of Computer Programming, Volume 3:

Sorting and Searching”. Donald Knuth. Third Edition.

Addison-Wesley, 1997.

[7] “Popular sorting algorithms”, C. Canaan, M. S. Garai,

M. Daya

<http://waprogramming.com/papers/50ae468b07bca6.46

839978.pdf>.

[8] “Introduction to Algorithms”. Cambridg. Cormen,

Thomas H., Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein.

[9] “A Simple, Fast Parallel Implementation of Quicksort

and Its Performance Evaluation on SUN Enterprise

10000.” Tsigas, P., and Yi Zhang. Eleventh Euromicro

Conference on Parallel, Distributed and Network-Based

Processing, 2003. Proceedings. (2003)

[10] "Java Theory and Practice: Thread Pools and Work

Queues." Web. 26 Mar. 2015

<http://www.ibm.com/developerworks/library/j-

jtp0730/>.

[11] "2.5 Sorting Applications." Sorting Applications. Web.

26 Mar. 2015.

<http://algs4.cs.princeton.edu/25applications/>.

[12] “Techniques for Optimizing Applications - High

Performance Computing”, Garg, Rajat P. & Sharapov,

Ilya. Prentice-Hall 2002,

IJCATM : www.ijcaonline.org

