
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

14

Survey : Various Methods for WCET Estimate

Calculation

Manjiri K. Kulkarni
Department of Computer Engineering

Pimpri Chinchwad College of Engineering
Pune-44

J.S. Umale, PhD
Professor, Department of computer Engineering,

Pimpri Chinchwad Collage of Engineering
Pune-44

ABSTRACT

The design of a real-time system revolves heavily around a

model known as a task schedule, which allots computational

resources to executing tasks, i.e. programs. Many different

scheduling algorithms have been invented, all of which

depend on a set of temporal properties relevant to each task.

One such property is the Worst Case Execution Time

(WCET), intuitively described as the longest possible

execution time. It is required to determine variation in

execution times. If the variation is bounded then the system

has time predictable behavior. Otherwise, we cannot provide

any guaranties for the worst case execution time and the

architecture is time unpredictable. Embedded controllers are

expected to finish their tasks reliably within time bounds.

Task scheduling must be performed essential: upper bound on

the execution times of all tasks statically known Commonly

called the Worst-Case Execution Time (WCET). To use the

GPUs in real time systems it is required to have time

predictable behavior. However, it is hard to give an estimation

of the WCET of a GPU program.

In this paper , we focused on comparative analysis of various

WCET estimate techniques with their results evaluations as

well as observations.

Keywords

WCET, IPG, ETP, Static Analysis, Hybrid Analysis, GPU.

1. INTRODUCTION
An embedded system like a Real-Time System (RTS) for

which some special operation depends on timing constraints.

The design of a real-time system closely related to the task

schedule model, which allots the CPU resource to executing

tasks, assuming access to maximum time required that means

the Worst-Case Execution Time (WCET) of each task.

However, determining the actual WCET is not easy because

software and hardware properties both because variation in

execution times. In WCET estimates, the main thing is to

bound the actual WCET so that the task schedule is not

compromised. Techniques for WCET analysis are as follows :

1. End-to-End : The High Water-Mark Time (HWMT) is

the end-to-end longest observed execution time which

lies in close proximity to the actual WCET[16].

2. Static Analysis (SA) : Static analysis have two different

models: Small segments of the software that means

program model and the functional and temporal behavior

given by processor model of the hardware. By combining

both, resulting in a WCET estimate[16].

3. Hybrid Measurement-Based Analysis (HMBA) : It

collects the execution times of program segments via

instrumentation points (ipoints)[16].

Nowadays, Graphic Processing Units (GPU) have drawn

increasing popularity for high performance computing. The

NVIDIA Compute Unified Device Architecture (CUDA)

summarizes GPU as a general-purpose multithreaded SIMD

(single instruction, multiple data) architectural model, and

provides a C-like interface supported by a compiler and a

runtime system for GPU programming. As in the case of CPU

programming, ensuring that a GPU application efficiently

utilises computational resources is a cardinal goal. Mostly it

involves analysing average case performance and optimising

accordingly, but outlier execution times, such as the WCET,

also prove fruitful.

2. LITERATURE SURVEY
1. In the work, WCET Analysis of Probabilistic Hard Real-

Time System (2002) [5], the evaluation of WCET estimate is

on the basis of probabilistic analysis, in which the notion of

probabilistic hard real-time system which has to fulfill all the

deadlines but for which a probabilistic (high) guarantee

requirements are introduced. They also combine both

analytical and measurement approaches into a model, for

computing probabilistically bounds on the execution time of

the worst case path of sections of code. In this work, technique

presented is based on combining (probabilistically)

individual’s worst case effects blocks to build the execution

time model of the program’s worst case path but in case of

may have not been observed in the measurements. Here focus

is on a particular use of Execution Profiles in the domain of

WCET analysis [9]. The ―events‖ frequencies are represented

by the execution profiles are the different execution times that

a piece of code which may require to execute. The relative

frequencies which are represented by such an execution

profiles of execution times is an execution time profile (ETP)

where The EPs could also be provided by analytical methods

as the ones used in static WCET analysis[6][3]. To find the

longest execution time of a program is by combining together

the observed execution time of its parts. This combination

should be go towards the worst case.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

15

Fig. Probabilistic WCET Analysis

The above figure shows the WCET of program on the basis of

execution profiles, in the first step, obtain Execution profiles

of code by defining granularity. In the second step,

independent ETPs are identified and combine all those

identified ETPs in the next step dependent ETPs are identified

and assuming independent execution of sections of code may

be pessimistic or optimistic.If there is strong positive

correlation is present between the execution times of certain

pairs of execution blocks by taking optimism and pessimism

of the hypothesis of independence then it is an optimistic

estimate.Then apply timing schema according to the

dependency information available.

2. In the work, Deriving the Worst-Case Execution Time Input

Values (2009) [12] based on a combination of input sensitive

static WCET analysis [10] and systematic search over the

value space of the input variables, to derive the input value

combination that causes the WCET unlike in previous work

where probabilistically WCET estimate was derived. There

are present several different approaches to speed up the search

and evaluations which show that, for many type of programs,

the WCET input values can be relatively quickly derived,

even for program with large input value spaces. It show that

the from WCET input values derived WCET estimates often

are muc1h tighter than the WCET estimates derived when

combinations of all possible input value are taken into

account. A novel search algorithm based on a combination of

static WCET analysis and systematic search over the input

variables’s value space are used to find the WCET input

values. Many static WCET analyses are input-sensitive,

meaning that when calculating a WCET estimate, they are

able to take constraints on input variable values into account.

When static input-sensitive WCET analysis tool run with a

single worst-case input value combination, it will be able to

produce a tighter WCET estimate, as compared to when it is

run with all possible input value combinations. This allows for

better utilization of overall system and for the real-time

system designer makes it easier to produce a schedulable

system.

Fig. WCET input value analysis

This figure shows that the flow of WCET input value analysis

[12], in which first block is of input which contains program,

input variables and input value space as input the in second

block the search algorithm systematically divides this input

value space into smaller partitions of input value space, each

with a subset of the input value space. Algorithm will works

iteratively by calculating WCET estimates for different

partitions input value space of the program. The largest

WCET estimate is selected from each iteration of partition and

divided into two or more smaller partitions, for which WCET

calculations are made. The process continues until the selected

partition holds only one input value combination, which is

then returned. In the last block, worst case input values and

WCET estimates are calculated.

3. In the work, WCET Analysis of Component-Based Systems

using Timing Traces (2011) [14] shows how to obtain a safer

WCET estimate of a Real Time Systems which are composed

of components using time-stamped traces of program

execution . For this, data like program model, execution times,

execution bounds are needed in the WCET computation,

which is derived from parsing traces. The trace-parsing stage

produces the structure of the Instrumentation Point Graph

(IPG) [4] and derives the execution times and execution

bounds of its edges: the calculation engine is then tasked with

producing a WCET estimate from these data. Here Implicit

Path Enumeration Technique (IPET) is used which is

basically maximised an objective function and it subject to a

number of constraints since it can easily model arbitrary

control flow and is not therefore hindered by the irreducibility

of an IPG [1].

Fig. WCET estimate from IPG

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

16

In the above figure, WCET estimate is calculated from

instrumentation point graph. In the first step, IPG is

constructed from trace file (set of timing traces). In the second

step, Integer Linear Program is derived form IPG. In above

model, upper capacity constraints are execution bounds

derived from trace parsing. Solving this model via standard

(integer) linear program solvers returns both a WCET estimate

and a setting of the execution count for each IPG edge in the

worst case. In this way, all paths are implicitly considered

since the solver attempts different assignments to the

execution counts in determining the worst case. When the

execution times and upper capacity constraints on the decision

variables are safe, the solution to the ILP always returns an

upper bound on the actual WCET [7].

4. In the work, Estimating the WCET of GPU-Accelerated

Applications using Hybrid Analysis (2013) [15] is proposed to

enhance optimizations in GPU programming languages such

as CUDA, OpenCL, requires optimization which is highly

depends on workload and structure of input data in parallelism

and locality by minimizing synchronization. In this, from

traces of execution, execution times of small program

segments are deduced and a calculation backend derived from

the Control Flow Graph (CFG) produces a WCET estimate.

Fig. WCET Estimate for GPU-accelerated applications

In the above figure, first step is of obtaining Contol flow

Graph(CFG), Instrumentation Point Graph (IPG),traces of all

possible execution paths. In second step, IPG transformed into

a tree representation that is similar to an abstract syntax tree in

which its internal vertices represent sequential, alternative,

and iterative constructs, while leaves represent Ipoint

transitions as these are the atomic units of computation [15].

Individual threads within a thread-block execute on a specific

core. However, on an NVIDIA GPU, threads are not the

atomic unit of scheduling, it is a sub-group of the thread-block

called a warp. The number of threads in a warp, i.e. the warp

size, has remained 32 across all NVIDIA GPUs. When

different threads in a warp want to follow different sides of an

if-then-else construct, branch divergence occurs. For each path

specific warp is allocated so that each path can be execute

parallelly and performance will get increased. For GPU-

accelerated applications, this type of dynamic execution

method is suitable.

3. OBSERVATIONS
In the first work, there is probabilistic model which uses static

analysis of execution profiles but all execution paths does not

get explored so worst case time required for execution is not

exact and it is executed on CPU.

Likewise, in second work towards WCET estimate, it also

uses static anslysis but in this work, search algorithm is

introduced which searches worst case execution time.

structure of the input plays main role in opimization therefore

in input sensitive specified application it is useful but no

parallelism.

In the third work, it gives WCET for real time system on the

basis of time traces and it shows that how to obtain a safer

WCET estimate of a Real Time Systems which are composed

of components using program execution’s time stamped traces

from IPG by using IPET but it cannot determine the exact

longest path from the execution counts because the order of

execution is missing. Also no parallel execution so not

suitable for GPU based applications.

In the fourth work, more improvement in the WCET

estimation accuracy as well as in performance. In this hybrid

model comparative to all previous model, it works better

because at front end it reduces execution time by reducing

traces and at backend CFG will generated and WCET estimate

calculated.

4. RESULTS AND INTERPRETATIONS
In the first work (2002), the results in the case studies

show[5], that a partially known dependencies between

sections of code, enhance the properties of the resulting

execution profile of a program considerably.

In the second work (2009), the number of WCET calculations

needed grow with the size of the input value space. All

programs experience varying WCET calculation time. In

general, when the input value size decreases, the time for

performing the WCET calculation also decreases. Thus, the

first analysis generally consumes most time, while subsequent

analyses are faster. OrgW gives original WCET estimate (in

clockcycles) derived by SWEET Tool with all input value

combinations and FinW gives the final WCET estimate

obtained for the derived worst-case input value combination

[12].

Table 1

In the third work(2011), as shown in Table 2 [14] the

benchmarks under investigation are taken from the

Ma¨lardalen suite [8], which are used by many groups in

WCET analysis to evaluate their tools. In this evaluation they

are particularly appealing since the worst-case TVs(Test

Vectors) are easy to deduce [5].

Table 2

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

17

In forth WCET estimate work(2013), analysis of CUDA

applications shipped with the CUDA SDK [5] and selected

those for which the application performs meaningful

computation (some benchmarks merely illustrate a CUDA

feature) and for which it was straightforward to generate a test

vector. The specific benchmarks analysed are given in Table 3

[15].

Table 3

5. CONCLUSIONS
In this survey work, comparative analysis of various methods

to calculate WCET estimate are studied and from this

comparative analysis, it is conclude that WCET estimate is

calculated according to application to be executed. But for

GPU accelerated applications, hybrid WCET model is best

and it is observed that before going for large segment code

optimization, it is always better to go for small segment

optimization first.

6. FUTURE WORK
In future, it can be possible that to automatically diagnose

performance bottlenecks in GPU applications using hybrid

performance model, and it can be useful to increase the

performance of WCET estimate.

7. REFERENCES
[1] P. Puschner and A. Schedl, ―Computing Maximum Task

Execution Times - A Graph-Based Approach,‖ Real-

Time Systems, vol. 13, no. 1, pp. 67–91, 1997.

[2] J. Wegener and M. Grochtmann, ―Verifying timing

constraints of realtime systems by means of evolutionary

testing,‖ Real-Time Systems, vol. 15, no. 3, pp. 275–298,

1998.

[3] A. Colin and I. Puaut. A modular and retargetable

framework for tree-based WCET analysis. In

Proceedings of the 13th Euromicro Conference on Real-

Time Systems, pages 37–44, Delft, Netherlands, June

13–15 2001.

[4] J. L. Diaz, D. F. Garcia, K. Kim, C. Lee, L. Lo Bello, J.

M. Lopez, S. L. Min, and O. Mirabella. Stochastic

analysis of periodic real-time systems. In Proceedings of

the 23rd Real Time Systems Symposium RTSS 2002,

Austin, Texas, USA, Dec. 3–5 2002.

[5] Guillem Bernat Antoine Colin Stefan M. Petters, ―WCET

Analysis of Probabilistic Hard Real-Time Systems‖,

Real-Time Systems Research Group Department of

Computer Science University of York, UK, 2002.

[6] R. Arnold, F. Mu¨ller, D. Whalley, and M. Harmon.

Bounding worst–case instruction cache performance. In

Proc. of the IEEE Real–Time Systems Symposium

(RTSS’94). IEEE Computer Society Press, Dec. 1994.

[3] I. Berger. Can you trust your car? IEEE Spectrum,

39:40–45, Apr. 2002.

[7] A. Colin and S. M. Petters, ―Experimental Evaluation of

Code Properties for WCET Analysis,‖ in RTSS, 2003.

[8] A. Aho, R. Sethi, M. S. Lam, and J. Ullman, Compilers:

Principles, Techniques and Tools, 2nd ed. Addison-

Wesley, 2006.

[9] A. Betts, ―Hybrid Measurement-Based WCET Analysis

using Instrumentation Point Graphs,‖ Ph.D. dissertation,

University of York, November 2008.

[10] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl,

Niklas Holsti, Stephan Thesing, David Whalley, Guillem

Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika

Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan

Staschulat, and Per Stenstr¨om. The worst-case execution

time problem — overview of methods and survey of

tools. ACM Transactions on Embedded Computing

Systems (TECS), 7(3):1–53, 2008.

[11] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S.

Thesing, D. Whalley, G. Bernat, C. Ferdinand, R.

Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.

Staschulat, and P. Stenstro¨m, ―The Worst-Case

Execution-Time Problem–Overview of Methods and

Survey of Tools,‖ ACM Transations on Embedded

Computing Systems, vol. 7, no. 3, pp. 1–53, 2008.

[12] Andreas Ermedahl, Johan Fredriksson, Jan Gustafsson,

―Deriving the Worst-Case Execution Time Input

Values‖, 21st Euromicro Conference on Real-Time

Systems, 2009.

[13] Ma¨lardalen University WCET project homepage,

http://www.mrtc.mdh.se/projects/wcet, May 2010.

[14] Adam Betts, Amine Marref, ―WCET Analysis of

Component-Based Systems using Timing Traces‖, 16th

IEEE International Conference on Engineering of

Complex Computer Systems, 2011.

[15] Adam Betts and Alastair Donaldson, ‖Estimating the

WCET of GPU-Accelerated Applications using Hybrid

Analysis‖, 25th Euromicro Conference on Real-Time

Systems, 2013.

IJCATM : www.ijcaonline.org

